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Many important chemical and biological reactions do not face a sizable activation barrier in their motion
along the reaction coordinate. As a result, these reactions often have time constants in the range of a few
hundred femtoseconds (fs) only. The existing theories, on the other hand, assume only the viscous, zero
frequency frictional response of the solvent, which is clearly inadequate to describe solvent viscosity effects
on such ultrafast reactions. In this article, we present a theory of barrierless chemical reactions that includes
the bimodal frictional response of the solvent. The generalized theory is based on a non-Markovian
Smoluchowski equation, with a time (t) dependent diffusion coefficient (D(t)) to describe the reactive motion
along the reaction surface; the reaction itself is described by a coordinate-dependent sink term. This description
is reliable for a harmonic reaction potential energy surface. The time-dependent diffusion coefficient can be
obtained from the time-dependent friction by using the known procedure. The calculated rates show that the
barrierless reaction rate becomes completely decoupled from slow solvent frictional forces when the rate of
the reaction is large. This is particularly true for slow viscous liquids where the fast response of the liquid is
vastly separated in a time scale from the slow response. For ultrafast reactions, this theory naturally leads to
a fractional viscosity (η) dependence of the rate (k ∼ η-R), with the value of the exponentR being close to
zero at large solvent viscosities. The theory predicts excitation wavelength and temperature dependence in
agreement with experiments. The results of the theory have been used to analyze and understand the
experimental results of isomerization in rhodopsin, isorhodopsin, crystal violet, and several other cases.

I. Introduction

Many important chemical and biological reactions in solution
occur without the intervention of any potential barrier to the
reactive motion.1,2 The dynamics of such barrierless reactions
naturally differ considerably from those chemical reactions
where the reactant has to climb a high activation barrier (Eact)
to reach the product. The effects of solvent frictional forces on
activated chemical reactions in solution have been studied
theoretically by Kramers,3 Grote-Hynes,4 and Pollak.5 Barri-
erless chemical reactions (withEact e 1 kcal/mol) have drawn
much less theoretical attention. Many activationless processes
are found in the photoassisted isomerization. The most important
example is certainly the transducting processVision, which
involves a cis- to trans-transformation of the retinal chro-
mophore.6,7 Isomerizations of stilbene and diphenylbutadiene
in alcohol solvents and of triphenylmethane dyes (crystal violet
and ethyl violet) in lower alcohols are all known to follow
barrierless reaction pathways.8 Barrierless reactions are generally
characterized by high reaction rates, exhibit a temperature
dependence distinctly different from that of high barrier reac-
tions, and are often strongly coupled to solvent viscosity.
Actually, viscosity dependence has been often used to character-
ize the reaction mechanism of these reactions. Another important

feature is that these reactions may depend on the initial
conditions; thus, not only the wavelength of the excitation light
but also the frequency of both the excited- and ground-state
potential surfaces may play an important role in controlling the
relaxation dynamics.

Recent advances in ultrafast laser spectroscopy have allowed
the study of reactions hitherto impossible and have shown that
the rates of isomerization reactions are often much larger than
what was thought previously. For example, Peteanu and co-
workers9 have employed a 35 fs pump pulse and studied the
rhodopsin isomerization using 10 fs probe pulses and showed
the reaction dynamics (delay time≈ 200 fs) is much faster than
the previous reported value of 30 ps.10 The femtosecond time-
resolved spectroscopic study of Maruyama et al.11 has also
shown that the excited-state relaxation of crystal violet is
complete within 500 fs and reported an anomalous viscosity
dependence. A similar enhanced rate due to the higher resolution
of recent femtosecond investigations has been noted in the
isomerization ofcis-stilbene by Sension et al.12 and in tetra-
phenylethylene by Lenderink et al.13

A typical reaction potential energy surface for a barrierless
reaction is depicted in Figure 1. The reaction is excited from
the ground state to a position denoted byø0 on the excited-
state surface. The subsequent relaxation brings the reactant down
toward the potential energy minimum where the efficient sink
øs is also located. This initial relaxation is resisted by solvent
friction for those cases where relaxation involves large amplitude
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motion, as is believed to be the case in cis-trans isomerization
or in TPM dyes.

Several theories have been proposed to understand these
astronishingly fast reactions.8,14A detailed theory of barrierless
reaction was proposed by Bagchi et al.15 In this model, sink is
assumed to be coordinate-dependent for radiationless processes
and a one-dimensional model for reactive motion on the excited
state is introduced. The reactive motion along the S1 surface is
modeled by the damped motion of a Brownian particle on a
harmonic surface. The motion along the potential surface is
governed by the potential and the viscous drag of the solvent.
This model suggests the rate of the barrierless reaction is a strong
function of the viscosity of the medium.

