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Vibrational Dynamics of the I3 Radical: A Semiempirical Potential Surface, and
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The semiempirical diatomics in molecules (DIM) approach is used to model the potential surface for ground-
state vibration of a linearslmolecule. We use this system to explore semiclassical methods for treating
quantal nuclear vibrations by computing the photoelectron spectrugn which produces vibrationally excited

I3 . We compare semiclassical results with full quantum calculations and experimental results recently reported
by Neumark and co-workers. (Taylor, T. R.; Asmis, K.R.; Zanni, M. T.; Neumark, DJMChem. Phys.

1999 110 7607.)

1. Introduction where Jc and my are the total angular momentum and it's

Since the 1950s the existence of the triiodide radical has beenProjection on the molecular axis for each of the iodine atoms.
proposed as an intermediate species to explain how iodine atomsOur purpose in this paper is to focus on the properties of the
produced by photodissociating tan recombine in the gas phase ground electronic state 0§,| hence we will reduce our basis
to reproduce the diatomic species. The accepted mechanisnfet to @ minimum subspace that will include only the necessary

involves an 1 radical first colliding b to form stable 4 which kets mixing to form this lowest energy eigenstate. Thus the
subsequently undergoes collision with anothenatiical, then ~ approach we present here will not produce all the subsequent
this collision complex breaks apart to give tworholecules.  €xcited states, but only some of them.

Despite its proposed importance in this most fundamental ~\We suppose that the ground-state eigenket has total angular
reaction of gas-phase chemical kinetics, direct experimental momentum projection
observation of the sl molecule has only very recently been 3
accomplished in the high-resolution photoelectron spectroscopy M. = Y
studies of Neumark and co-workers. J kZ“h

The first goal of this paper is to demonstrate that a very simple -
description of the 4 molecule offered by the semiempirical  gq only kets satisfying this condition will combine to generate
diatomics-in-molecules (DIM) approach is actually capable of this assumed lowest energy eigensta®ur knowledge of the
providing a very reliable representation of this molecule, ground-state dissociation limits of thgradical can be used to
reproducing the recently measured binding energies, andgyrther limit the basis set. Thus if one of the bonds is stretched,

vibrational frequencies with surprising accuracy. the molecule should dissociate to ground-stagatl an1radical

can be used to compute the distribution of ejected photoelectron

kinetic energyPs(¢) in the thermal equilibrium photoelectron U203, Y0 — Y 0 3, =Y LY
spectrum of 4~ in which vibrationally hot 4 is produced e P P CL Y
according to the following process: and the 1 radical ground state is

I3 (therm)+ Av — I(vib) + e () Q) |3/2 + 1/2D

Finally we will compare the results of fully quantum dynamical  These considerations thus enable us to limit the basis kets to
calculations of this photoelectron spectrum, with classical and gnly those having all thex = %, and themy = +Y,. This
semiclassical calculations of thevibrational dynamics probed  procedure is only valid in the gas phase, in solution other states
by these measurements, and we compare our theoretical resultgat we are not including in the calculations described here will
with the experimental photoelectron spectrum of Neumark and pe coupled by anisotropic interactions with the solvent and thus

co-workerst make contributions to the lowest energy solution phase eigenket,
2 Methods but this is beyond the scope of the current paper.
' . . The DIM Hamiltonian operator has the fotfh
2.1. A DIM Potential Model for Ground Electronic State
Intramolecular Vibrations of | 3. The model assumes that the ao— nz o @)
I3 molecule is linear, hence the projection of the total angular - b o

momentum of the system into the molecular axis is a good
quantum number. Following the same scheme used in previousand we choose the zero in energy to be that of the isolated |

work? we write the basis set as Hund'’s case C kets radicals; therefore, the second sum in the above expression can
be disregarded. For convenience in the notation we will drop
92y, M, ML= [33myg, Jomyp, Jomyst the J index in the angular momentum expression since it is the
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same for all iodine atoms and we will only label them by their
values ofrmy.
In the gas phase the ground state can have totl; =

+1/,, both angular momentum orientation states are degenerate

and uncoupled, thus we need only consider the one with total
M; = 1/,. The only basis kets to consider now are the following:

{|_1/211/211/2|:] |1/2,_l/2’1/2|:] |1/2,1/2v_1/2[}]
Any matrix element between them will be of the form

mql’rq?n}ﬂF'I,mlrn,jlamjzyijD: R
(0 Tl by gl 1TV ¢ EEY [0,

i.e., an b matrix element times a(m,n;).
The full electronic Hamiltonian matrix thus becomes

G-, 0, 1AL = Y1, 0= B2, | Ayl — Yo, Yo
Iﬁ/211/2||:|R2|1/211/2D"' 8_1/2!1/2“:{R3| - l/211/2D

Oy, =1, | A= 10, 0= By, =1 Ay =1,
G40, Y Flrgl — Mo, 1,0 By, Flggl o, o0

By, = | ALY, o=, 0= T, oy Ay o, o
= gl Yo = 1,01 By =, Figal Y= 1,0

G4, 0, o A =40, 0= Y, o Ay o — 1,0
G110, 0, M| ALY, o, =1, 0= B4, o gl o= 1,0
B, =, | A oy =1, 0= B4, | Flig ol o —1,0

