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A recently proposed method to surmount the multiple-minima problem in protein folding is applied here to
global optimization of Lennard-Jones atomic clusters. The method, self-consistent basin-to-deformed-basin
mapping (SCBDBM), locates a group of large basins containing low-energy minima (hereafter referred to as
superbasins) in the original energy surface by coupling the superbasins in the original surface to basins in a
highly deformed energy surface (which contains a significantly reduced number of minima, compared to the
original rugged energy surface). Various kinds of deformation based on the distance scaling method (DSM)
have been tested. The method was able to locate all the lowest-energy structures of Lennard-Jones atomic
clusters with a size of up to 100 atoms, except for clusters of 75-77 atoms. In these cases, the method found
the previously known second-to-the-lowest energy structures.

1. Introduction

The multiple-minima problem (the existence of many minima
in the multidimensional surface of a multidimensional function)
is encountered in essentially all areas of theoretical chemistry,
physics, and engineering, as well as in many other branches of
science and economics. In theoretical chemistry, the interest in
finding the global minimum of a potential energy surface arises
from the fact that it plays a very important role in locating the
thermodynamically most stable structure. For example, accord-
ing to thethermodynamic hypothesisformulated by Anfinsen,1

the three-dimensional structure of a native protein corresponds
to the global minimum of its free energy surface. This leads to
theoretical predictions of structure using empirical potential
functions whose parameters may be obtained from first prin-
ciples or from experimental data. Because of its importance,
much effort has been devoted to surmount the multiple-minima
problem but, despite the great progress that has been achieved,
it still remains unresolved. In particular, theoretical conforma-
tional analysis of macromolecules, investigations of the spatial
structures of many-atom or many-molecule clusters, and theo-
retical prediction of crystal structures are at best very difficult
to treat because of the huge number of local minima in the
corresponding energy surfaces.2,3 It must be strongly emphasized
that, for global optimization to succeed in predicting the
properties of real systems, it is necessary to have an accurate
potential energy function.

Since many different global optimization algorithms have
already been proposed and applied to various systems, there is
a need for a general and simple way to compare their
effectiveness. The simplest way to carry out such a comparison
is to apply any newly proposed (or improved) method to a
standard system whose global optimization properties are well-

known. Lennard-Jones (LJ) atomic clusters represent such a
system; since the mathematical form of the potential energy
function is very simple (see eq 1), it is relatively easy to apply
most global optimization methods. It is not easy, however, to
locate the global minimum for a sufficiently large cluster. The
number of local minima in LJ clusters grows exponentially. It
has been estimated4 that a cluster of 55 LJ particles has at least
1010 geometrically different minima; this number grows to about
1060 for a cluster of 147 particles. LJ clusters have been
thoroughly researched in the past years, and the most likely
candidates for global minima are known5-7 (an up-to-date
database of currently known lowest-energy structures of LJ
clusters is accessible on the Internet8). The potential energy
between atoms in an LJ cluster has the form

whereε is the pair equilibrium well depth andr0 is the pair
equilibrium distance (reduced units, i.e.,r0i ) 1 andε ) 1, are
used in this work).

The majority of LJN clusters of size from 10 to 150 atoms
have global-minimum structures based on the Mackay9 icosa-
hedron, the complete icosahedron being formed forN ) 13,
55, and 147. For intermediate sizes, the structure consists of a
complete icosahedron core of the largest size possible for the
given number of atoms, covered with a layer of atoms packed
in order to minimize the potential energy. It is worth noting,
however, that the pentagonal symmetry of the Mackay icosa-
hedron is not possible in an infinite crystal; therefore, sooner
or later, large LJ clusters will exhibit the hexagonal symmetry
of the face-centered-cubic (fcc) crystal structure (which is
observed experimentally). This change may be sharp (i.e., for
clusters larger than a given size, all clusters will exhibit fcc
symmetry), or may be gradual, so that the probability of the
cluster showing fcc symmetry will grow from a very low value,
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through 50%, and finally to 100%. For clusters of a size ranging
from 10 to 150 atoms, only a few clusters have been found that
have global minima that are not based on the Mackay icosa-
hedron. The lowest-energy structure of the LJ38 cluster is an
fcc truncated octahedron;10,11 for N ) 75-77, 102-104,
structures have been found11,12 which are based on Marks’
decahedron.13

Another possible structure for large Lennard-Jones clusters
is the hexagonal-close-packing (hcp)14,15 one, which is very
similar to fcc. The absence of the hcp form in rare-gas crystals
is linked to the mechanism of crystal growth;15 however, it is
quite possible to encounter them as low- or the lowest-energy
structures for very large Lennard-Jones clusters using global
optimization techniques.