A limitation of the Bagchi-Fleming-Oxtoby theory15 (and
of all other existing descriptions of barrierless isomerization
reactions as well) is the use of an overdamped Markovian
description of the dynamics. Thus, the response of the liquid to
the motion of the reactant was assumed to be purely viscous.
In the case of high barrier reactions, it is known that the viscous
approximation of the friction leads to a completely wrong
viscosity dependence.4,16 A similar situation can arise in the
case of those barrierless reactions that are very fast (with time
constants in the subpicosecond range) and that may thus probe
only the short time response of the solvent. This calls for a
generalization of the existing theories of barrierless reactions
in solution to include the bimodal response of the solvent.

In this article, we present such a generalized model for
barrierless reactions by including the viscoelastic response of
the medium. This requires a non-Markovian description of
friction for the reactive motion. This is achieved by using the
generalized Smoluchowski equation with a time-dependent
diffusion coefficient,D(t).17 Such a description is valid for a
harmonic reaction surface. Recent studies have shown that the
time-dependent diffusion coefficient can have a value at short
times which is quite different from that at the long times. In
particular, the short time value ofD(t) is determined by the
short time or the high-frequency frictional response of the

solvent, which is again determined by the static correlations
and hence by the local structure surrounding the reactant. This
is to be contrasted with the long time diffusion which is often
determined by the dynamical correlations. The friction at the
long time is proportional to the slow, zero-frequency viscous
response which might have no influence on ultrafast chemical
reactions. The generalized Smoluchowski equation with a
position-dependent reaction sink term has been solved by using
Green’s function technique.18-21 The short and long time
responses of the medium are introduced in the time-dependent
friction expression, which is similar to the friction obtained by
the mode-coupling theory calculation.22 The main point here is
that while the short time friction may make a much smaller
contribution to the total zero-frequency friction than the slowly
relaxing component, it might be the former that is really coupled
to the ultrafast reaction.

We must mention here that a Smoluchowski equation
description with time-dependent diffusion has been used earlier
to treat dynamic solvent effects on electron-transfer reactions
by Hynes,23 by Gayathri and Bagchi,21 and more recently by
Bicout and Szabo.24 Such a description, however, has not been
used to treat viscosity dependence of barrierless reactions. Such
a need of course arises mainly for ultrafast reactions.

The time profile of the survival probability calculated from
this non-Markovian analysis shows a faster decay in the
population distribution than what was observed in the Markovian
theory. For the pinhole sink, the time dependence of survival
probability is highly nonexponential and the decay is found to
be complete even before a steady-state distribution is reached.
Even for sinks with a finite decay rate, the decay is significantly
nonexponential. One, of course, recovers an exponential decay
in the long time when the decay rate from the sink is small,
and this rate agrees with the one given by the Bagchi-Fleming-
Oxtoby theory. The new theory predicts that a wavelength-
dependent crossover in the temperature dependence is also
possible in the barrierless isomerization reactions, in addition
to the viscosity-mediated turnover. These crossovers are ex-
plained in terms of a shift in the rate governing the process
from relaxation in the excited-state potential energy surface to
the rate of the S1 f S0 radiationless transition in the sink region.
In the experimental investigations, the appearance of viscosity-
mediated crossover in the temperature dependence of the decay
rate and the absence of wavelength-mediated turnover is shown
to reflect the steepness of the reactant ground-state potential
surface. Analysis of rhodopsin isomerization suggests the short
nuclear motion in the S1 surface to be the major reason for the
speed of isomerization observed. A low solvent relaxation time
is predicted for the isomerization of rhodopsin, and the dynamics
is expected to be viscosity-independent. A comparison between
rhodopsin and isorhodopsin is also made, and an explanation
for the slow dynamics in isorhodopsin is presented. Furthermore,
our formalism helps in understanding the conflicting reaction
mechanisms such as that in crystal violet. The results of the
present study are expected to be relevant in understanding the
dynamics of activationless isomerization reactions.

The organization of the rest of the paper is as follows. In the
next section, we present the theoretical formulation of the
barrierless reaction. The numerical results are presented in
section III, along with a discussion of several specific experi-
mental systems. Section IV concludes with a summary.