Where R1 is the distance from the | atom at one end of the
molecule to the central one, R2 is the distance from the | atom

at the other end to the central atom, and R3 is the distance
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TABLE 1: Comparison of Properties of Calculated DIM
Surface for I3 with Experimental Results?

parameters and results

item this paper Neumark’s results
symmetric frequency 126.1cth 115+ 5cnT?
antisymmetric frequency 163.7 ci
dissociation energyst—= 1.+ 1*  0.19157eV  0.143 0.06 eV
dissociation energy; 3 I° 1.74723 eV
I3 equilibrium bond length 2.762 A
|3 adiabatic EA 4.226 eV 4.226 eV
I3~ symmetric frequendy 106.7cmt 112 cnr?
I3~ antisymmetric frequency 122.2 ci
-1~ bond length 2.85A
T 100 fs
hw 4.657 eV 4.657 eV

2The k™ potential is assumed to be quadratic in both symmetric
and antisymmetric coordinates to simplify the calculatiorBifferent
values for the symmetric and antisymmetric frequencies can be found
in the literature. See refs 6 and 7 and references therein.

with which our DIM ground-state surface reproduces experi-
mental values is quite remarkable.

Our calculations assume that thenholecule is linear and
symmetric just like 4~. Thus the fact that the equilibrium
bond length we find for our mode} molecule is about 0.1 A
shorter than that of the pareng”| means that when we
photoionize the anion via a vertical Frare€ondon excitation
we will extend the symmetric stretch mode of the resulting |
As we shall see in the detailed analysis of our calculated signals
we present in section 3, antisymmetric stretch components can
enter our signals through thermal populations of ground
electronic state antisymmetric stretch motions or through
nonlinear couplings between the symmetric and antisymmetric
modes as a result of motion over our fully nonlinearly coupled
I3 potential surface.

2.2. Semiclassical Computation of the Photoelectron Spec-
trum. For our purposes we view the photoionization reaction

A () + ho — AF) + € () 3)

between the two | atoms at opposite ends of the molecule. Usingas a process which takes the molecular ion syséenfrom a

Table 1 in ref 2 and performing some simple algebra we find
the matrix elements to be

G-, | A =1, Y,0= Y,(E(1PE) + E(X))
O, | F 1y, 0= E(MTL)
for which experimental values are available in Batista and
Coker's paper and the references therein.

The electronic ground-state surface ofd thus obtained by
simply diagonalizing the 3x 3 matrix whose elements are

discrete electronic staté, to a continuum molecular ion
electronic state®g. by absorption of a photon. The final
continuum state is really a neutral molecein one of its
discrete statedr and an ejected free electron with continuous
kinetic energy. In the appendix we outline the time dependent
perturbation theory approach to computing the probability of
observing ejected photoelectrons with kinetic energitained

by ionizing molecules prepared in a thermal distribution of
vibrational states moving on the ground electronic surface of
I3~ (statel) and producing ground-state neutrals (stgteThere

we show that if we assume that the dipole matrix elements

summarized above and selecting the lowest energy eigenvalueconnecting states | and F depend weakly on nuclear coordinates

In Figure 1 we display the elements of our reduced DIM
Hamiltonian matrix as functions of R1 and R2 while Figure 2
shows the electronic ground state efchlculated from these

and vary slowly with electronic kinetic energy;, (see appendix
for details), this probability is obtained as

. . . . IF
matrix elements as described above. Table 1 summarizes variou$’s (€) ~

properties of this ground-state potential and compares these
results with the experimental valu$his table also summarizes
various properties of the1 potential which we need to prepare
the initial state for our photoelectron spectrum studies.

The symmetric stretch frequency of dbtained from these
calculations is about 10% too high, and the dissociation energy
to I, and an 1radical is also a little high but with in the reported

experimental uncertainty. Given the shapes of the various diabats
and coupling matrix elements presented in Figure 1, the accuracy

00 . i t2
RE{‘/;) dt¢”:(t1ﬁ) exF{— f’T‘L (6 - hw)t] ex%_ 4_172]} (4)

where the thermally averaged dynamical correlation function
appearing in this expression is given by

e(tB) = z exp[-pE,] eXp[I% E|vt] fen(® 5)
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Figure 1. Elements of the DIM Hamiltonian used in our calculation of the collinear ground state electronic surfg@sa function of bond
lengths in Angstroms.

Energy / eV vibrational eigenstate on this surface, and the individual
vibrational component, excited electronic state propagated
correlation functions are

fF,Iv(t) = @w leD (6)

exp{— jL—lHFt]

whereH is the Hamiltonian governing nuclear dynamics over
the excited electronic state potentralThis correlation function
thus involves propagating the nuclear vibrational eigenstates of
the initial electronic surface over the final excited-state surface
and measuring the overlap of these propagated function at time
t with the initial wave function.

In our studies we will assume that the initial electronic surface
Figure 2. DIM Ground-state electronic surface afds a function of of the L~ can be approximated harmonically around its
bond lengths in Angstroms. equilibrium geometry and that this approximation will be reliable
HereE,y is the energy of theth vibrational eigenstate on the for all the thermally accessible initial vibrational states at the
initial electronic surface, x,(Q) is the corresponding nuclear temperatures of interest. This approximation is expected to be
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reasonable for the deep~| ground-state surface. However, |\'/|QQ =NMpq MPQ = —D(t)Myq (10)
vibrations on the 4 excited state surface are expected to be
highly anharmonic as motion on this surface is only very weakly M op=NMpp M pp = ~D(t)Mgp (11)

bound along certain directions as seen in Figure 2.