In order to assess the potential properly for a given global
optimization method applied to LJ clusters, it is necessary to
know how the relative difficulty in finding the global minimum
depends on the size of a cluster. In general, the difficulty grows
significantly with the size of the cluster because of an increase
in the number of local minima. A good procedure to estimate
the relative difficulty is to carry out a large number of local
minimizations starting from randomly chosen points in the
configurational space; this procedure can indicate when the
probability of randomly finding the global minimum is high
because of a low number of minima or a large relative size of
the global-minimum basin. The results of randomly started local
minimizations reported in Table 1 clearly show that finding
global minima of clusters smaller than 30 atoms is very easy
and could be accomplished with only moderate numerical effort
without using a sophisticated global optimization procedure.
Local minima on the potential energy surface (PES), however,
are organized hierarchically, forming large families of minima
interconnected through relatively low barriers, but some families
are often separated by very high energy barriers and long
topological distances.16 When only one such family exists on
the PES, the task of finding the global minimum energy is
relatively easy, even for a large number of atoms in the cluster.
A good example of this behavior is LJ55, for which only one
large family of nearby minima exists.17 On the other hand,
clusters for which the PES exhibits several different families
of structures are especially difficult for global optimization;
examples are LJN for N ) 38 and 75-77.16 Taking the current
computational capabilities of modern computers into account,
it is clear that the assessment of any general global optimization
method should be evaluated for LJ clusters having at least 35
atoms (preferably larger than 50 atoms); the clusters LJN for N
) 38, 75-77 should also be included.

The most successful methods applied to the global optimiza-
tion of LJ clusters are the Basin-Hopping algorithm7 (based
on Monte Carlo with minimization18,19) and genetic algorithms.6

The Basin-Hopping algorithm has been able to locate all known
lowest-energy minima of LJ clusters up to 110 atoms (including
those forN ) 38 and 75-77), some of which were never found
previously. The continuous genetic algorithm6 found new
lowest-energy minima for LJ88 and LJ98; however, it was not
able to find global minima forN ) 75-78 but found previously
known second-to-the-lowest energy structures instead.

A promising approach to surmount the multiple-minima
problem involves methods based on the deformation of the
original rugged energy surface, thereby reducing the number
of minima by orders of magnitude, at best even to a single mini-
mum, and simplifying the conformational search greatly.10,21-29

The simplest approach to deformation-based global optimization
is to track the deformed structure back from the lowest-energy

minimum on the highly deformed PES to the undeformed PES
(reversing procedure); however, it is successful only for
relatively simple systems. Usually, the lowest-energy minimum
on the highly deformed PES does not correspond directly to
the global minimum of the original PES (even when there is
only one minimum for the highest deformation), and a single
trajectory connecting the highly deformed and undeformed
minima often branches during the reversal of the deformation.
A possible solution to this problem is to track back more than
one minimum and try to detect branching of a trajectory by
using a local search in the vicinity of a trajectory. This approach
was found to be more successful than the single or multiple-
trajectory approach and was applied in the theoretical prediction
of crystal structures.30,31 However, it does not work for highly
demanding applications, such as large Lennard-Jones clusters
or polypeptide chains.

In the present paper, a recently proposed self-consistent basin-
to-deformed-basin mapping (SCBDBM)32 method is used. Its
underlying principle is to locate a group of large basins
containing low-energy minima (superbasins) in the original
energy surface. This is achieved by coupling the superbasins
in the original PES to basins in a highly deformed energy surface
by iterative cycles, each consisting of reversing the deformation
and then deforming the newly found low-energy structures. This
method has already been applied successfully to predict the
lowest-energy structures of polyalanine chains of length up to
100 amino acid residues.32