II. Generalized Theory of Barrierless Reactions

We start with the standard non-Markovian generalized
Langevin equation, which describes the velocity (u) of a solute

Figure 1. Schematic illustration of the physical processes involved in
the study of barrierless isomerization reaction. The initial state (S0) is
the ground state of the isomerizing molecule. An instantaneous laser
pulse transfers the population distribution to the excited state (S1). The
ø0 in the S1 surface indicates the excitation position. As the time
increases, the population atø0 diffuses along the S1 surface to reach
the minimum,øs. The decay in the excited-state population from S1 f
S0 occurs at the sink which is present at the minimum of the S1 surface.
The dynamics of S1 f S0 transition is controlled by the rate constant
ks.
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in a one-dimensional harmonic potential well under the influence
of a stochastic force,f(t)

where ŭ(t) and u(t) represent the accelaration and velocity,
respectively. Equation 1 is associated with the fluctuation-
dissipation relation

whereω is the frequency of the excited potential surface,ú(t
- τ) is the memory kernel of friction,T is the temperature, and
kB is the Boltzmann constant.

For a harmonic surface, the generalized Langevin equation
can be transformed into a generalized Smoluchowski equation
with a time-dependent diffusion coefficient,D(t), defined by17

whereê(t) ) L -1ê̂(z) is given as

and

D(t) can be obtained from the time-dependent friction,ê(t).
However, to findϑ̂(z) we need to know the frequency-dependent
friction, ú̂(z). Note that one could also derive a generalized
Fokker-Planck equation where the probability distribution
function would depend both on the position and the velocity of
the solute. The solution of such an equation would certainly
contain more detailed dynamical information than the general-
ized Smoluchowski equation. However, solution of the general-
ized Fokker-Planck equation would involve extensive numer-
ical work. The advantage of the generalized Smoluchowski
equation with the time-dependent diffusion coefficient is that
while it is exact for the harmonic surface, it also contains some
(but not all) of the effects of underdamped motion in a simplified
description. That is, no oscillations on the potential energy
surface are considered near the minima. The oscillations arise
only when friction is less (underdamped). To circumvent this
difficulty, different relaxation times are employed where the
fast time scale (low friction) relaxes faster until the minimum
of the excited potential energy surface (S1) and from there on
a very slow relaxation (high friction) takes over. Thus, using
this overdamped description itself, a realistic model is con-
structed. Such considerations are quite common in the study of
barrierless electron-transfer literature,21,24 and this assumption
is transparent and does not sacrifice any interesting results. Now
it is interesting to inquire whether the fast and slow relaxation
times are realistic? The answer is yes; the friction that enters
the generalized Langevin equation is bimodal in nature.22 There
is an ultrafast part that essentially arises from the dynamics of
the solute in the cage formed by the surrounding solvent
molecules. The second contribution to the translational friction
originates from the coupling of the solute motion to the
collective density fluctuations of the solvent. The coupling to
the density fluctuation is responsible for the relaxation of the
cage and has a long time decay.

Previous works on the generalized Smoluchowski equation
used time-dependentD(t) derived from the exponential memory
kernel with a single relaxation time constant. However, the
actual friction,ú(t), is generally a bimodal function and shows
variety with varying parameters. Having this in mind, we
examine the dynamics of isomerization using a fairly realistic
model for the molecular level, time-dependent friction experi-
enced by the reacting system in its passage down the potential
curvature. We have used two different expressions for theú(t).
These two expressions are

whereτ1 andτ2 are the relaxation time constants for the ultrafast
and slow components, respectively, andú(t ) 0) denotes the
zero time friction. Equation 7 also shows another form for
friction using a simple biexponential form, whereA represents
the weight factor. Equation 6 or 7 can be used as the friction
expression to calculate the time-dependent diffusion coefficient
and the isomerization rate constant. We shall refer to the
calculations based on eqs 6 and 7 as model I and model II,
respectively. Clearly they describe two different situations.
Equation 6 is appropriate for simple liquids, while eq 7 might
be appropriate in more complex situations. As already empha-
sized, the timesτ1 andτ2 have different origins and can be vastly
different. While model I seems to explain the friction behavior
more close to the mode coupling theory results, most of the
experimental results are analyzed using the biexponential
relaxation times, and hence, studying the system with model II
will be a convenient reference point. Note here that the above
friction models are more suitable when the isomerizing group
carries no or diffused charge. When an isomerizating group
having a localized charge is considered in a polar solvent, the
rotating charge will experience an enhanced drag due to the
coupling of the charge with the polarization mode (ion-dipolar
Coulombic interaction) of the solvent. This extra friction due
to the strong dielectric forces is not considered in eqs 6 and 7
and, hence, is a limitation of our model. Several interesting
theories have been developed by van der Zwan and Hynes25 to
study the isomerization of ionic solutes in polar solvents. In
these studies, the role of solvent friction has been studied
comprehensively.

