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The time-dependent variational principle (TDVP) is employed to produce equations of motion that approximate
the time-dependent Schrodinger equation. Choices of wave function and basis sets are discussed. The use of
electron translation factors and the electronic and nuclear parts of the molecular wavefunction are put in the
context of the electron nuclear dynamics (END) theory. The role of wave function parameters as dynamical
variables is discussed, and the use of coherent state parametrization is explored.

1. Introduction

Application of the time-dependent Schro¨dinger equation as
is done for instance in the theory of molecular reaction dynamics
has traditionally sought a description of molecular events in
terms of a basis of stationary molecular electronic states and
their associated potential energy surfaces. This approach often
leads to attractive pictures and seeks an understanding of
microscopic processes in terms of the properties of potential
energy surfaces. Such descriptions of e.g. elementary chemical
reactions in terms of preconstructed potential energy surfaces
are omnipresent in molecular reaction dynamics. An example
is the popular and widely applied transition state theory. In
general, when one or more potential energy surfaces of
acceptable accuracy together with the nonadiabatic coupling
terms are known, the nuclear dynamics can be done classically,
semiclassically, or quantum mechanically.

In spite of the many successes, this approach is undoubtedly
being hindered by the lack of generally available accurate
potential energy surfaces and the associated nonadiabatic
coupling terms. Ab initio electronic structure theory, which
generates the “best” potential energy surfaces, solves the
electronic Schro¨dinger equation for stationary nuclei in a large
number of discrete points and can similarly generate nonadia-
batic coupling terms. Application of this data in molecular
reaction dynamics requires some interpolation (often in many
dimensions), a far from trivial task, when accurate energy values
and gradients are required. The difficulties in generating full,
accurate, ab initio, potential energy surfaces for general poly-
atomic systems have caused many dynamics treatments to rely
on semiempirical surfaces, such as those obtained via the method
of diatomics in molecules (DIM).

In recent years, a new set of dynamics methods have appeared
that proceed without precalculated potential energy surfaces.
These methods use one of three approaches: (1) the potential
energy surface and its gradient is calculated on demand using
conventional electronic structure methods such as self-consistent
field (SCF) or Kohn-Sham density functional theory (DFT);
or (2) a dynamical system in parallel with the nuclear dynamics
is set up for artificial electronic degrees of freedom such that
the parallel dynamics produces the state and gradient that is

the same as or close to what the electronic structure methods
would produce for the same geometry; or (3) a coupled
dynamical system involving both the nuclear and the physical
electronic degrees of freedom is constructed and solved. The
first approach is now available in almost all electronic structure
software. The method of Car and Parinello1 is an implementation
of the second approach and has received some notoriety in the
current literature. The electron-nuclear dynamics (END) theory,
which is discussed here, follows the third approach. END uses
a basis different from that of stationary electronic states for
solution of the dynamical equations but routinely employs
stationary electronic states in the analysis of the evolving state.
Even the END dynamics often follows closely one potential
energy surface. This is particularly true at very low collision
energies and for part of the dynamics where the stationary
electronic states are well separated. In this way, END provides
support for using the Born-Oppenheimer approximation in such
processes. When admixtures of other states are required, the
END automatically provides the correct couplings through the
dynamical equations.

END is a general approach to find approximate solutions to
the time-dependent Schro¨dinger equation. It has been described
in the literature in considerable detail.2,3 The END theory offers
a hierarchy or natural progression of approximations from the
simplest model of classical nuclei and a single determinantal
representation of the electrons all the way to a full multicon-
figurational quantum description of both electrons and nuclei.

Applications of the basic END approach have been made to
a number of ion-atom and ion-molecule reactive collisions
of small species in order to test the sensitivity to the choice of
basis set and the overall performance in order to reach predictive
accuracy. Proton collisions with atoms of hydrogen, helium,
and oxygen,3-6 and R particles with Ne atoms,7 at energies
ranging from a fraction of an eV to tens of keV (depending on
the system) have been studied with calculated transition
probabilities and cross sections for electron transfer and excita-
tion in agreement with experimental results.