To simplify our calculations, we further assume that the \yhereN is a diagonal matrix with elements equal to the inverses
bending of thed molecule is not excited in these experiments ot he masses associated with the different particle coordinates,
and that rotat|0ﬁwbrat|.on coupllng can bg ignored. Thuslwe andD(t) is the time dependent Hessian matBif)(t) = [42V/
need on_Iy the symmetric gnq antlsymmetrlc_stref[ch coordma_tes 9Q19Q](Qy) computed at points along the classical trajectory.
to describe the a_nharmomc mtra_xmolecular V|brat_|onal dynamics Using the excited-state semiclassical nuclear propagator in
on thg b potential surf_ace. Thls.reduc_es our intramolecular eq 7 we can express the correlation functions in eq 6 as
vibrational problem to just two dimensions. We thus employ
the initial ground state normal mode coordinates of the system sc dP
in our quantum and semiclassical propagation calculations ff(t) = [~———dQ,IPQT(P,Q.1) x
detailed below. (2st) .

The individual vibrational c_orrelation functions_given in eq exp{'—S(P,Q,t)][IPQm 0(12)

6 can be computed exactly using standard FFT grid propagation h v

method&?® and the results added according to eq 5 to give the

required thermal average correlation function. Such methods Here the classical trajectories swarm over the potential surface
are, however, generally only viable for systems of few dimen- associated with the final electronic stdte

sions. Semiclassical methods based on propagating swarms of With the assumptions described earlier, our vibrational
classical trajectories and carefully adding up the semiclassical eigenstates on surfadeare products of harmonic oscillator
phases associated with these trajectories to compute the apeigenfunctions in the symmetric and antisymmetric coordinates.
proximate semiclassical dynamical wave function are in prin- We can readily calculate the projections of these states onto

ciple applicable to systems with many more dimensions. our coherent state basis set in these coordinates and after some
We now consider the implementation of the Hermtuk, algebra we find for a given mode
coherent state semiclassical propagdtdf to compute the cor-
relation functions given above. With this approach the propaga- N, 2y\va ) )
tor describing nuclear vibrations on surface F has the form  [PQly, 0= —|—| exp[-ya0(Q — X)) x
o\
i 2 _ ] v
exp[— gHFt] = exp[—oP%2h% explic®dP(Q — X1 Y (%0) " %c P, (g)
dP i i
dQIPQLC(P.Q.Y) exp[—S(P,Q,t)][Pq ) 13
f(Znh)d <t A ( )

where the coordinate state representation of the time dependen\{"here the harmonic oscillator wave functions have the form

— _ 2 — 2 i =
coherent state basis set elements used in this description aré/) o) NoH.(a(x = o)) 7exp.[ a(x XO). /2]. with o
the Gaussian functions Vmwlh, N, = (ow/72°0))"Y2 is a normalization constant,

Hu(y) = Yocy" are the hermite polynomials, antl = (2y

2y\di4 5 i +a?)~L. The polynomiald,(g) result from the integrations and
XIPQ= (E) exr{—y(x —Q)+ ﬁpt'(x - Qt)] 8) generally satisfy the recursion relati®q+1(g) = gP.(g) + (n
— 1)P,-1(g) with Pp = 1 andP; = g andg = V8[2y(Q — Xo)

whose time dependent center positi@, and phaseP; — iP/A).
parameters are the positions _and momenta of simple classical Despite the appeal of obtaining semiclassical quantum
trajectoriesy is a constant arbitrary width paramet&P,Q.t) dynamical effects by just averaging various dynamical quantities

= fdtPf(P,Q)/ZM — Er(Q«(P,Q)) is the classical action along  over an ensemble of classically propagating trajectories labeled
the trajectory propagated over our final state surface, which by their initial conditions as, for example, in eq 12, the
depends on the initial positio@, and phase (momentur®)of implementation of such semiclassical expressions is plagued
the given basis function, and the functiG(P,Q,t) is related to with many serious numerical “traps for new players”. In the
the stability of the classical trajectory with respect to variations discussion that follows we show how these problems arise in
in initial conditions as measured by the so-called monodromy our application to the dynamics oféxcited in the photoelectron
matrixes whose elements have the foM\é'%(P,Q,t) = [oPy/ ejection experiments ory1.