2. Method

2.1. Global Optimization Algorithm. Details of the method
are presented elsewhere;32 here, we present only a brief
description. We consider a functionf(x) of several variables.
Consider a mappingF(x,a), where a defines the extent of
deformation, such thatF(x,a) becomes smoother with a gradu-
ally smaller number of energy minima with increasinga; assume
thatF(x,0) ) f(x). In order to utilize the deformationF to locate
the global minimum off, we first note that, with increasinga,
the number of minima gradually decreases because some of the
minima merge into one. As deformation proceeds, groups of
individual minima are first merged into single minima, defining
the superbasinsof these groups of minima for certain values
of the deformation parameter. As the deformation parametera
increases, the minima continue to merge, causing the superbasins
from smaller deformations (lower-order superbasins) to merge,
constituting higher-order superbasins (for larger deformation).
Finally, for a very high deformation, only a few minima remain.
A logical procedure to find the global minimum off(x) would,
therefore, be first to locate the highest-order (the most deformed)
superbasin inF(x,a) related to this minimum and then to locate
within it the superbasins of gradually lower order (less
deformed) that still contain this minimum, until the deformation
is fully reversed, i.e., the global minimum in the original energy
surface is located. However, the major difficulty in proceeding
in this manner is that there is no straightforward relation between
the values ofF at its minima and the corresponding minimum
values of f. Therefore, one can never tell which superbasin
corresponds to the global minimum of the original energy
function, based only on the “energy” relations between super-
basins. As a consequence, it is clearly insufficient to reverse
the deformation only once, in order to find the global minimum
of f, even if a multitrajectory search is carried out during the
reversing procedure. To surmount this problem, we have
proposed32 a self-consistent procedure that finds the coupling
between the superbasins of different order, which is achieved
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TABLE 1: Results of Global Optimization with the SCBDBM Method for Lennard-Jones Clusters

energy, reduced units

no. of
atoms

global
minimum random searcha SCBDBM

SCBDBM
(no MCM)b

5 -9.103 852 -9.103 852 (62.3) -9.103 852 -9.103 852
6 -12.712 062 -12.712 062 (66.0) -12.712 062 -12.712 062
7 -16.505 384 -16.505 384 (13.5) -16.505 384 -16.505 384
8 -19.821 489 -19.821 489 (34.8) -19.821 489 -19.821 489
9 -24.113 360 -24.113 360 (14.0) -24.113 360 -24.113 360