Ion-molecule reactive collisions have been studied with
equally promising results. This includes proton collisions with
H2 molecules4,8 at energies that involve product channels of
electron transfer and vibrational excitation, as well as total* Corresponding author. E-mail: ohrn@qtp.ufl.edu. Fax: 352-392-8722.
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breakup, with water molecules9 and with methane molecules.10

Also, H2
+ collisions with hydrogen molecules have been

studied.11

Model systems exhibiting intramolecular electron transfer
have been treated within the simplest END approach12 with
promising results. Also, the relationship between vibrational
modes of positively charged polyacetylene oligomers and soliton
dynamics of polyacetylene chains has been studied.13

2. Electron-Nuclear Dynamics Theory

The ideas behind electron-nuclear dynamics (END) are
straightforward. The theory is discussed in great detail else-
where.12 However, the details of the discussion so far have been
limited to the simplest model, which describes the electrons by
a coherent state family of determinantal wave functions and
uses classical nuclei. Therefore, there is room for an explanation
of the generality of the END theory attempted here.

Both the power and the limitation of END lie in the choice
of the family of wave functions employed in the time-dependent
variational principle (TDVP).14 The correct choice permits the
selection and emphasis of the important degrees of freedom for
a given process, but any choice, of course, limits what can be
achieved to that space of wave functions. Too much detail, e.g.
a full representation on a grid, may lead to intractable computa-
tions, while too restrictive a choice, say classical nuclei, prohibits
the description of some important aspects of the dynamics, such
as multichannel dynamical branching. The flexibility of the END
theory permits a balanced choice to be made for each problem
studied.

The END for general reactions using a full quantum descrip-
tion is given in this section in a form that permits the
identification of the more approximate implementation presented
before as a special case.

Two rather basic observations for the choice of families of
variational wave functions can be made based on experience:
(1) The electronic wave function of a molecular system is
approximated remarkably well by a single determinantal wave
function, but the flexibility to use multiple configurations is
essential. (2) The nuclei behave quite classically in many
respects; however, for multichannel processes the molecular
wave function must be capable of splitting into multiple packets
in accordance with the superposition principle.

Our experience has shown that nonlinear families of wave
functions, rather than those formed by linear superposition, often
provide accurate results with greater efficiency versus effort.
Although identical nuclei should be given wave functions of
correct permutational symmetry, the discussion below will not
treat the symmetry of the nuclei. Our own experience is that
the numerical effects of nuclear permutation symmetry are often
negligible and the notation becomes unduly cluttered. The
expressions are easily adapted for such symmetry, when needed.

For a didactic presentation of a general framework for
simultaneous dynamics of electrons and nuclei, the coordinates
and the basis functions of choice could be different from those
commonly used in other approaches. This does not mean that
the particular choice used here is believed to perform better or
worse in numerical computations, but rather that it clarifies the
similarity and differences between nuclear and electronic degrees
of freedom.

The symbolΨ is used for molecular wave functions,Φ for
electronic wave functions,¥ for nuclear wave functions. A

molecular wave function is given in terms of the Born-Huang15

expansion

where the various parameters are time-dependent and explained
below.

Nuclear Wave Function.Each nuclear wave function in the
above expansion represents all nuclei in the system and is a
sum

of products of orbitals

centered on average locationsR with average momentaP. The
index (π) stands for the set of indicesπl, l ) 1, ...,Nat with Nat

the number of atomic nuclei. This sum describes the correlation
between the nuclei.

It is well-known that the major part of this correlation for
any bound subsystem is described by vibrational eigenstates of
normal-mode coordinates. For example, for a diatomic molecule
in the vibrational groundstate with a sharp localization in
orientation (θ, æ), the wave function has the form

where in the second step the angular localization is given a
Gaussian form, and where

This shows the sum in terms of products of orbitals for nuclei.
The correlation can be seen to need basis functions with high
angular momentum componentsk, m, andn for eq 3 to converge.

Quantum mechanical treatments of nuclear dynamics on
molecular potential energy surfaces often employ basis functions
in internal coordinates that are carefully chosen to be close,
but not identical, to normal modes so as to accelerate conver-
gence. For example, the discrete variable representation (DVR)
method typically selects from 6 to 12 discretization points in
angular variables, which corresponds to a polynomial fit of the
same order. This would in the above expansion correspond to
basis functions withk + m + n ranging from 6 to 12 or more,
because the generic basis functions (eq 3) are not as optimal as
is customary with internal variables for quantum molecular
dynamics.