The use of two desparate relaxation time constants in the fric-
tion expression has been justified by several experimental
analysis. Ippen et al.26 and Cremer and Windsor27 while studying
the ground-state recovery of malachite green have concluded
more than one exponential is required to fit their excited-state
absorption and ground-state recovery data. In addition, Hirsch
and Mahr28 have shown that the excited-state population decay
curve of malachite green fits well only with the double-expo-
nential form with two different decay times. Fluorescence decay
of crystal violet was investigated by Beddard et al.,29 and they
also had a similar conclusion. Further, femtosecond experiments
by Peteanu et al.9 on the isomerization of rhodopsin confirm
the nonsingle-exponential decay of different relaxation times.

More recently, Zhang et al.30 studied the barrierless isomer-
ization dynamics of cyanine dye, 3,3′-bis(3-sulfopropyl)thi-
acyanine triethylaminium salt, in various viscous alcohol
solvents and explained the origins of two decay components in
the relaxation dynamics. Their results show that the slower
component time constant (τ2) increases to several tens of

ŭ(t) ) -ω2ø(t) - ∫0

t
ú(t - τ)u(τ) dτ + 1

m
f(t) (1)

〈f(t)f(τ)〉 ) 〈f(t - τ)f(0)〉 ) kBTmú(|t - τ|) (2)

D(t) )
-kBT

mω2

d ln ê(t)
dt

(3)

ê̂(z) ) 1

z + ω2
ϑ̂(z)

(4)

ϑ̂(z) ) 1

z + ú̂(z)
(5)

ú(t) ) ú(t ) 0)
cos(t/4τ1)

cosh(4t/τ2)
(6)

ú(t) ) ú(t ) 0){A exp(-t/τ1) + (1 - A) exp(-t/τ2)} (7)
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picoseconds when the solvent is varied. However, the faster
time constant (τ1) remains relatively unchanged.

The rate parameter relationship with viscosity is studied
frequently in the experimental analysis of activationless elec-
tronic relaxations. In the theoretical analysis, however, friction
is usually considered, and it is related to the rate constant. The
obtained results were analyzed assuming a linear relationship
between friction and viscosity. It is interesting here to note that
friction originates from the solute-solvent two-body interaction
and it is a microscopic quantity, whereas macroscopic viscosity
is solely a solvent property. It is unfortunate and indeed
frustrating that no such accurate relationship exists; thus, we
restrict ourselves to the simple approximation suggested by
Stokes-Einstein. As mentioned earlier, friction in our analysis
originates from two different sources and their relation with
the viscosity is important in understanding the rate constant
dependence on the solvent parameter. Rigorously speaking, the
binary collision term does depend on the solvent structure via
g(σ) and, hence, on viscosity. Since it does not couple to the
solute-solvent two-particle direct correlation function, the
viscosity dependence is very weak. On the contrary, long time
dynamics is coupled to both the structure factor and also to the
two-particle direct correlation function which governs the
viscosity. Thus, the long time relaxation shows a overwhelming
viscosity dependence compared to that of short time relaxation.
This picture holds good for the low and moderate density
regions,31 and only under very high densities and temperatures
(near critical point) does the mode coupling theory based calcu-
lations32 show a high viscosity dependence for the binary fric-
tion. Since most of the barrierless isomerization reactions are
carried out under these low and moderate density conditions, it
is safe to assume that only the long time or zero-frequency fric-
tion is related to the viscosity via the Stokes-Einstein relation.

Note that the zero-frequency friction,ú(z ) 0), is obtained
by the time integration overú(t). The important point here is
thatwhile theValue ofú(z ) 0) may be controlled by the slow
time constant,τ2, the rate of an ultrafast reaction can be coupled
to the faster relaxation time,τ1. We need a non-Markovian
theory to capture this aspect of the dynamics. Clearly, this itself
can give rise to a fractional viscosity dependence of the reaction
rate.

In the present work, the radiationless population decay is
described via a coordinate-dependent sink, which is centered
at the excited-state potential minimum. The Brownian motion
of the initially excited molecule is governed by the force from
the potential and also by the frictional forces offered by the
solvent. This time-dependent diffusion in the higher harmonic
surface can be conveniently described by the modified Smolu-
chowski equation description for the probability distribution
P(ø,t), with a sink term as,

Here P(ø,t) is the probability distribution at theø coordinate
and at timet, m denotes the effective mass, andω represents
the frequency of the harmonic well. The time-dependent
diffusion coefficient coincides asymptotically with the long time
diffusion coefficient (D) used in the conventional Markovian
process; i.e.,D(t) ) D ast f ∞. S(ø) is the sink function, which
is related to the local sink-transfer rate constant,ks, at position
øs by S(ø) ) ksδ(ø - øs).