10 -28.422 532 -28.422 532 (4.1) -28.422 532 -28.422 532
11 -32.765 970 -32.765 970 (3.1) -32.765 970 -32.765 970
12 -37.967 600 -37.967 600 (2.5) -37.967 600 -37.967 600
13 -44.326 801 -44.326 801 (1.3) -44.326 801 -44.326 801
14 -47.845 157 -47.845 157 (3.8) -47.845 157 -47.845 157
15 -52.322 627 -52.322 627 (3.0) -52.322 627 -52.322 627
16 -56.815 742 -56.815 742 (1.8) -56.815 742 -56.815 742
17 -61.317 995 -61.317 995 (0.7) -61.317 995 -61.317 995
18 -66.530 949 -66.530 949 (0.1) -66.530 949 -66.530 949
19 -72.659 782 -72.659 782 (0.2) -72.659 782 -72.659 782
20 -77.177 043 -77.177 043 (0.8) -77.177 043 -77.177 043
21 -81.684 571 -81.684 571 (0.1) -81.684 571 -81.684 571
22 -86.809 782 -86.809 782 (0.2) -86.809 782 -86.809 782
23 -92.844 472 -92.844 472 (0.1) -92.844 472 -92.844 472
24 -97.348 815 -97.348 815 (0.1) -97.348 815 -97.348 815
25 -102.372 663 -102.372 663 (0.1/0.12) -102.372 663 -102.372 663
26 -108.315 616 -106.998 484 (0.0/0.01) -108.315 616 -108.315 616
27 -112.873 584 -112.873 584 (0.3/0.21) -112.873 584 -112.873 584
28 -117.822 402 -117.822 402 (0.1/0.07) -117.822 402 -117.822 402
29 -123.587 371 -123.587 371 (0.1/0.02) -123.587 371 -123.587 371
30 -128.286 571 -127.761 894c (0.0/0.00) -128.286 571 -128.286 571
31 -133.586 422 -132.247 370 (0.0/0.01) -133.586 422 -133.586 422
32 -139.635 524 -137.869 586 (0.0/0.01) -139.635 524 -139.635 524
33 -144.842 719 -143.380 151 (0.0/0.01) -144.842 719 -144.842 719
34 -150.044 528 -148.547 367d (0.0/0.00) -150.044 528 -150.044 528
35 -155.756 643 -153.392 605e (0.0/0.00) -155.756 643 -155.756 643
36 -161.825 363 -158.676 188 (0.0) -161.825 363 -161.825 363
37 -167.033 672 -167.017 283 (0.0) -167.033 672 -167.033 672
38 -173.928 427 -171.147 501 (0.0) -173.928 427 -173.928 427
39 -180.033 185 -175.983 755 (0.0) -180.033 185 -180.033 185
40 -185.249 839 -181.603 835 (0.0) -185.249 839 -185.249 839
41 -190.536 277 -187.664 301 (0.0) -190.536 277 -190.536 277
42 -196.277 534 -191.703 703 (0.0) -196.277 534 -196.277 534
43 -202.364 664 -198.218 052 (0.0) -202.364 664 -202.364 664
44 -207.688 728 -206.289 110 (0.0) -207.688 728 -207.688 728
45 -213.784 862 -209.609 291 (0.0) -213.784 862 -213.784 862
46 -220.680 330 -214.417 990 (0.0) -220.680 330 -220.680 330
47 -226.012 256 -224.433 093 (0.0) -226.012 256 -226.012 256
48 -232.199 529 -227.501 771 (0.0) -232.199 529 -232.199 529
49 -239.091 864 -232.721 425 (0.0) -239.091 864 -239.091 864
50 -244.549 926 -239.468 963 (0.0) -244.549 926 -244.549 926
51 -251.253 964 -245.204 671 (0.0) -251.253 964 -251.253 964
52 -258.229 991 -250.545 977 (0.0) -258.229 991 -258.229 991
53 -265.203 016 -262.141 953 (0.0) -265.203 016 -265.203 016
54 -272.208 631 -264.672 834 (0.0) -272.208 631 -272.208 631
55 -279.248 470 -268.622 886 (0.0) -279.248 470 -279.248 470
56 -283.643 105 -283.643 105
57 -288.342 625 -288.342 625
58 -294.378 148 -294.378 148
59 -185.249 839 -299.738 070
60 -305.875 476 -300.131 608 (0.0) -305.875 476 -305.875 476
61 -312.008 896 -312.008 896
62 -317.353 901 -317.353 901
63 -323.489 734 -323.489 734
64 -329.620 147 -329.620 147
65 -334.971 532 -328.870 300 (0.0) -334.971 532 -334.971 532
66 -341.110 599 -341.110 599
67 -347.252 007 -347.252 007
68 -353.394 542 -353.394 542
69 -359.882 566 -359.882 566
70 -366.892 251 -356.097 931 (0.0) -366.892 251 -366.313 126
71 -373.349 661 -373.349 661
72 -378.637 253 -378.637 253
73 -384.789 377 -384.789 377
74 -390.908 500 -390.908 500
75 -397.492 331 -386.545 271 (0.0) -396.282 249 -396.238 512
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by iterating the steps consisting of reversing the deformation
and, subsequently, reintroducing the deformation.

The procedure is outlined in Figure 1. It consists of a series
of macroiterations. Each macroiteration establishes the coupling
between superbasins of consecutive order (and contains a
self-consistent procedure within it). In macroiterationi, the
parametera(i), which controls the deformation, changes between
two extreme valuesamax

(i) and amin
(i) . For macroiterationi + 1,

amax
(i+1) ) amin

(i) and amin
(i+1) ) amin

(i) /∆ (or 0 in the last macroitera-
tion), where∆ is a logarithmic step length. The first macroit-
eration is initialized with randomly generated and minimized
conformations in the highest deformed space, while each
subsequent macroiteration is fed with the results of the previous
one.

Within each macroiteration, minima found on the highest
deformed surface (amax

(i) ) are tracked back to the least deformed
surface (amin

(i) ) by decreasing the deformation parametera and
searching locally for new minima at each reversal step. This is
called the reversing procedure. Subsequently, new minima found
on the least deformed surface are tracked to the highest deformed
surface by gradually increasing the parametera and performing
local minimization (without any local search) at each step. This
is the reversed-reversing procedure. The maximum number of
trajectories to be followed is fixed atp. The iteration described
above (one reversing procedure and one reversed-reversing
procedure) is iterated until no new minima are found in the
least deformed surface or the maximum allowed number of
iterations is exceeded.