Electronic Wave Function. Each electronic wave function
in the expansion (1) may be represented as a sum of determi-
nants

Ψ(X,x,c,f,d,e,z,R,P) ) ∑
n

cn¥n(X,f,d,R,P) Φn(x,e,z,R,P) (1)

¥n(X,f,d,R,P) ) ∑
(π)

fn(π) ∏
l)1

Nat

øπ(l)(XBl,d,RBl,PBl) (2)

øl(XB,d,RB,PB) ) ∑
j

dljX
kljYmljZnlj exp[-Rlj(XB - RB)2 - iPB‚XB] (3)

exp[-R(XBcm - CB)2 - â(Xrel - D)2]f(θ, æ) )

exp[-R(XBcm - CB)2 - â(XBrel - DB)2] ) exp[-γ(XB1 - RB1)
2 -

γ(XB2 - RB2)
2 - δ(XB1 - RB1)‚(XB2 - RB2)] )

exp[-γ(XB1 - RB1)
2] exp[-γ(XB2 - RB2)

2]∑
n

[-δ(XB1 - RB1)‚

(XB2 - RB2)]
n/n! (4)

γ ) R/4 + â, δ ) R/2 - â

CB ) (RB1 + RB2)/2, DB ) RB1 - RB2 (5)

Φn(x,e,z,R,P) ) ∑
(π)

en(π) det[æπ(h)(xbg,z,RB,PB)] (6)
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built of orbitals

centered on average nuclear positionsR moving with the same
average velocityP/M as the nuclei. The symbol (π) is a
configuration label and runs over the list of configurations. The
sum describes the correlation between electrons.

It is well-known that the best single determinant, constructed
with the self-consistent field (SCF) method, provides a reason-
able description for most systems. For computational efficiency
we choose Gaussian type orbitals, but obviously it is possible
to use other types of orbitals, even numerical representations
on a grid, if that is needed and judged to be computationally
feasible for the problem under consideration. It is not unusual
in correlated electronic structure theory to use angular momen-
tum basis functions through f and g types or higher and to use
basis sets of so-called double-zeta, triple-zeta, or even better
quality. The questions of the quality of basis set needed for
END applications to reach converged results are largely still
unanswered, but initial studies on systems with first-row
elements seem to indicate that converged results are obtained
with quite limited basis sets. Further studies are needed of the
behavior of the calculated results as functions of increasing
electronic basis.

Molecular Wave Function. In some general approach to
determine a total molecular wave function, the coefficientsd
and c of the nuclear wave function could be determined to a
good approximation, for instance, by finding the eigenstates in
nuclear normal coordinates, while the coefficientse and z of
the electronic wave function could be obtained by SCF plus
any one of a number of well-proven correlated electronic
structure methods. It must be emphasized that this isnot what
END does, as elaborated below.

The sum in the wave function equation (1) describes the
correlation between the electrons and the nuclei. It is well-known
that the Born-Oppenheimer (BO) approximation provides an
excellent first term in the sum. In that case the electronic wave
function is the eigenfunction with eigenvalueV(X) of the
electronic problem with the nuclei frozen at the geometryX.
And the nuclear wave function is the vibrational-rotational
eigenfunction of the nuclei moving on the molecular potential
surfaceV(X). Because of the overwhelming success of the BO
approximation, most approaches to molecular dynamics include
the construction of the potential energy surface to some
acceptable level of accuracy.

Because it is technically not (yet) feasible to express the
matrix elements of the nuclear Hamiltonian in the BO ap-
proximation directly in terms of the nuclear basis functions (eq
3) and the electronic basis functions (eq 7), all molecular
dynamics methods proceed through fitting some analytic func-
tion to the potential energy surface. This is already starting to
change, as shown by the popularity of gradient-driven molecular
dynamics and Car-Parinello-like methods. These methods
employ classical (Newtonian) dynamics of the nuclei but use
gradients supplied directly by electronic structure methods rather
than from analytic fitted forms as was still the norm only a
decade ago.

Instead of the classical Born-Oppenheimer or adiabatic form
of the wave function

where the electronic wave function depends parametrically on

the nuclear dynamical variablesX, END considers a sum (eq
1) of less tightly coupled products of nuclear and electronic
wave functions where the BO approximation and potential
energy surface are only defined for the average nuclear positions
R and momentaP. This series bears some resemblance to the
diabatic form of the Born-Huang expansion, which is known
to be formally equivalent to the adiabatic or BO form and to
be more rapidly converging near avoided crossings of surfaces.

