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First principles calculations based on the generalized gradient approximation to the density functional theory
reveal the existence of two nearly degenerate isomeric forms of Mn13 cluster. The lowest energy structure
corresponds to icosahedric packing that lies 0.65 eV lower than a caged structure with a hexagonal close-
packed motif. Magnetically, however, these two isomers are very different: while the icosahedric structure
is ferrimagnetic with a total magnetic moment of 33µB, the hexagonal close-packed structure is a de facto
antiferromagnet with a magnetic moment of 17µB. The two isomers also have different ionization potentials,
5.19 and 4.82 eV, in good agreement with experiment.

Manganese is a unique element in the 3d-transition metal
series. With a 3d5 4s2 atomic configuration, it shares properties
that are common to both alkaline-earth and transition metals.
The filled s-configuration of manganese atoms prevents them
from interacting strongly with each other, and as a consequence
small clusters of Mn are expected to be bound weakly by van
der Waal’s type coupling as in Mg and Hg clusters. The unfilled
quasi-localized d-electrons of Mn atom, on the other hand, are
responsible for its sizable magnetic moment (5µB/atom) while
the Hg atom, for example, due to its filled d shell, carries no
moment. Thus, the magnetic interaction between Mn atoms as
they agglomerate is expected to lend its cluster different
properties than Hg clusters.

A few years ago,1 single-photon ionization thresholds of
mercury clusters up to 70 atoms showed a sharp decrease in
ionization potential∼2 eV between Hg8 and HgN, N e 35. This
size dependence was attributed to a nonmetal to metal transition
in HgN clusters where the bonding changes from van der Waal’s
in small clusters to metallic in large clusters. Recently Koretsky
and Knickelbein,2 following the experimental technique of Parks
et al.,3 studied the ionization potential of MnN clusters in the
size range 7e N e 64. They found no signature of a nonmetal
to metal transition behavior in this size range as the MnN

ionization potential did not resemble that of HgN clusters.1 In
contrast, Parks et al.3 had earlier observed the onset of reactivity
of MnN to hydrogen atN ) 16 and attributed this effect to be
due to a nonmetal to metal transition. Failure by Koretsky and
Knickelbein2 to observe any anomaly in the ionization potential
(IP) at Mn16 casts doubt on the suggestion of Parks et al.3

Koretsky and Knickelbein,2 however, noticed that the IP’s
of manganese clusters withN ) 7, 13, and 19 are higher than
those of neighboring sizes. They have suggested that these local
maxima may be due to compact geometric structures with an
icosahedric packing sequencesthe 7-atom cluster with a
pentagonal bipyramid structure, the 13-atom having an icosa-
hedric structure with its first atomic shell closed, and the 19-

atom cluster adopting a “double” icosahedron structure. In
addition to these local maxima in the IP’s, the authors also
observed the presence of a noticeable break in the photoion-
ization efficiency spectrum in Mn13. They concluded that, in
analogy with similar observation in Nb9,11,12

4 and Ta12 clusters,5

this could be due to the presence of isomers of the Mn13 cluster.
They found no such anomalies in the IP’s of other Mn clusters
studied and were unable to predict definitive structural assign-
ments of Mn13 isomers. They concluded by noting that the
structures of the isomers await quantum chemical calculations.
In this paper, such calculations are presented for the first time.

We have used the molecular orbital approach where the
cluster wave function is expressed in terms of a linear combina-
tion of atomic orbitals centered at individual atomic sites. The
atomic orbitals were represented by a double numerical basis
including polarization functions. The coefficients of linear
combination were determined self-consistently by solving the
density functional equations within the generalized gradient
approximation.6 The geometry and spin optimization as well
as binding energy calculations were carried out using the DMOL
software.7 The accuracy of this procedure has been tested earlier
by comparing the results with those calculated using the
Gaussian 94 code for small manganese clusters as well as with
experiment.8

It is important to address here the concern regarding spin
contamination and broken symmetry solutions in DFT calcula-
tions. Within the DFT framework the calculation ofSz is well-
defined, as it can be obtained from the spin density. The
calculation ofS2 is much more cumbersome since it is a two-
electron operator that cannot be obtained as an expectation value
of the spin-polarized density. Within the DFT framework, one
possible rigorous approach requires thatS2 is added as a
perturbation to the Hamiltonian, and the expectation value of
S2 is calculated as a response property. This has never been
tried to the best of our knowledge, as it would require
construction of a functional that is sensitive to a completely
different Hamiltonian (functionals are universal only insofar as
they correspond to electrons interacting through Coulombic† Princeton Material Institute fellow.