The local search plays a very important role in the algorithm
by detecting branching of minima during the reversing proce-
dure. However, this search should be carried out in the vicinity
of a starting minimum; otherwise the relationship between

minima may be lost (i.e., the newly found minimum may not
be related to the previous one, but belong to a completely
different “tree” of trajectories). The simplest local search is a
random perturbation of a structure followed by a local energy
minimization, as implemented in the multiple-trajectory per-
turbation approach.30,31 During a perturbation, the positions of
all atoms in a cluster are perturbed randomly (the amplitude
being lower than a predefined numberδ); if the perturbation is
very small the search is local, but quite often the subsequent
energy minimization simply restores the original structure. On
the other hand, if the perturbation is larger, the repulsion between
perturbed atoms in the core of a cluster usually forces the local
minimization procedure to jump quite far from the starting point
(and the cluster temporarily explodes during local minimization);
even relatively small perturbations of the core atoms frequently
resulted in a nonlocal search. The solution is simply to make
the size of a perturbation for a given atom depend linearly on
the distance from the center of a cluster to that atom, with the
atom at the center of a cluster not being pertubed at all, and the
surface atoms being perturbed to the maximum extentδ. In this
approach, all atoms in a cluster are still perturbed (and, therefore,
changes in the core of the cluster are possible), but the search
remains local.

Another version of local search used in our algorithm is a
linear search along randomly generated directions in the
multidimensional space; the search stops when a new basin is
found or a predefined maximum number of steps is exhausted.
This kind of search nearly always finds neighboring basins and
rarely stays in the starting basin.

We have achieved the best results (i.e., the fastest convergence
to the global minimum) when both kinds of local searches
described above were used in our algorithm. The local search

TABLE 1: Continued

energy, reduced units

no. of
atoms

global
minimum random searcha SCBDBM

SCBDBM
(no MCM)b

76 -402.894 866 -402.384 580
77 -409.083 517 -408.518 265
78 -414.794 401 -414.794 401
79 -421.810 897 -421.810 897
80 -428.083 564 -419.885 749 (0.0) -428.083 564 -427.080 532
81 -434.343 643 -434.343 643
82 -440.550 425 -440.550 425
83 -446.924 094 -446.924 094
84 -452.657 214 -452.657 214
85 -459.055 799 -449.427 020 (0.0) -459.055 799 -458.283 317
86 -465.384 493 -465.384 493
87 -472.098 165 -472.098 165
88 -479.032 630 -479.032 630
89 -486.053 911 -486.053 911
90 -492.433 908 -477.912 316 (0.0) -492.433 908 -489.091 398
91 -498.811 060 -498.811 060
92 -505.185 309 -505.185 309
93 -510.877 688 -510.877 688
94 -517.264 131 -517.264 131
95 -523.640 211 -514.356 127 (0.0) -523.640 211 -520.731 120
96 -529.879 146 -529.879 146
97 -536.681 383 -536.681 383
98 -543.642 957 -543.642 957
99 -550.666 526 -550.666 526

100 -557.039 820 -542.012 683 (0.0) -557.039 820 -554.634 820

a The lowest-energy minimum found in 1000 local minimizations starting from randomly generated cluster configurations. The probability (in
percent) of finding the global minimum in 1000 random searches is reported in parentheses; the probability of finding the global minimum in
10 000 random searches is reported as the second number in parentheses when appropriate. Even probabilities as small as 0.1 or 0.01, for 1000 and
10 000 random searches, respectively, are large enough for successful identification of global minima.b No MCM is carried out on the undeformed
surface.c The lowest-energy minimum found in 10 000 random searches was-128.181 578.d The lowest-energy minimum found in 10 000 random
searches was-149.996 978.e The lowest-energy minimum found in 10 000 random searches was-154.804 752.
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on the undeformed energy surface is treated differently ifamin

) 0. In this case, after every predefined number of iterations
within a macroiteration (usually 4), a short Monte Carlo with
minimization (MCM)18,19 search is carried out (until 50 struc-
tures are accepted by the Metropolis criterion), instead of using
the local search procedures described above.