Electron-Nuclear Dynamics.Because the goal is to study
dynamics in a time-dependent method, it is not necessary to
require the convergence of both the electronic and the nuclear
wave functions in each molecular term separately. Rather, it is
sufficient to consider convergence for the electron nuclear
dynamics of the molecular system with a wave function
expressed directly as a sum of basic configurations

where the symbol (π) now runs over all combined electron-
nuclear configurations.

The coefficientsc now describe the correlation among
electrons (MCSCF), among the nuclei (normal-mode states),
and between electrons and nuclei (Born-Oppenheimer states)
and become (time-dependent) dynamical variables. Note that
the entire wave function depends parametrically on the average
nuclear positionsRand momentaP. When the basis is complete,
this is largely irrelevant as the average values can be computed
from the wave function. It is a well-known technique for
accelerating convergence of numerical solutions of differential
equations, to make the basis-function placement part of the
solution method. Examples are found in the placing of the
electronic basis functions on the nuclear centers in electronic
structure, or using carefully chosen internal coordinates in
quantum molecular dynamics, or employing adaptive grid
methods in fluid dynamics. By making the parametersR andP
dynamical variables, the basis functions are made to follow the
flow of the dynamics such that accurate solutions can be
constructed with a more limited basis set.

Analogous to the classical mechanics, there is a quantum
mechanical “Hamilton’s principle” or time-dependent variational
principle (TDVP). The quantum mechanical action14 is defined
to be

where the quantum mechanical Lagrangian is

andH is the quantum mechanical Hamiltonian of the system.
The many-body wave functionΨ is subject to the boundary
conditions

at t ) t1 and t2. TDVP yields the time-dependent Schro¨dinger
equation ifΨ is varied in the full Hilbert space. If, however,
the variations are restricted to a predetermined region of Hilbert
space, as it would be for aΨ chosen to be of a specific form,
then the Lagrangian will generate an approximate time evolution.
The notationΨ ≡ Ψ(ú) ≡ |ú〉 is introduced, withú ) {ú1, ú2,

æh(xb,z,RB,PB) ) ∑
p

zphx
kphymphznph exp[-R(xb - RB)2] (7)

Ψ(X,x,f,d,e,z,R,P) ) ¥(X,f,d,R, P) Φ(x,e,z,X) (8)

Ψ(X,z,c,d,z,R,P) ) ∑
(π)

c(π)∏
i)1

Nat

øπ(i)(XBi,d,RBi,PBi) ×

det[æπ(h)(xbg,z,RB,PB)] (9)

A ) ∫t1

t2L(Ψ*,Ψ) dt (10)

L(Ψ*,Ψ) ) 〈Ψ|i ∂∂t
- H|Ψ〉/〈Ψ|Ψ〉 (11)

δ|Ψ〉 ) δ〈Ψ| ) 0 (12)
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..., úM} being a (column) array of complex parametersúR ≡
úR(t) depending on the time parametert.

The variation principle states that

and using integration by parts and the boundary conditions (12),
the surviving terms ofδL can be written as

where the notation dú/dt ) ú̇ is used.
In order to obtain the dynamical equations, the notationsS(ú*,

ú) ) 〈ú|ú〉 andE(ú*, ú) ) 〈ú|Hú〉/〈ú/ú〉 are introduced, which
lead to

and sinceδúâ andδúâ
/ are independent variations one can write

where the complex Hermitian matrixC ) {CRâ} with elements
CRâ ) ∂2 ln S/∂úR

/
∂úâ.

For two differentiable functionsf(ú, ú*) and g(ú, ú*) the
generalized Poisson bracket

is defined. It follows thatú̇ ) {ú, E} and ú̇* ) {ú*, E}, i.e.,
the time evolution of wave function parameters is governed by
Hamilton-like equations.

The generalized phase space and the associated Poisson
bracket (eq 17) permit the relations

which show thatú* and ú behave as “classical” coordinates
and momenta. If the matrixC was the unit matrix the
corresponding phase space would be canonical or “flat”.
However, in general this generalized phase space is curved.

Dynamical Variables and Wave Function Parameters.The
wave function parameters are the dynamical variables, the
evolution of which is governed by the dynamical equations.
Because of this it is essential that the parametrization is
nonredundant, that the parameter manifold is continuous, and
that it is complete. Such requirements lead to the consideration
of coherent states16 or at least to families of state vectors whose
parameters have these properties. The completeness of a family
of state vectors|ú〉 can be expressed through the resolution of
the identityI

with some appropriate positive measure dú defined on the
parameter space.