9853J. Phys. Chem. A1999,103,9853-9856

10.1021/jp992581o CCC: $18.00 © 1999 American Chemical Society
Published on Web 11/12/1999



forces). An alternative treatment is based on the fact thatS2

can be obtained from knowledge of the spin-dependent density
and the spin-dependent correlation holes.9 The correlation holes
can be modeled in terms of the density and this provides a route
to calculateS2 within a DFT conceptual framework.9 The most
common way to calculateS2 is that the single determinantal
Kohn-Sham wave function is interpreted as a genuine wave
function andS2 is calculated as an expectation value of the KS
wave function.10-11 This value ofS2 corresponds to the easily
computableS2 value of the noninteracting system that has the
same spin-density as the true system. In the past12,13it has been
found that for high-spin systems (S) Sz) that can be described
as a single determinant, spin contamination as found from an
unrestricted Kohn-Sham wave function is typically very minor.
However, the Mn13 cluster considered here does not fall into
this class at all. IfS2 is calculated from the KS determinant
spin contamination is very strong. However, it is far from clear
if this evaluation ofS2 is appropriate for such a system. If the
exact KS functionals (for energiesand S2) were known, all
would be fine even if the exact KS determinant would be spin-
contaminated.14 For this reason, we choose not to use spin-
projection techniques (based on determinantal basedS2 values).
In fact, recent studies have advised against the use of spin
projection in DFT to improve the result.12-13 The issue is
controversial and rigorous quantum chemical calculations on
small systems might shed more light on the problem. Recent
work has discussed the possibilty of canted spins within a DFT
framework. This provides yet another mechanism to break
symmetry and hence lower the energy.15 The physical origin
of such calculation is not clear, however. In this work we assume
that the energetics and density is calculated appropriately from
unrestricted KS theory using the GGA approximation, even for
systems for which the true wave function cannot at all be
described by a single determinant. In DMOL the energy is
optimized over all spin densities that have integer values for
Sz. The calculated optimal value ofSz is a lower bound to S in
the ground state, and we interpret the calculated spin-density
to correspond to the spin density of theMS ) S state. Clearly
in the current state of the art KS density functional theory, these
assumptions can be wrong: most notable is the example of
broken symmetry antiferromagnetic state corresponding toS)
0, which has a spin density that net integrates to zero.16 This is
physically incorrect and is due to the errors in current func-
tionals. In the absence of the perfect functional and the perfect
density, as Pople et al. pointed out,14 comparison of theoretical
and experimental properties can provide a simple and direct
test of the calculation. Interestingly, many studies17 have shown
that the spin densities computed at the DFT level, in general,
are in good agreement with those obtained from experiment
including those obtained from broken symmetry calculations.
In addition, density functional theory within the generalized
gradient approximation has correctly predicted the magnetic
structure of many systems including a Rh surface which has
been recently studied,18 although the energies corresponding to
magnetic and nonmagnetic solutions are very close. This
prediction has been recently verified by expertiment.19 Perdew
et al.20 have recently critically examined density functional
theory and its applications to magnetism in various systems such
as ferromagnetic solids (Fe, Co, Ni) as well as antiferromagnetic
systems (FeO solid, Cr2). Their study shows that the energetics
of both ferromagnetic and antiferromagnetic systems are reliable.
They have further shown that the spin densities break the
symmetry (i.e., evidently do not correspond to pure spin states)
in systems such as in Cr2 in order to give the correct energies.

The spin densities themselves are trustworthy only in ferro-
magnetic systems and should be taken with caution in antifer-
romagnetic systems.20

It is well-known that the potential energy surface of a cluster
can be plagued with a multitude of local minima and, during
geometry optimization, the system can be trapped in one of these
local minima. We have, therefore, used three different initial
starting configurations: clusters having icosahedric, hexagonal
close-packed, and cuboctahedric structures. These starting
configurations are slightly distorted from their higher symmetry
structures and the geometry optimization is carried out by
following the method of steepest descent. This requires 3N -
6 ) 33 geometrical parameters to be varied independently and
simultaneously. The removal of any symmetry constraint in the
calculation (i.e., broken symmetry calculation) allows the
possibility of both ferromagnetic and antiferromagnetic align-
ment in the cluster. This is important as Mn atoms are expected
to carry sizable magnetic moments, but their ordering a priori
is not known. For example, theR-phase of bulk manganese is
antiferromagnetic while very small clusters are ferromagnetic.8,21

It is not clear how the transition from ferromagnetic to
antiferromagnetic order would occur in these clusters as a
function of cluster size.

In Figure 1 we give the various optimized geometries of Mn13

clusters. The distance between the atoms in these clusters lie
between the dimer bond distance (3.5 Å)8 and the bulk
interatomic distance (2.29 Å).22 The decrease in the bond
distance with the increase in cluster size is a signature of increase

Figure 1. Optimized geometries of Mn13 isomers: (a, top) icosahedric
and (b, middle) hcp structures are nearly degenerate while the (c,
bottom) cuboctahedric structure lies 0.4 eV/atom above the ground state.
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in bonding in Mn cluster.8 Although the structures are distorted
from the perfect icosahedric, hexagonal-closed packed (hcp),
and cuboctahedric geometries, their resemblance to their pack-
ings can be clearly seen. Vibrational frequencies are computed
for these two geometries and the structures are found to be
minima in the potential energy surface. The corresponding
binding energy/atom, vertical ionization potential, and magnetic
moment/atom of these isomers are given in Table 1. We note
that energetically the icosahedric geometry is the most preferred
structure. The hcp structure, the next higher energy isomer, lies
0.65 eV above the ground state. The presence of higher energy
isomers in the gas phase is well-known23 and the hcp structure
could exist in the beam simultaneously. It will be interesting to
carry out similar experiments under different conditions (e.g.,
varying the temperature) in order to isolate the different isomers.
The cluster mimicking the cuboctahedric structure is signifi-
cantly higher in energy, namely 5.2 eV, and is not likely to be
present.