2.2. Deformation. A minimal requirement for deformation
to be useful in the SCBDBM method is that the number of
minima of a potential function should decrease when the
deformation increases, causing local minima to merge. Merging
of two local minima may occur in two different ways: first,
two potential wells overlap continuously as the deformation
increases, so that there is no point at which one of them
vanishessall three critical points (two minima and a saddle
point) simultaneously turn into a new minimum; second, one
of the minima vanishes (the minimum and a saddle point turn
into an inflection point), and the local minimization procedure
starting from the present point finds the second minimum. In
the second case, one minimum may vanish geometrically close
to the other minimum. In such a situation, a local search may
be able to find this vanishing minimum during the reversing
procedure; otherwise, when the first minimum vanishes geo-
metrically far from the first one, there is only a remote chance
of finding the former minimum. Therefore, the deformation
should promote a continuous merging of minima, or at least
this kind of merging, in which the minima are geometrically
close.

The distance scaling method (DSM) has been chosen as the
deformation procedure for the present work. It is very simple
to implement, is designed to work with pairwise interactions,
and was shown to perform well in finding the global minima
of Lennard-Jones and water clusters,10,24,25 and in predicting
the crystal structures of small molecules.31 In the DSM,10 the
site-site distancerij is transformed tor̃ ij as follows:

The parameterro,ij in eq 2 is the position of the minimum in
the undeformed pairwise-interaction function under consider-
ation. On increasing the deformation parametera, the original
function of the site-site distance (e.g., the Lennard-Jones
potential) is flattened, but the position of its minimum and the
function value at the minimum remain the same, if the value of
the parameterb is taken as 1 (as in the original formulation10

of the DSM). The parameterb controls the position of the
minimum and remains constant during the calculations. A value
of b > 1 means that the position of the minimum of the
deformed site-site function will shift to larger values, while
for b < 1 it will shift toward zero, and a two-body potential
will become totally attractive fora ) 1/(1 - b). Forb ) 0, the
deformation works by shifting the potential toward zero distance;
therefore, the repulsion part of the potential function is cut, and
the potential becomes purely attractive fora ) 1.

Application of the deformation to the Lennard-Jones pairwise
potential makes it relatively long-ranged while diminishing
energy barriers between minima due to lowering repulsion (for
all values ofb) and attraction (forb > 0). The reason for this
behavior is that the flattened potential converges to zero more
slowly with increasing distance. Flattenning and shifting of the
deformed LJ potential for three different values ofb (0, 1, and
2) is illustrated in Figure 2.

In order to test the influence of different values of the
parameterb on the merging of local minima during the
deformation, the reversed-reversing procedure was carried out
for the 100 lowest-energy minima of the LJ38 cluster for different
values ofb. The resulting trajectories of all 100 minima forb
) 2, 1, and 0 are shown in Figures 3, 4, and 5, respectively.
The plots show the relative deformed energies of the structures
(relative to the lowest deformed energy found for a given value
of the deformation parametera). Rather than plotting the
deformed energies themselves, the relative values better illustrate
the influence of the deformation on energy ordering and merging
of minima because the energy of a cluster changes while the
deformation increases; the pairwise potential energy becomes

Figure 1. Block diagram of the reversing procedure coupled with the
reversed-reversing procedure within a single macroiteration.

Figure 2. Application of the DSM to the Lennard-Jones potential.
Thick solid line shows the original LJ potential. Other lines show
progressing deformation for the values ofa andb indicated.

r̃ ij )
rij + aro,ij

1 + ba
(2)
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flatter, and the total energy of a cluster (being a sum of all
pairwise interactions) becomes significantly lower for higher
deformation. Therefore, the differences between the deformed
energies can hardly be noticed on the graph because of the much
more significant decrease of the deformed energy with increas-
ing deformation. Abrupt vertical drops in the energy difference
leading to connecting of two different lines, present in all three
plots, indicate merging of minima.