The importance of this type of parametrization and an
important consequence of the completeness is that during the
evolution the dynamics should, if required, be able to pass
through any one of the members of the family|ú〉. In order to
accomplish this in practice one needs the capability to switch
from a current local parametrization or chart that for some reason
has led to, say, too large parameter values and therefore
numerically unstable dynamical equations, to another chart that
is more suitable for that part of the dynamics. Such switching
of charts must be done without any artificial discontinuities in
trajectories and various properties, a behavior that can be
guaranteed with appropriate parametrization. An example of this
is a Thouless parametrization of a determinantal electronic wave
function |z〉 ) det{øi(xj)}, with the spin orbitals expressed in
terms of atomic spin orbitals{uk(xl)} centered on the various
nuclei, as

with time-dependent complex coefficientszji being the dynami-
cal variables. This parametrization guarantees that all possible
determinants in terms of the atomic orbitals is accessible during
a dynamical evolution.

As an example of how this works we consider a particular
trajectory of the H+ H2 (0, 0)f H2(V, j) + H exchange reaction
at an energy of 1.2 eV in the center of mass frame. Using an
atomic orbital basis and a representation of the electronic state
in terms of a Thouless determinant and a classical description
of the protons, the leading term of the electronic state of the
reactants is

where 1 and 2 label the protons of the reactant molecule, 3
denotes that of the projectile atom, and 1si is an atomic orbital
centered on protoni.

The reactive trajectory proceeds by exchange of protons 2
and 3, making the leading term of the product electronic state

The original chart or Thouless parametrization

will then become unsuitable since, say, the absolute value of
the z-coefficients of the 1s2R spin orbital become large in
comparison to unity, making the integration of the dynamical
equations less accurate. The ENDyne code which implements
the END theory automatically switches to a new chart with the
new coefficients suitable for the product side. Although the
leading determinant in the basis thus has changed, the total END
wave function is the same and the resulting trajectory shows
no discontinuous behavior.

3. Implementation of the Electron-Nuclear Dynamics
Theory

The integration of the END equations from a given set of
initial conditions, the projection of the evolved state vector on
a given (final) state to obtain state to state transition probabilities,

øi ) ui + ∑
j

ujzji (20)

|(1s1 + 1s2)R(1s1 + 1s2)â1s3R| (21)

|(1s1 + 1s3)R(1s1 + 1s3)â1s2R| (22)

1s1R + 1s2Rz1 + 2s1Rz′1 + ...
1s2â + 1s1âz2 + 1s3âz′2 + ...
1s3R + 1s2Rz3 + 2s1Rz′3 + ...

(23)

δA ) δ∫t1

t2L dt ) 0 (13)

i
〈δú|ú̇〉
〈ú|ú〉

-
〈δú|Hú〉

〈ú|ú〉
- i

〈δú|ú〉
〈ú|ú〉2

〈ú|ú̇〉 +
〈δú|ú〉
〈ú|ú〉2

〈ú|Hú〉 +

complex conjugate (14)

δA ) ∫t1

t2{∑
â [-i∑

R ( ∂
2 ln S

∂úR
/

∂úâ

ú̇R
/ -

∂E

∂úâ)δúâ +

i∑
R ( ∂

2 ln S

∂úR ∂úâ
/
ú̇R -

∂E

∂úâ
/)δúâ

/]} dt ) 0 (15)

i∑
â

CRâú̇â )
∂E

∂úR
/

(16)

{f, g} ) -i∑
R,â[ ∂f

∂úR

(C-1)Râ

∂g

∂úâ
/

-
∂g

∂úR

(C-1)Râ

∂f

∂úâ
/] (17)

{úR, úâ} ) {úR
/,úâ

/} ) 0; {úR,úâ
/} ) -i(C-1)Râ (18)

∫|ú〉〈ú| dú ) I (19)
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the calculation of cross sections (differential and integrated)
including the semiclassical corrections to classical results, and
the necessary interface to provide graphic representations of the
evolution of various properties are all accomplished within the
ENDyne code.17

As seen in the previous section, the TDVP produces an
approximation to the time-dependent Schro¨dinger equation in
the form of a system of coupled first-order ordinary differential
equations. Methods for integrating such systems are available
in the literature18 and the modification and implementation of
such techniques in the ENDyne code has been discussed in some
detail elsewhere.12

An initial molecular state is usually determined by an
optimization algorithm to determine the initial values of the
electronic and nuclear parameters. For instance, the optimal
Thouless parametrization of an electronic state is one for which
thez-parameters are as small as possible. Here one should note
that the initial state of the total system can contain a projectile
moiety with both nuclei and electrons being translated toward
a target molecule. This requires some care in specifying the
initial conditions in order to obtain a proper dynamics.