For any ø, the solution of the generalized Smoluchowski
equation in theabsenceof sink is given by21

where ø0 is the initial position of the solute at timet ) 0.
However, the solution of the generalized Smoluchowski equation
in the presence of a delocalized sink is rather difficult to obtain.
An efficient method that makes use of the above Green’s
function expression to solve eq 8 with delocalized sink has been
discussed at length by Gayathri and Bagchi.21 Both the time-
dependent survival probability and the average rate need to be
obtained numerically, although the latter is somewhat simpler.
The final expression of the average rate is given by

where∆G(ø,z/øj,0) is in the form

A special model that has been widely used in the study of
barrierless reactions assumes that the reaction occurs with unit
probability when the reactant arrives at a specific location, for
example, the minimum of the potential energy surface. This
may be modeled by placing a pinhole sink at the minimum of
the excited-state surface.15 Then eq 8 can be exactly solved by
the method of images under appropriate initial boundary
conditions.15

The survival probability at the excited surface can be written
as

Equations 10 and 13 are employed in our calculation of the
rate constant and survival probability for the barrierless isomer-
ization process. The significance of these quantities in the
context of barrierless isomerization reaction is considered in
the next section.

III. Results and Discussion

(a) Numerical Analysis. In this section, we describe and
discuss the results obtained by numerical solution of the
equations described in the previous section. All the quantities
involved are made dimensionless prior to the calculations. We
have scaled time by picoseconds and the distance by angstroms.
The following array of values are employed in our calculations
for both model I and model II:τ1 ) 0.05 ps,øs ) 0, T ) 298
K, m ) 100 g/mol, and, for model II,A ) 0.65. τ2 has been
varied to explore the effects of slow dynamics.

The effect ofD(t) with varying potential curvature for model
I is represented in Figure 2. Figure 2 shows thatD(t) varies
linearly with t at short time as expected from eq 3. This increase

∂P(ø,t)
∂t

)

∂

∂ø{D(t)
∂P(ø,t)

∂ø
+

D(t)
kBT

mω2øP(ø,t)} - S(ø)P(ø,t) (8)

G(ø,t/øj,0) )

(mω2)1/2

[2πkBT[1 - ê(t)2]] 1/2
exp[-

mω2[ø - øjê(t)]2

2kBT[1 - ê(t)2] ] (9)

kI ) lim
zf0

ks∆G(ø,∞/ø0,0)

1 + ks[∆G(ø,z/ø0,0) - ∆G(ø,z/øs,0)]
(10)

∆G(ø,z/øj,0) ) ∫0

∞
exp(-zt)[G(ø,t/øj,0) - G(ø,∞/ø0,0)] dt

(11)

P(ø,t) )

(mω2)1/2

[2πkBT[1 - ê(t)2]] 1/2{exp[-
mω2[ø + |ø0|ê(t)]2

2kBT[1 - ê(t)2] ] -

exp[-
mω2[ø - |ø0|ê(t)]2

2kBT[1 - ê(t)2] ]} (12)

Pe(t) ) ∫0

∞
P(-ø,t) dø ) ∫-∞

0
P(ø,t) dø (13)
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in D(t) is independent of the frequency employed. The change
in the potential curvature, however, influences the asymptotic
D∞ value and the transient maxima observed. The fact that
increasingω decreasesD∞ suggests that as the potential barrier
becomes steeper, coupling to the solvent is reduced. A detailed
study of the effect of potential curvature on the time-dependent
diffusion coefficient was carried out by Morita and Bagchi33

for the bimolecular reactions.
A comparison between model I and model II is made in

Figure 3 for two different values ofτ2. As can be seen, model
I has more of a decrease in the transient maximum than model
II. However, the asymptotic diffusion coefficient is considerably
higher for model I than for model II. A similarD(t) maxima
and a lowerD∞ value predict the isomerization rate constant to
be lower for model II. Figure 3 also shows that the decay from
the short time maxima to the asymptotic value is reached much

faster for model I. TheD∞ variation for differentτ2 values shows
that a small change inτ2 has a larger effect on the asymptotic
D(t) for model I than for II. This higher dependence ofD∞ on
τ2 is expected to have a greater influence of solvent viscosity
for model I than for model II.

Further analysis of Figure 3 suggests that we can separate
contributions toD(t) arising from frictionless and different
frictional sources. This is achieved by comparing the temporal
behaviors ofD(t) for different values ofτ2 and studying the
diffusion in the absence of friction. First, under frictionless
conditions, i.e., whenú(t) ) 0, eq 4 can be written as

Taking the inverse Laplace transform of (14) and substituting
in eq 3, we obtain an expression for the time-dependent diffusion
coefficient that depends only on the mass, potential curvature,
and temperature.