9Q](P,Q,1), for example. In all the calculations reported in this The main difficulty with implementing these semiclassical
paper we have used ensembles containing 1000 trajectories. Thénethods arises due to the rapid oscillation of the integrand in
quantityC(P,Q,t) which weights each trajectory’s contribution ~ eq 12, for example, between positive and negative values in
to the semiclassical propagator in eq 7 is found to have the various regions of initial phase space poit@). In these

form rapidly oscillatory regions contributions from near-by trajectories
should add destructively to give only a vanishingly small
C(P,Qt)= contribution to the final integral. The integration over points

1 . i 1/2 (P,Q) which we accomplish by summing over the ensemble of
{de{é(M pp T Mg = 2yifiM gp + ﬁM PQ)]} ©) trajectories thus requires a sufficiently dense packing of
trajectories in such regions to accurately represent this cancel-
The monodromy matrixes can be computed by integrating the lation. The primitive implementation of a grid or Monte Carlo
following auxiliary equations of motion which are determined based approach thus wastes much effort propagating trajectories
by the time dependent local curvature of the potential along from such regions only to have them add destructively to
the classical trajectory represent zero.
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Figure 3. Propagation of initial harmonicst ground vibrational state on the photoexcitedDIM potential surface. Surface of solid lines is
propagated using the bare Herman-Kluk semiclassical algorithm. The dashed surface is the full quantum wave function propagated using split
operator FFT methods. The wave functions are plotted as functions of symmetric and antisymmetric stretch normal modes in Angstroms.

The situation with a semiclassical integrand like that in eq initial conditions in classically chaotic regiotis—26 Semiclas-
12 is even more troublesome. The phase factor in the integrandsical expressions like that in eq 12 usually involve weighting
exp[if(P,Q)/A], say, becomes a rapidly oscillatory function of trajectory contributions by quantities such @,Q) which
(P,Q) because the phas#(P,Q), varies with P,Q) and dividing depend on potentially diverging monodromy factors. As dis-
by a smallh amplifies these variations into rapid oscillations cussed above these explosive monodromy factors also appear
of the phase factor. In stationary phase regions where the rateexponentially in the phase factor so the cancellation of their
of change oB(P,Q) with (P,Q) remains sufficiently small there  contribution is crucial.
will be constructive interference between trajectories giving  Several approaches for handling the cancellation of nonsta-
nonvanishing contributions. Outside these stationary phasetionary trajectories and removing their explosive consequences
regions, however, the phase starts to change and the lowest ordan systems exhibiting strongly chaotic classical dynamics have
variation in phase is easily shown to be determined by the recently been presentétil®25 All these methods are based on
monodromy matrixes Mp = 9QJ/0P, for example. In the the ideas of stationary phase filtering which were developed
classical dynamics of anharmonic many-body systems suchduring the 1980's when attempts were made to use path integral
quantities can become very large very quickly as trajectories Monte Carlo methods to compute fully quantum real time
become exponentially unstable with respect to variations in their correlation functiong?’—31
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Figure 4. Classical trajectory energy distributions for various values

of coherent state parametgrfor propagation onsl surface. Thed

potential minimum is zero energy and the negative energies are due to 002

the low energy resolution of our histogram. The dissociation energy 0.01

of our model is indicated by the arrow. Valuesjofn A-2 displayed

arey = 25. (solid),y = 125. (long dashes), = 525. (short dashes), 0 200 400 600 800 1000

y = 825. (dots). In our calculations we employ a valueyof 125, Vs

which gives a trajectory energy distribution with a smaller high energy Figure 5. (a) Comparison of time dependence of total quantum system

tail to reduce the rapid growth of chaotic trajectories in our ensemble. energy and kinetic and potential components computed using full

quantum propagation (curves add to give total energy conservation),

The particular method we have found convenient to imple- and results computed using the bare Herman-Kluk semiclassical

. 3 - approach which show serious energy conservation problems and
ment is that due to Hermé&t° and we now present a brief divergence from exact quantum results beyond-3010 fs. (b) Similar

summary of the approach and demonstrate how it remedies the;omparison to a only here results from preaveraging semiclassical
serious problems arising from classical chaos even in a systemcalculations show much better energy conservation and comparison
as simple as the two coupled anharmonic stretching modes ofwith full quantum results.

3.

The disasterous effects of classical chaos on the straightfor-magnitudes of thei€(P,Q,t) weights in the bare semiclassical
ward implementation of semiclassical expressions such as thatexpression (eq 12) become overwhelming. In Figure 5a we show
in eq 12 for k can be seen very clearly in Figure 3 where we the time history of the kinetic, potential, and total energy
compare the full quantum and semiclassical time dependentcomputed using the bare semiclassical wave function and the
normalized wave function densities for symmetric and anti- fully quantum result. As expected, beyond 400 fs, the semiclas-
symmetric stretch coordinates gfdroduced after photoelectron  sical energy components deviate dramatically from the exact
ejection from }~. The initial Gaussian density produced during results and the total energy of the bare semiclassical propagated
the Franck-Condon excitation of our harmonic model af | wave function shows serious conservation problems. Not
starts out on the attractive wall of thg $urface with the surprisingly, since the ensemble average is becoming dominated
symmetric stretch coordinate extended relative to the equilibrium by the unstable high energy components due to their rapidly
geometry of 4 due to the differences in equilibrium bondlength growing C(P,Q,t) factors, the energy trends upward to the
for the ionic and neutral species which are accurately producedaverage of these high energy trajectories (see Figure 4).
by our model surfaces. If we were free to increase the ensemble size without bound

This nonequilibrium excited state distribution thus first the contribution from these unstable trajectories would eventu-
compresses in the symmetric stretch and then as it extends imally be approximately canceled by interference with other
this direction the density also shows elongation in the antisym- unstable trajectories since they eminate from nonstationary
metric stretch direction due to the strong anharmonic couplings regions of phase space as discussed earlier. Such an approach
between these modes present in our DIM mogdedurface. is in general numerically impractical as it requires the cancel-