When electrons are also allowed to evolve dynamically, i.e.,
without the use of a precalculated or fitted potential energy
surface, then a basis set, much like in electronic structure theory,
is used. It was shown some time ago19 how to account for the
electron dynamics when an atom or molecule is in motion. The
idea is to use an exponential factor in the atomic or molecular
orbital basis to account for the momentum of the electrons
explicitly. The exponential factors are called electron translation
factors (ETF). A simple example is that of the ground state of
a moving H atom (using atomic units)

which satisfies the time-dependent Schro¨dinger equation. In
order to use ETF’s for computations in the dynamics studies of
molecular systems, a general, high-quality integral package must
be written which includes basis orbitals with ETF’s such as the
following Gaussian basis set

Such a tool does not yet exist, although some attempts have
been made to produce a general integral package.20 Much work
continues to be done on the topic of ETF’s in the area of atomic
and molecular collisions. It is not the purpose of this paper to
review the important advances made in this area, but to explain
the different approach to the challange of ETF’s adopted in the
current implementation of the END theory using standard
integral packages such as HERMIT.21,22

We review the END equations for the simplest model of
classical nuclei and a single complex determinantal wave
function for the electrons, and we identify the electron-nuclear
couplings which are responsible for the need to introduce ETF’s.
The modified Fock operator with these couplings included yields
an equation that determines atomic or molecular orbitals with
the correct translational properties within the given basis. This
equation is the “boosted SCF” equation. The solutions are
complex, linear combinations of atomic basis functions, which
constitute the best approximation to the ETF’s within the basis
and have the property of not changing in time as long as they
are in inertial motion.

ETF’s are always needed, even for low energies, to obtain
correct dynamics. However, they can be introduced as a complex
expansion in terms of real orbitals or as explicit exponential
factors multiplying the atomic or molecular orbitals. When the
original (real) orbitals basis is small, the explicit factor provides
more accurate results and the complex expansion needs a larger
basis to get to the same level of accuracy. This becomes
increasingly relevant for high kinetic energies, say above a few
keV. For most processes at kinetic energies in the range up to
few hundred eV’s, the complex expansion approach within a
modest basis set provides an excellent dynamical description.

END uses the time-dependent variational principle as a
unifying principle to derive the dynamic equations for the wave
function parameters, which as shown above constitute the
dynamical variables of the system. The use of the TDVP allows
the equations of motion to apply not only for a fully quantal or
completely classical treatment but also for a mixed quantum-
classical description. For basis functions which depend, in some
form, on the classical dynamical variables (e.g. basis functions
centered on classical nuclei and thus depend on their positions
and momenta), this approach explicitly introduces all nonadia-
batic couplings between the classical and quantum degrees of
freedom. These couplings are essential for satisfying conserva-
tion theorems and for correct behavior of many observable
quantities.5,23

Approximate dynamical equations are obtained by making
specific choices of the form of wave function to use and which
degrees of freedom to treat classically. For this argument we
choose classical atomic nuclei and position electronic basis
functions on the dynamically moving nuclei. A single Thouless
determinant24 is used to describe the electrons.

The Lagrangian that encompasses these approximations is

where the symmetric form of the time derivative includes the
operator d˜/dt acting on the bra and where the electronic
HamiltonianHel contains the nuclear-nuclear repulsion potential
energy. The symbolsRBk, PBk, and Mk denote the position,

momentum, and mass, respectively, of nucleusk, while ṘB and

ṖB are the time derivatives of said quantities. The electronic
wave function|z〉 depends on a number of complex parameters,
such as molecular orbital coefficients, collectively denoted by
z. The TDVP means that the action must be stationary as
expressed by eq 13.