Equation 15 describes the time-dependentD(t) in the absence
of friction, and it is generally considered to be due to the inertial
motion of the particle.34 The total time dependence and the
frictionless diffusion coefficients are plotted for comparison in
Figure 3. It is clearly shown that the initial raise inD(t) is
dominated by the inertial motion along the potential surface.
Note here that such inertial motion is free from solvent viscosity.

In addition to inertial motion, diffusion is also influenced by
the two different frictional forces, namely, binary collisions and
density fluctuations. As mentioned earlier, the relative contribu-
tions to the binary and density fluctuation terms are controlled
by the relaxation time constants, namely,τ1 andτ2, respectively.
A further study of the temporal behavior ofD(t) is achieved by
comparingD(t) obtained for differentτ2 values. In Figure 3, a
comparison of curvesa1 andb1 for model I showed a marked
difference inD(t) at longer times for varyingτ2 values. A similar
feature can be seen between curvesa2 andb2 for model II as
well. This suggests that the friction due to density coupling
affects the diffusion dynamics only at the longer times. At short
times, however, only a very little variation (this is more clearly
visible for curves a2 and b2) is seen, thus indicating indirectly
the role of binary friction. Hence, the time profile ofD(t)
suggests the initial transient diffusion is governed by the inertial
motion and binary friction, and the asymptoticD∞ is, in turn,
attributed to the density coupling to the solvent friction. An
important point here is that diffusion due to binary friction is
assumed to be independent of solvent viscosity under the low
and moderated densities considered (as described in section II).
Thus, a chemical reaction occurring at a fast time scale is
expected to have viscosity independence.

The time-dependent survival probability on the excited surface
is obtained forω andú(t ) 0) values of 1× 1013 s-1 and 320,
respectively, assuming a pinhole sink. Figure 4 illustrates a few
representative calculations for differentτ2 values for model I.
At low τ2 values (e0.2), the decay curves have two regions
with different slopes. A noteable feature here is that at short
time the decay is rather slow and at longer times the decay
becomes rapid. At higherτ2 values (g0.3), the nonradiative
decay is very slow although still retains the features. Figure 4
also shows these short time slow and long time fast decays to
be a function ofτ2.

Figure 2. Calculated time-dependent diffusion coefficient (D(t)),
plotted as a function of time (t) in picosecond at three different harmonic
curvature potentials,ω2 ) 10 (solid line), 50 (dotted line), and 100
(dash-dot line). Equation 6 is employed for the time-dependent friction
(model I) to calculate theD(t) values. The values of solvent relaxation
time constant (τ2) and zero time friction (ú(t ) 0)) are 0.2 and 320,
respectively. All the parameters involved are in dimensionless units.
See text for details.

Figure 3. Plot of the time-dependent diffusion coefficient,D(t), as a
function of time,t, for four different cases: (a1) model I,τ2 ) 0.2; (b1)
model I,τ2 ) 0.25; (a2) model II, τ2 ) 0.2; (b2) model II, τ2 ) 0.25.
The dashed line represents the diffusion coefficient values calculated
for the frictionless case using eq 15 as discussed in the text. In this
figure, the effect of solvent time relaxation constants due to density
fluctuation and binary collision on the diffusion coefficient has been
compared. In addition, the effect of inertial behavior on the time-
dependent diffusion coefficient can be studied. The value ofω2

employed is 10. The values of the other fixed parameters are the same
as those used to obtain the results in Figure 2.

ê(z) ) z

z2 + ω2
(14)

D(t) )
kBT

mω
tan(ωt) (15)
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Figure 5 represents the decay curve,Pe(t), for model II for
differentτ2 values. The features of this plot are very similar to
those of Figure 4, but the decay is much slower than for model
I. The rapid decay in model I can be attributed to the faster
diffusion of the excited-state population predicted by model I.
This effect can be seen from Figure 3, where the long timeD(t)
is much higher than that for model II. Figures 4 and 5 also
show a strong coupling of the survival probability toτ2 as
expected for a pinhole sink.35

A comparison of the survival probability variation between
the Bagchi-Fleming-Oxtoby (BFO) model and the present
non-Markovian analysis is shown in Figure 6. As the figure
indicates, the population decay is much faster than in the
Markovian case, suggesting the excited-state population has
mostly decayed even before the steady state is reached. Thus,
the effects of the short time motion are strongly felt for a pinhole
sink. In fact, the above analysis removes a limitation of the

previous pinhole sink model which could never explain the
decoupling of the reaction rate from the solvent shear viscosity.15

Assuming the Stokes-Einstein equation to be valid, the constant
ú(z ) 0) condition essentially ensures that the viscosity of the
system remains the same. These curves illustrate a much slower
decay in the excited-state population for the previous BFO
analysis where the time-independent diffusion is assumed
compared to the non-Markovian result. Though the asymptotic
diffusion coefficient remains the same for both cases, the reason
for the faster decay in the non-Markovian case is related to the
transient diffusion which arises from the short time ultrafast
relaxation component (cf. Figure 2).