In Figure 4 we present the distribution of classical trajectory lation of very large weights with different signs.
energies for various coherent state basis set width parameters The approach adopted in the so-called “integrand condition-
y. We see that as this basis set width parameter is varied, theing” or “preaveraging” methods attempts to average these large
energy distribution of our classical trajectory ensemble changesinterferring weights over many close lying trajectories by
considerably. The value of this parameter we used in most of assuming a linear or quadratic variation of the phase around a
our calculations way = 125 A2, This value gives a narrow  trajectory, and within this approximation intergrating the weight
energy distribution with a small tail extending above the smallest analytically to obtain a “pre-averaged” weight which no longer
dissociation energy of our potentidDf,i ~ 0.2 eV). oscillates wildly!8:19-21.23.32.33 Typjcally these methods first

The longer time wave functiong ¢& 400 fs) presented in  multiply the integral being evaluated by unity represented as a
Figure 3 show a serious discrepancy between the wave functionnormalized integral of a Gaussian in the difference between the
obtained from the bare application of the semiclassical coherentoriginal integration variables and the preaveraging Gaussian
state basis set approach and the exact wave function. Theséntegral variables. If the widths of these preaveraging Gaussians
semiclassical results at the longer times show wave function are made small enough, the phase of the original integrand
fragmentation resulting from a few trajectories in the high energy can be expanded to low order in the difference variables and
tail of the distribution in Figure 4 exhibiting large amplitude the resulting Gaussian integrals performed analytically to give
motions. These high energy trajectories rapidly become unstablean averaged weight (see for example refs 22 and 23 for de-
with respect to variations in their initial conditions so the tails).

0.04

Energy/eV

0.03
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The main advantage of the specific preaveraging approachments resulting in a travelling coherent state basis set in which
developed by Herma&h23is that it preserves the shape of the the coherent state widths vary in different ways along different
fixed width coherent state basis set used to represent the timetrajectories. If the coherent state basis elements get very narrow
evolving wave function. This is accomplished by changing the many trajectories may be needed to represent the dynamical
integration variables in the semiclassical expression like eq 12 wave function in these regions. Generally with this approach,
from the trajectory initial phase space poiRQ@) to the final however, the preaveraged weights of the trajectories associated
point variables R;,Q;), the Jacobian of this transformation is with these narrow coherent state basis elements are small so
unity. The integrand conditioning Gaussian integrals are then they make little contribution anyway. This deterioration of the
introduced in displacements of the final points of the trajectories. basis set is avoided with Herman’s frozen Gaussian approach.
Thus we multiply our semiclassical expression by the following ~ The approach we use to implement preaveraging can thus be
representation of unity summarized as follows: (1) Trajectory initial conditiofisQ@)

are first sampled from the distributidfPQ|yo. Each initial

C',éc'(‘g 2 condition generated in this way is given an initial weight
ﬂ —_— f dpf f dq't‘ exp[—c';(P't‘ - pf)z] X explifo(P,Q)/A]. (2) Next these trajectories are evolved classi-
=1\ #? cally to phase space pointBQ;) at timet. At this point we

exp[—c(kg(Qr -y =1 (14) evaluate the coherent state representation of whatever function
concerns us for our time correlation function. Along each

By choosing these preaveraging Gaussians to be sufficiently frajectory we compute the classical acti§rand weight each
narrow (making thecs and ¢ appropriately large for the trajectory’s contribution by exg/i]. (3) Now we must compute
various degrees of freedork), we can truncate the expansion the preaveraging weight based on the time reversed monodromy
of the phase of the semiclassical integrand in final point factors appearing in eq 17. This is accomplished by setting the
displacements to low order and perform the preaveraging monodromy matrixes to th¢ appropriate unit or zero matrixes
integrals analytically. The final result is obtained by returning @t timet and reverse time integrating eq 10 back 0. This

to an expression involving integrals over trajectory initial reverse time integration requires thg evaluation of the Hessian
conditions but the weights of the different trajectories must be at all points along each classical trajectory. It can be sfidin
determined by reverse propagating the auxiliary trajectory that theC(P,Q.t) weighting factors can be computed from these
stability equations from the final points reached by each '€Versé propagated monodromy matrixes according to the
trajectory. For the results reported here we have employed following result

Herman’s first order preaveraging form in which an initial C(PQY) =

function whose coherent state representation has the form e 1 . 7
(PQlyo= [PQIyl explifh] is propagated according to the {dtef5{¥t o+ W g + 21 g — il Al @9
result

with M3 = 8Q//9P} for example. With this result the mono-
X dromy matrixes need only be propagated in the reverse direction.
We can thus finally weight each trajectory’s contribution by
exp[~A6%(P,Q )] PQ|y, 1 (15) the C(P,Q,t) and preaveraging weight factors according to eq
15 to obtain our final results.
Here the exponent in the preaveraging weight factor has the |n strongly chaotic systems it may prove more fruitful to

0= f%dQPt,QtE(D(P,Q,t) exr{%S(P,Q,t)

form incorporate the positive definite, rapidly damping preaveraging
, weight factor expfFA63(P,Q)] into the importance sampling
AO°(P,Q)Y) = Monte Carlo procedure which we use to integrate over trajectory