In order for the phase space of the electrons to be well-defined
and so the electron can carry momentum the wave function must
be complex. Standard normalized molecular orbital (MO)
coefficients are redundant, which can be seen from the fact that
rotations separately among occupied and unoccupied states do
not change the state. Such a choice of MO coefficients as
dynamical parameters makes the equations singular. Thouless24

developed a set of nonredundant parametersz for a single
determinant. They turn out to be the coset representatives of
the unitary groupU(K) and belong to the coset spaceU(K)/
U(N) × U(K - N), whereN is the number of electrons andK
is the rank of the basis. Single determinants parametrized this
way are coherent states.12,14,16The important features of these
parameters from the point of view of dynamics is that they
provide a complex, continuous, nonredundant wave function
parametrization. The complex parameters are actually dynamical

ψ( rb) ) exp(iVb‚ rb - i(Vb2/2 - ε1s))φ1s( rb - RB) (24)

æh(xb,z,RB,PB) ) ∑
p

zphx
kphymphznph exp[-R(xb - RB)2 -

im/MPB‚xb] (25)

L )
1

2
∑

k

(PBk‚ṘBk - ṖBk‚RBk) - ∑
k

PBk
2

2Mk

+ 〈z| i

2(d

dt
-

d̃

dt) - Hel|z〉/
〈z|z〉 (26)
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variables and form a (generalized) phase space with a nonunit
metric and a generalized Poisson bracket.14

In terms of a given spin orbital basis set{φi; i ) 1, K}
centered on the nuclei, the occupied orbitals of the determinant
are

The first N orbitalsφh form the reference determinant. If the
basis is orthogonal, the virtual dynamical orbitals are written
in terms of the same coefficients as

In terms of a nonorthogonal basis the virtual dynamical orbitals
are

where theV coefficients are functions of the complex, time-
dependentz-coefficients.3,12 The orbitalsøh are mutually non-
orthogonal as are theøp, but they satisfy〈øp|øh〉 ) 0.

In terms of these dynamical parameters for electrons and
nuclei, the TDVP yields the dynamical equations in matrix form

where the total energy is

The coupling elements in eq 30 are

They are derived from the overlap

formed between Thouless determinants at two different geom-
etriesRB′ andRB.

It is noteworthy that using the TDVP ensures the conservation
of important physical quantities such as total energy, total
momentum, and total angular momentum.3,12The coupling terms
in the dynamical metric play a cruicial role in this connection.
An SCF approach that includes the coupling termsCR can be
introduced. For a molecule or atom in inertial motion, the

nuclear acceleration will be zero, butṘB will not be. Thus, if
initial z coefficients corresponding to some stationary state are

used, they will change in time because of the electron-nuclear
couplingCR. When ETF’s are explicit factors built into the basis,
extra terms appear on the right side of the electronic equations
which cancel these coupling terms.19 In most current approaches
the ETF’s are dropped in the evaluation of the two-electron
Coulomb repulsion integrals, a procedure that can often be
justified as long as the electron deBroglie wavelength is long
compared to the orbital size. Alternatively, by allowing for
complex orbital coefficients, as is done in the END theory, one
relies on the basis to approximate the ETF’s and then the ETF
is included in all integrals.

A straightforward way to see how the coupling terms generate
the ETF is in the SCF approach that includes the coupling terms.
Phrasing the problem in this way means that a set ofz’s are

sought that for given velocitiesṘBk ) VBk satisfy z̆ph ) 0.
Imposing this condition means that the equations to be solved
are

which can be written in matrix form as12

whereF̂ is the ordinary Fock operator,φk are the basis functions,
assumed for present purposes with no loss of generality to be
orthonormal, the columns of the partitioned matrix

are the occupied molecular orbital coefficients, and the columns
of

are the virtual molecular orbital coefficients. The symbolsI •

and I° denote the unit matrices of dimensionN and K - N,
respectively.

Without the nuclear gradient term, this is precisely the SCF
equation of electronic structure theory. The added term produces
an SCF scheme in a Galilei boosted frame when all velocities
VBk are equal. Obviously, the extra terms will make the molecular
coefficients complex. If the velocities of all the atoms are the
same, then the new operator,F̂ - iVB‚∑k∇RBk is Hermitian. If for
some reason one wanted to find a state in initial electronic
equilibrium (i.e.z̆ph ) 0) but with atoms with different velocities,
then the new operator would not be Hermitian, unless the
overlap vanishes between orbitals belonging to nuclei with
different velocities. Equation 35 with this modified Fock
operator is called the boosted SCF equation.

Solution procedures for the boosted SCF equations have been
added to the ENDyne code.17 This provides the facility to obtain
properly boosted startingz-coefficients. Analogous treatment
can be adopted for more general wave functions.
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