The ionization potentials are calculated by taking the differ-
ence in the total energies of the neutral and singly positively
charged cluster at the neutral geometry. The isomer with the
icosahedric structure has an ionization potential of 5.19 eV while
the hcp structure’s IP is 4.82 eV. The experimental values are
5.30 and 4.80 eV.2 This good agreement with experiment
suggests that we have correctly identified the geometries of the
Mn13 isomers.

The difference in the magnetic property of these isomers is
interesting: First, the total magnetic moment of the icosahedric
structure is 33µB while that of the hcp structure is 17µB.
Second, the alignment of the moments in these isomers is very
different. In the icosahedric isomer, the outer shell of atoms
have their magnetic moments aligned in the parallel direction
and each carry a moment of 2.91µB. These are coupled
antiferromagnetically to the moment at the central site which
has a value of-1.89 µB. This ferrimagnetic coupling sharply
contrasts with the ferromagnetic coupling in very small clusters
where the magnetic moment/atom is 5µB and anti-ferromagnetic
coupling in theR-phase of bulk Mn.24 Although no direct
measurements of the magnetic moment/atom in bulk Mn are
available, it is believed to be around 3µB/atom.24 Thus, while
the magnetic moment/atom in Mn13 appears to be bulklike, the
magnetic coupling proceeds from ferro- to ferri- to antiferro-
magnetic as cluster size increases.

The caged hcp isomer, on the other hand, has a much smaller
magnetic moment than the icosahedric structure. The average
magnetic moment/atom is only 1.31µB. This small value results
from a substantial cancellation between up and down moments.
Here, there are eight atoms that have moments pointing up while
five atoms have moments pointing down. We term this
arrangement as a de facto antiferromagnet. Note that the Mn13

cluster, because of its odd number of atoms, will always carry
a net moment irrespective of its magnetic ordering since its half-
filled d-shells renders each atom with a moment. What is
interesting in the magnetism of the hcp structure (Figure 1b) is
the coupling. We can divide this structure into three planes:
the top and bottom planes containing three atoms each and the

central plane containing seven atoms with the outer six forming
a hexagon and the seventh atom occupying the central site. The
total net moments of the top and bottom planes are 11.45µB

each pointing up. The moment of the central atom points down,
but its magnitude is considerably less, namely 0.8µB. Among
the six atoms forming the hexagon in the middle plane, four
have moments pointing down in the range between 3.15 and
2.5 µB while the other two have moments pointing up, 2.94µB

each (see Figure 1). The cuboctahedric structure that is
energetically higher has even less moment, namely 0.39µB/
atom.

The distribution of moments at different atomic sites can be
seen by plotting the spin densities. In Figure 2 we plot these
distributions for the two nearly degenerate isomers (Figure 1a,b).
These are consistent with the direction of the moments deduced
from the Mulliken analysis and given in Figure 1. The
substantial dependence of the magnetic character of clusters on
structure is characteristic of what is known in bulk manganese
which has many allotropic forms with widely different magnetic
properties. Unfortunately, no experiments on the magnetic
properties of Mn clusters in the gas phase are yet available.
The fact that the calculated ionization potentials of Mn13 isomers
agree well with experiment should lend credibility to our
prediction concerning its novel magnetic properties. Clearly the
rich variety of magnetic behavior of Mn13 cluster isomers alone
suggests that these experiments should be performed.

It will also be interesting to study the reactivity of Mn13

cluster isomers with reagent molecules such as H2 and O2. We
have demonstrated earlier18 that Rh4 cluster isomers, which have
different magnetic properties, react with H2 differently: The
nonmagnetic Rh4 binds more strongly to hydrogen than its
magnetic isomer. We note that the ionization potential of the
icosahedric structure is larger than the hcp structure. The
icosahedric structure also carries a larger magnetic moment than
the hcp structure. Thus, larger ionization potential is coupled
with larger magnetic moment. Since clusters with larger
ionization potential are often less reactive than those with lower

TABLE 1: Binding Energy per Atom, Vertical Ionization
Potential, and Magnetic Moment per Atom of Mn13 Isomers

cluster
BE
(eV)

IP
(eV)

magnetic
moment (µB)

Figure 1a icosahedric 1.77 5.19 2.54
Figure 1b hcp 1.72 4.82 1.31
Figure 1c cuboctahedric 1.33 5.30 0.39

Figure 2. Plot of the spin density distribution in (a, top) icosahedric
and (b, bottom) hcp structure of Mn13 isomers. The red color indicates
positive (v) while the blue color indicates negative (V) spin densities.
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ionization potential, it will be interesting to see if the anomalous
reactivity change of MnN clusters atN ) 16 is of magnetic
origin. Such a theoretical study is in progress.
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