00 \2 initial conditions. We are currently exploring such an approach
)(—k) (P7Q,t)] (16) for application to many body systems.
For studying our excitedslvibrational dynamics probed in
I3~ photodetachment experiments; however, the straightforward
For the coherent state basis set we find that the phase derivativepreaverage weighting procedure described above provides a
in the above expression are the components of the following reliable way to implement semiclassical expressions. In Figure
vectors 6, for example, we show that the spurious fragmentation of the
wave function observed with the bare application of semiclas-
90 _ (3_00 _ )TQ (3_90)T£ (17) sical propagation is completely remedied by use of the preav-
0Q, \0Q 0Q, P/ 0Q, eraging procedures discussed above. The spurious effects of the
high energy components of our ensemble which should be con-
and trolled by interference are effectively removed by the preaverage
weighting procedure. We also see from Figure 5b a dramatic
90 _ (3_90 _ )T@ (3_90)T8P (18) improvment in the time dependence of the energy components,
P, aQ P, oP and in energy conservation using this preaveraging approach.
We conclude this section with an observation on the relative
In these expressions we assume that all terms which do notamount of work involved in the semiclassical calculation of the
contain the time reversed monodromy matrixé®/pP;, for thermal averaged time correlation given in eqs 5 and 12 as
example) are small and can be ignored compared to these factorsompared to its fully quantum mechanical calculation. As a
which grow exponentially in systems exhibiting chaotic dynam- result of our assumption that the initial states are prepared by
ics. exciting a thermal distribution of harmonic oscillator vibrational
The more conventional approath,on the other hand, states in the ground electronic state well, each of these initial
introduces the preaveraging Gaussians in initial point displace- states has the form of a product of Gaussians times polynomials
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Figure 6. Propagation of initial harmonicst ground vibrational state on the photoexcitgdDIM potential surface. Surface of solid lines is
propagated using the preaveraging approach for semiclassical algorithm. The dashed surface is the full quantum wavefunction propagated using
split operator FFT methods. The wavefunctions are plotted as functions of symmetric and antisymmetric stretch normal modes in Angstroms.

in the various normal modes of the ground state surface. Forinitial states can be accomplished by a SINGLE semiclassical
the full quantum calculation of the thermally weighted sum of propagation from the product Gaussian ground state initial dis-
correlation functions in eq 5 we must take each of the different tribution of position and momentum parameters (see the expo-
thermally accessible initial states, evolve them subject to the nential factors in eq 13). Each of the different state contributions
nuclear Hamiltonian of the excited electronic state, and finally in this semiclassical representation of the dynamics is simply
overlap the evolved function at tintewith its initial state to obtained by multiplying each trajectory’s contribution by the
obtain the component signal associated with this particular initial appropriate product polynomials (see the polynomial factors in
state. Correlation functions computed in this way must finally eq 13), and their complex conjugates, in the initial and final
be weighted with the appropriate Boltzman factors and added phase space points of the given trajectory and adding these
to give the total correlation function as in eq 5. Thus if there trajectory contributions to the ensemble average. There is thus
are n thermally accessible states, we need to perfarm  a qualitatively different amount of effort required for these quan-
propagations to construct our fully quantum thermal average. tal and semiclassical calculations due to fundamental differences
For the semiclassical calculation described above, on the otherin the nature of the quantal and semiclassical propagators and
hand, the propagation of all the different harmonic oscillator how they evolve wave functions. The same potential for savings
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Figure 7. Parts a and b show real and imaginary parts of thermal Figure 8. (a) Comparison ofs™ photoelectron spectrum calculated
averaged time correlation functign(t;3) defined in eq 5 foll = 205 with full quantum nuclear propagation (solid curve), preaveraged
K. Solid curves are full quantum calculations and dashed curves are semiclassical nuclear propagation (dashed curve), and experimental
preaveraged semiclassical calculations. Part ¢ compares real part oturves (dotted curve with symbols). (b) Comparison of full quantum
correlation function computed with full quantum (solid curve), preav- and preaveraged semiclassical contributions to total signal. Upper curves
eraged semiclassical (dashed curve), and results obtained when thare total signals, the three sets of component curves below these are
trajectory stability factors are ignored (dotted curve). contributions starting from the ground vibrational ste®f = (0,0)

_ ) ) ) ) (largest components), contributions from low initial symmetric stretch
in the semiclassical calculation of thermal averaged time excitations, i.e.y3,(n,0) (bimodal contributions), and contributions
correlation functions exists when ever the initial states can be from low initial anti-symmetric stretch excitations, i.ezﬁzl(O,n)
written as a product of functions in the various coordinates and (band with shifted peaks). (c) Same as that in part a only here we also
fast varying pieces of these functions can be pulled out as aninclude the result obtained when trajectory stability factors are ignored
initial phase space distribution for the parameters in a coherent(Shifted dotted curve).