The combined effects ofks and τ2 on the dynamics of
barrierless isomerization are shown in Figure 7. The reported
curves are obtained using model II, and the features of the curves
remain the same when model I is employed as well. However,
for model I, slightly higher values ofkI are observed for similar
τ2 andks values. Figure 7 shows, for a fast sink transfer (high

Figure 4. Effect of solvent relaxation time constant due to density
fluctuations (τ2) on the excited-state population. The logarithmic values
of the survival probability,Pe(t) obtained using model I are plotted as
a function of time in picoseconds. The calculations forPe(t) are
performed for the pinhole sink at different solvent relaxation time
constant values,τ2 ) 0.15 (dash-dot line),τ2 ) 0.2 (dashed line),τ2

) 0.3 (dotted line), andτ2 ) 0.5 (solid line). The potential curvature
and zero time friction considered here areω ) 1 × 1013 s-1 andú(t )
0) ) 320. For calculational details, see the text.

Figure 5. Time profile of the survival probability. The calculations
are performed using the biexponential form for the time-dependent
friction (model II). Various curves are for different values of the
relaxation time constant values,τ2 ) 0.1 (dashed line),τ2 ) 0.2 (solid
line with open circles),τ2 ) 0.3, (dotted line),τ2 ) 0.5 (solid line),
and τ2 ) 1.0 (dash-dot line). The weight factor value is chosen as
0.65, and the harmonic potential curvature and zero time friction values
are the same as in Figure 4. See text for details.

Figure 6. Decay of the excited-state population for the Bagchi-
Fleming-Oxtoby (BFO) model (dotted line) and the present non-
Markovian analysis (closed circles). The curves are obtained for the
same zero-frequency friction,ú(z ) 0), value of 20; i.e., both systems
are chosen to have the same long time diffusion coefficient. Equation
7 is employed for the time integration for zero-frequency friction in
the non-Markovian case. Refer to the text for discussion.

Figure 7. Calculated values of the average rate constant,kI, using
model I plotted as a function of S1 f S0 sink-transfer rate constant,ks

in the logarithmic scale. Various curves are obtained for differentτ2

values of 0.1 (solid line with open circle), 0.2 (solid line), 0.3 (dashed
line), 0.5 (dash-dot line), and 1.0 (dotted line). The values of the
potential curvature,ω, initial excitation position,ø0 and zero time
friction, ú(t ) 0), are respectively 1× 1013 s-1, 0.5, and 320. All the
quantities involved are dimensionalized prior to the calculations as
discussed in the text. Refer to the text for details regarding calculations.
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ks), the plots diverge for different values ofτ2. As noted earlier,
the zero-frequency friction is coupled mainly to the slower of
the two time constants of the time-dependent friction, that is,
the one arising from the collective density fluctuation (τ2). This
implies that at higherks values, the average rate constant (kI) is
strongly dependent on the zero-frequency friction and, hence,
on the solvent viscosity. At lowks, all the curves almost
converge, indicating weak viscosity dependence ofkI. Figure 7
thus predicts the nontrivial role played by the sink-transfer rate
on the barrierless isomerization reaction dynamics.

The role of the time constant due to solvent density fluctuation
on the dynamics of barrierless isomerization reactions can also
be envisaged from Figure 7. For a fixed value of the sink-transfer
rate constant,kI decreases with increasingτ2 value. A compari-
son of the effects of low and high values ofτ2 on kI shows a
larger dependence ofkI for the former case, thus suggesting
the dependence of the isomerization rate constant on the density
fluctuational time constant progressively decreases as theτ2

value is increased. This indicates that the effect of viscosity on
the isomerization dynamics is less pronounced when the time
constants between the ultrafast and slow components differ
largely. Thus, for slow viscous liquids with vastly differentτ1

andτ2 values, viscosity decoupling is expected. And as discussed
earlier, this feature is influenced greatly byks.