For b ) 2.0 (Figure 3), the merging of minima is distributed
uniformly throughout the deformation range when using a
logarithmic scale for the deformation. The order of the minima
changes as the deformation increases, and the global minimum
(i.e., for a ) 0) becomes a local minimum for deformations
larger thana ) 0.5. During the reversed-reversing procedure,
90% of the minima merged, leaving only 10 different basins
for the maximum deformation, and the remaining minima did
not merge for reasonably large deformations (up toa ) 100).
It should be noted that, if the deformationa increases too much,
then the resulting surfaces are extremely flat, and the local
minimization procedure often fails. The value 2.0 of the
parameterb shifts the local minimum of the LJ potential for
each pair of interacting atoms to the right (larger distances),
causing the cluster to grow in size. As a result of such growth,
only minima that are geometrically close merge; the other
minima move apart from each other faster than deformation is
able to lower the barriers between them. This behavior of the
DSM is qualitatively the same as the behavior of the diffusion
equation method (DEM)22 applied directly to a Gaussian
approximation of the Lennard-Jones potential. This value ofb
is, therefore, not an appropriate choice for deformation of LJ
clusters. Forb ) 1.0 (Figure 4) 98% of all minima merged for
high deformation, leaving only two local minima fora ) 30
(log a ) 1.48). Unfortunately, most merging occurs in a small
region of the deformation (arounda ) 1), even when using a
logarithmic scale for the deformation. In this case, detection of
new minima during the reversing procedure may be difficult,
because many new minima appear at the same stage of the

deformation; i.e., it is difficult to pick starting points ata ) 1
with which to carry out the reversing procedure.

The third, extremal, value ofb ) 0 (Figure 5) seems to work
best. For this value, the most appropriate scale of deformation
is linear rather than logarithmic, and the minima merge
uniformly throughout the whole deformation range, allowing
much better search for higher deformation. A minimum at high
deformation usually corresponds to many minima in the
undeformed surface. Therefore, if a minimum is not detected
in deformed surface, then a whole family of corresponding
minima in the undeformed surface is lost. There is only one
minimum left for the deformation parametera ) 1, because of
the purely attractive behavior of the potential at this stage of
deformation. The order of minima changes during the deforma-
tion, indicating the necessity of using the energies of only
undeformed structures when deciding which minima to store
during the reversing procedure, as described in section 2.1 of
ref 30. The differences between the deformed energies of
nonmerging minima increase for the deformation parametera
< 0.5, and then decrease fora > 0.5, which divides the range
of the deformation parameter into two parts; therefore, we have
chosen to use two macroiterations withamax

1 ) 1, amin
1 ) 0.5,

and withamax
2 ) 0.5 with amin

2 ) 0.

3. Results and Discussion

All calculations were carried out using the numerical param-
eter controlling the deformation described in the previous
section, viz.,b ) 0. The number of trajectories was chosen as
5, and the number of macroiterations as 2; for four different
values of the deformationa, a local search was carried out during
the reversing procedure. The maximum deformation parameter
amax was 1.0 (withb held constant at the value 0), and the
deformation parametera was changed linearly during the
reversing procedure. The maximum number of iterations within
the first macroiteration (one iteration being a pair of reversed
and reversed-reversing procedures) was set as 4, the maximum
number of iterations within the second macroiteration was set

Figure 3. Changes in the order of the energies during the reversed-reversing procedure for the 100 low-energy minima in the undeformed energy
surface of LJ38 for the parameterb ) 2.0. The vertical axis describes the energy difference between the current minimum and the lowest-energy
minimum for a given value of the deformation parameter. The global minimum trajectory is shown with a thick solid line. The procedure starts
from the 100 minima in the undeformed energy surface (a ∼ 0). With increasing deformation, the trajectories ultimately merge to around 10
minima neara ) 50 (loga ) 1.7). It can be seen that the global minimum trajectory appears at a higher energy ata ) 50, even though it was the
lowest energy in the undeformed surface. Further, despite the merging, there are still many left ata ) 50.
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at 11. The program has been parallelized on a coarse grain level,
i.e., local searches and trajectory tracking were carried out in
parallel. All calculations were carried out on an IBM SP2
supercomputer at the Cornell Theory Center, and the resources
consumed varied greatly with the cluster size. For LJ70, full
global optimization required 3.5 h, using 10 processors of the
SP2 supercomputer. The typical number of local minimizations
carried out for larger clusters was about 40 000. It must be noted,
however, that most of these minimizations were used to
determine trajectories in the reversing and reversed-reversing
procedures. In this case, a minimization was started from the
previously minimized structure at a slightly different deforma-
tion parameter (slightly largera for the reversing procedure,
slightly smallera for the reversed-reversing procedure), and,
therefore is extremely fast. Most of the numerical expense is
involved in carrying out local minimizations in the local search;

the typical number of local searches carried out for larger
clusters was 8000.