state ]E)a5|s_ set representation gr_ld thel _rel_mal_nder of th? initialy, o general periodicity very accurately and smoothing out some
state functions are |_n_c?rpor?_te | in mu t'? |c|at|v_e qluar_mtles_to of the finer details of the fully quantum signal. In the bottom
be averaged over initial and final points of classical trajectories part ¢ of this figure we also compare the real part of the

asin eq 12. In future WorI§ we will explore the application of - ¢, rejation function obtained by setting tlefactor trajectory
these ideas to study rotational dynaniies. stability weights to unity. This is a commonly used approxima-
tion36-38 which gives considerable numerical savings in semi-
classical calculations. Unfortunately, as we see from this figure,
In Figure 7 we present our calculated thermal averaged time the time correlation function obtained with this approximation
correlation functions as defined in eq 5 for the ground-state | for the vibrational dynamics of our; Isystem is really quite
vibrational dynamics excited as a result of photoelectron poor.
detachment from ground-statg | For comparison we present The time signals presented in Figure 7 can be transformed to
the correlation function obtained from full quantum calculations energy space according to eq 4 giving the distributions of pho-
as well as our preaverage weighted semiclassical results.toejected electron kinetic energies which we compare with the
Generally, the agreement between these calculated correlatiorexperimental results of Neumark and co-workers in Figure 8a.
functions is very good with the semiclassical results reproducing The calculated spectra presented in this figure were generated

3. Results and Discussion
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assuming a Gaussian photoexcitation pulse widtl of 100 are related to trajectory stability with respect to changes in initial
fs. The peak positions and band shape of the full quantum andconditions. In regions where the classical trajectories become
semiclassical results agree with one another very closely andchaotic this semiclassical approximation to the local path space
the overall shape of these calculated curves is in near quantitativevolume thus diverges and we have demonstrated the disasterous
agreement with the experimental results. The main deviations effect of these chaotic trajectories at longer times in the
between the calculated and experimental results apparent in thisapplication of the bare semiclassical approach with a finite
figure are on the low energy side of the band where the ensemble of trajectories to this realistic two-dimensional model
calculated curves display a little too much structure and the peakproblem.
positions may be shifted slightly. Generally, however, the close  Contributions from these unstable trajectories should interfere
agreement with experiment is quite good. destructively with other trajectories eminating from these chaotic
In part b of Figure 8 we show a break down of our calculated regions as the integrand is highly nonstationary with respect to
signals into contributions from various initial states with in the variations in trajectory initial conditions over which we integrate
thermal distribution. We see that the general shape of the final to obtain the semiclassical propagator. We have shown through

band results not only from contributions from tH&=€ 0, A = comparison with exact full quantum calculations that the first
0) or (0,0) ground vibrational state but there are also significant order stationary phase filtering or preaveraging approach
contributions from symmetric stretch excitations0) which proposed by Herm&h? provides a simple to implement,

tend to broaden the band as they give contributions on either potentially quite general, and extremely effective solution to
side of band center, and antisymmetric stretch excitatiom$ (0, this problem for our model system. We have further shown that
which give slightly shifted contributions near the middle of the the alternative approach to handling the contributions from
band. On the basis of these observations it is clear that severakchaotic trajectories in which we simply assume that the path
factors could be contributing to the small differences between space volume associated with all trajectories is a constant,
the experimental and calculated spectra described above: Firstindependent of trajectory, yields poor dynamical results for this
with in the harmonic 4~ initial surface approximation the hot  realistic problem.
bands line up, rather than being displaced due to anharmonici- Finally by comparing the ejected photoelectron kinetic energy
ties. This will of course result in too much structure in the final distributions calculated from our semiclassical and quantum
spectrum. Next, uncertainty in the difference between the calculations with the experimental results of Neurmavk have
symmetric and antisymmetric stretch frequencies of #e | demonstrated the remarkable accuracy of our semiempigcal |
initial surface can lead to an inaccurate representation of the potential which gives reasonable estimates of the binding
interference between the peaks and troughs of the variousenergies and stretch vibrational frequencies with no adjustable
contributions to the spectrum. Further, we have ignored the parameters.
bending motions of the molecule and overlapping different bend
vibration progressions could easily fill in the spaces between - Acknowledgment
the bands we see in our restricted calculation results, thus
smearing much of the detailed structure we observe. Our neglec
of molecular rotations of course has a similar effect and
including such motions would further smear out the features
leading to closer agreement with experiment. Finally, if the
shape of our DIM 4 surface was inaccurate, our dynamics over
this surface would fail give a good representation of the Franck
Condon factors responsible for controlling the amplitude of the
various hot band contributions to the spectrum. Given all these
potential problems, the fact that we get a spectrum which so
closely resembles the experimental results is quite remarkable.g Appendix
In the bottom part c of Figure 8 we compare the spectra from
our quantum and semiclassical calculations with that obtained
from ignoring theC trajectory stability factors. Not surprisingly,

just as with the time correlation functions, leaving out these for the calculation of the Raman spectré#This approach is
factors which account for the variation in semiclassical path . pec 'S app
commonly used in many spectroscopic applicati¥ns.

ace volume around each classical trajectory | to significant ; e o
space volume aro € sical trajectory leads to signific The time dependent Hamiltonian describing the molecular

errors. ion in a classical radiation field is(t) = Fimolec — /i*€(t) where
&, for our molecular photoionization example, is the molecular
ion dipole operatorg(t) is the time dependent electric field,
In this paper we have presented a model potential describingandHmolec = Kn(P) + Hei(p,F,R) is the molecular ion Hamil-
the symmetric and antisymmetric stretch motions of a lingar | tonian composed of the usual nuclear kinetic and electronic
molecule obtained from a semiempirical diatomics-in-molecules contributions. As usual we employ the Ber@ppenheimer
approach. This model system has been employed as a test ofdiabatic electronic eigenstatdz(r,R) defined for a given
various semiclassical methods for propagating nuclear vibra- nuclear configuration bye(p,f;R)®4(r,R) = Es(R)®,(r,R) as
tional wavefunctions over this highly anharmonic, weakly bound a basis set to represent the electronic distribution for nuclear
potential surface. configurationR.
We have demonstrated the problems with implementing a  The time dependent wave function of the molecular ion
bare semiclassical approach which involves a straightforward coupled to the radiation fiel(r,R.,t) satisfies
weighting of the contributions from various trajectories by a
semiclassi{:al approximation to the volulme of path space around ihgq,(r RiY) = I:I(t)lp(r RY) (20)
each classical trajectory. These approximate path space volumes ot

¢ We are grateful to Prof. Ruth Lynden-Bell for important
discussions on limiting the DIM basis set size through symmetry
requirements. We gratefully acknowledge financial support for
this work from the National Science Foundation (Grant
CHE9521793) and the Petroleum Research Fund of the Ameri-
can Chemical Society (Grant 34927-AC6). We also acknowl-
edge a generous allocation of supercomputer time from the
Boston University’s center for Scientific Computing and
Visualization.

The time dependent perturbation theory approach we outline
here to obtain the expression we use to calculate the photo-
electron spectrum is very similar to that presented by Heller

4. Conclusions
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Writing the solution of this equation in terms of the above tyto —t, we can perform the integration over the sum variable

adiabatic electronic basis set as analytically and keeping only the resonant term we find the
infinite time probability of observing a photoelectron with
W(RY = ZXJ(R,'[)CDJ(r,R) (21)  energye resulting from the transitiof < Iv is obtained as

Ael? w i
and making the BornOppenheimer approximation we find that  P(Fe,lv,00) ~ Ard R f dsexp — l(e — E, — hw)s| x
. - . . hZ 0 h v
if we arrange the nuclear coefficient functiopgR,t) into a

vector X(R,t) they satisfy the following matrix equation 2 .
| A
eXF{_ P] le exr{— EHFS] leﬂ (26)

R ~ Finally the total probability,Ps(¢) of observing ejected
whereH(t) = Ho + V(t) is a matrix of nuclear Hamiltonians,  photoelectrons with kinetic energy at long time if the
the time independent part of which has elemeHigik = Hkoi molecules are initially in thermal equilibrium at a temperature
whereHx = Ky + Ex(R) is the Hamiltonian governing nuclear T, which is proportional to the signal in these experiments, is
motion over the BorrrOppenheimer surfacE(R). The time obtained by summing over a Boltzman distribution of initial
dependent part of the matrix has elements]ik = —e(t)-M(R) states and adding the signal contributions from all possible final
which describe how the radiation field couples the nuclear states, thus
coefficient functions on different electronic surfaces. Here
Mi(R) = [Dilt| Pl IR). Pie) = 3 expl-pEIY PFelve)  (27)

The first order time dependent perturbation theory solution 7
of this system of equations is readily obtained as

ih%X(R,t) = FOX(R.Y (22)

. wheref; = 1/kgT.
X(Rt) = exr{— '_|2|0(t - to)]X(Rato) + .iftdt' > In our calculations we assume that the ground electronic state
_ h _ iAo of our molecular anion system is well separated from any excited
Iy ) ) Iy electronic states so the Boltzman contributions from these higher
expg— zHy(t —t)[V(t") exg — zHq(t' — to)|X(R,ty) (23 : .
F{ A ol )] () F{ A ol 0)] Rt (23) energy electronic states can be ignored and we need only sum
) _ o over initial excited vibrational states on the ground electronic
We assume that the system is prepared in some initial- Born  state surface. Further, we will suppose that the final excited
Oppenheimer vibronic eigenstate(R)®i(r,R) wherey,, are  electronic states of interest, which involve only the ground state
the vibrational eigenstates of the nuclear Hamiltonian (specified of the neutral molecule and the ejected electron with various
by the vectow of vibrational quantum numbers) for electronic  amounts of kinetic energy, are sufficiently well separated from
statel, i.e., H(R)xwv(R) = Ewxv(R) so the initial nuclear  other excited neutral states so these higher excited final states
coefficient vectorX(R,0) has only a single nonzero entgy,(R) can be neglected for the ground-state to ground-state band we
as thelth component function. Thus to first order in perturbation wish to study.

theory eq 23 gives that the nuclear coefficient function for the  Note in this work we assume that the quantitiég.|2 are

Jth electronic state at timewill be weakly varying functions of electronic kinetic energy
. 1 compared to the time integral in eq 26. Finally, we have adjusted
i t,, . :
1R = eXF{— EHl(t — to)]X|J(R)5u +?lb/t‘ dt' x our calculated spectrum so that its peak amplitude matches
Ih"%o experiment for purpose of comparison.

i " I I — i_A I —
exp{— ﬁHJ(t B t)]VJ'(t) ex;{ hH'(t to)]X'V(R) (24) References and Notes
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