In order to validate the parameters used, full global-
optimization runs with the numerical effort doubled (by doubling
the number of iterations within the macroiteration) were carried
out for 10 clusters, whose sizes were chosen randomly between
50 and 100. The SCBDBM results were completely independent
of the starting geometries; different global optimization runs
starting from different randomly generated initialization param-
eters (seeds) resulted in exactly the same lowest-energy minima.

The detailed results are shown in Table 1. For comparison,
the results of random searches (column 3) and the SCBDBM
method without the MCM search on the undeformed surface
(last column) are provided. The random search consisted of 1000
local minimizations, starting from randomly generated struc-
tures; in order to obtain random starting points, the Cartesian

Figure 4. Same as Figure 3, but forb ) 1.0. In contrast to Figure 3, all trajectories have merged to only two minima ata ) 30 in the deformed
surface. All the merging of the trajectories has taken place in the vicinity ofa ) 1.

Figure 5. Same as Figure 4, but forb ) 0.0. In contrast to Figure 4, there is only one minimum ata ) 1, and the trajectories merge more
uniformly in the deformation dimension, i.e., there are many trajectories in the region ofa > 0.5 whereas, in Figure 4, the right-half of the plot is
devoid of trajectories.
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coordinates of all atoms in the cluster were selected randomly
as a number from the [0,8] range (in reduced units). The lowest-
energy minimum found in a random search is reported for each
cluster size along with the probability of finding the global
minimum in such a search (the same column, with the percent
probability in parentheses). For clusters LJN with N ) 25-35,
an additional 9000 local minimizations starting from randomly
selected structures were carried out, and the overall probability
of finding the global minimum for these clusters in 10 000
random local minimizations is reported as the second number
in parentheses.

No previously unknown lowest-energy cluster geometries
were found by the SCBDBM method, and the method correctly
located the currently known global minima for all clusters,
except for LJ75, LJ76, and LJ77. In these cases, the previously
known lowest-energy icosahedral structures (being the second
to the lowest in energy) were located. It has been shown that
long-range pairwise potentials promote icosahedral structures
over fcc structures in atomic clusters.33 When the deformation
is increased, the potential becomes long range, which probably
makes most nonicosahedral (fcc) structures higher in energy,
and, finally eliminates them. However, in the case of LJ38,
despite the fact that the fcc structure (the global minimum for
a ) 0) becomes higher in the deformed energy for the
intermediate values of the deformation parametera, it remains
separated, and merges geometrically close to the icosahedral
structure for a very high value of the deformation parameter
(see Figure 5). Unfortunately, the basins corresponding to
nonicosahedral structures for LJ75-77 disappear geometrically
very far from the main group of trajectories (because of the
long-range deformed potential), making them virtually impos-
sible to find. In order to improve the results, a better deformation
procedure should be designed, where the nonicosahedral minima
would merge geometrically close to the icosahedral ones.

The SCBDBM method carried out without the MCM search
on the undeformed surface (last column of Table 1) is successful
up to LJ65, as indicated by the deviation in the energy beyond
65 atoms. This shows that the DSM coupled with a local search
and self-consistent mapping is a very powerful global optimiza-
tion method. Its effectiveness could be increased further by
increasing the number of local searches and the limit of the
number of iterations within a macroiteration; however, the
numerical cost of such change is high. A much more economical
way to improve the results is to add a short MCM search in the
vicinity of the minima in the undeformed surface, as we have
done here.

The results of the random search (third column in Table 1)
show that the task of finding the global minima of LJ clusters
of sizes smaller than 30 atoms is relatively easy; the probability
of randomly finding the global minimum is about 0.1% or larger
for these clusters (see footnotea in Table 1). Finding the global
minima for clusters LJ30-35 is, in turn, of moderate difficulty.

The interesting question about the SCBDBM method is how
important is the deformation in the performance of the method.
To answer this question, full global optimization runs with the
deformation parametera set permanently to zero were carried
out for different clusters. The results (not presented here) showed
that SCBDBM without the deformation works successfully (with
some exceptions) up to about 45 atoms in a cluster, which means

that it performs better than the corresponding random search
for clusters containing about 10 atoms more than the number
used in successful random searches.

Based on the present work, the SCBDBM method has been
shown to be a very efficient method of global optimization,
comparable with continuous genetic algorithms or the Basin-
Hopping algorithm, at least in applications to Lennard-Jones
clusters.
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