It is interesting to envisage the role ofú(z ) 0) on the rate
of isomerization process. Figure 8 shows the variation ofkI with
ú(z) 0) for different values ofks. An increase in zero-frequency
friction essentially hinders the diffusive motion of the excited

wave packet, and the isomerization rate constant is expected to
decrease. This is observed at higher sink-transfer rate constant
values. Note also that the isomerization rate constant is
independent ofks under this condition. The reason for this is
the diffusion in the harmonic surface is the rate-limiting process
at this high sink-transfer rate condition, friction has a large effect,
and the change inks has no influence. At the low sink-transfer
rate (ks e 1 × 1011 s-1), the change in friction does not really
show any significant change inkI. However, thekI value
decreases with decreasingks, suggesting the overall isomeriza-
tion dynamics is controlled by the sink transfer.

The dependence of the population relaxation on the wave-
length of the excitation light enters in our model through the
initial distribution position (ø0) on the excited-state potential
surface (S1). When the sink transfer is rapid, the nuclear
relaxation in the S1 surface governs the overall rate, and hence,
the initial excitation position greatly influenceskI. Figure 9
indicates kI is inversely related toø0, suggesting longer
wavelength excitation pulses will have a higher isomerization
rate. However, when the population transfer at the sink position
is slow (ks e 1 × 1011 s-1), the relaxation process becomes
completely independent of the excitation wavelength. Both the
wavelength dependence and the independence have been
observed experimentally.36-40

Figure 10a reproduces the central tenets of the BFO15 model
with regard to the relationship between the isomerization rate
and the reciprocal of temperature. The Arrhenius plot calcula-
tions for theks value of 1× 1012 s-1 depicted in Figure 10a
clearly show a crossover from positive to negative activation
energy for decreasing values ofτ2. The physical process
underlying the solvent-mediated crossover can be explained
based on the shift in the rate-governing process involved. When
the population of the excited state is prepared, the overall process
that takes the distribution to the ground state involves the motion
of the wave packet at the excited potential energy surface and
relaxation at the sink point as well. The diffusive motion of the
wave packet in the excited state depends on the frictional forces
that act as resistance and also on the potential curvature. This
resistive frictional force acts against the bond-twisting process
which is essential for the formation of the other isomer.
Physically, as the temperature increases, the kinetic energy of

Figure 8. log-log plot of the isomerization rate constant,kI, versus
the zero-frequency friction for different values of the sink-transfer rate,
ks. ThekI values employed in the calculation are 100 ps-1 (solid line),
1 ps-1 (dotted line), 0.3 ps-1 (open circles), 0.1 ps-1 (dashed line),
0.05 ps-1 (dash-dot line), 0.01 ps-1 (dash-dot-dot line). The zero-
frequency friction is calculated by time integration over the biexpo-
nential form of the time-dependent friction,ú(t) (model II). The plot
shows a decrease in theks value correspondingly decreases the rate
constant dependence on zero-frequency friction. As mentioned in the
text, the zero-frequency friction is related directly to the solvent
viscosity. The generalized relationship between the barrierless isomer-
ization rate constant and zero-frequency friction can be written askI )
A(ú(z) 0))-R. For high sink-transfer rate of 100 ps-1, ú(z) 0) is shown
to vary inversely with aR of 1. And for low ks values, curves show a
much reducedR value, indicating fractional dependence. Thus, a weak
viscosity dependence of the reaction rate is expected. Note here that
for very low sink-transfer rate, the isomerization dynamics is completely
independent of zero-frequency friction and, hence,kI is decoupled from
solvent viscosity.

Figure 9. Semilog plot showing the dependence of the average rate
constant (kI) with the initial excitation position (ø0) for different sink-
transfer rate constant values,ks ) 1 × 1014 s-1 (solid line with closed
circle),ks ) 1 × 1013 s-1 (solid line),ks ) 1 × 1012 s-1 (solid line with
open circle), andks ) 1 × 1014 s-1 (dash-dot line). The calculations
are made for the solvent density fluctuational time constant,τ2, value
of 0.2 using model I for the time-dependent friction. The values of the
other fixed parameters are the same as those used to obtain the results
in Figure 6. Refer to the text for details regarding the calculations.
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the molecule also increases, which accelerates the rotation
between the carbon-carbon bond. In other words, the increase
in temperature helps the excited population to reach the
minimum of the excited state more rapidly. Thus, when the
diffusive motion of the molecule in the excited S1 surface
becomes rate limiting, the bond-twisting process has a positive
temperature dependence.

At low τ2, the diffusive nuclear motion is rapid compared to
the sink transfer and the transfer from the excited S1 surface to
the ground S0 state becomes the rate-governing process. An
increase in temperature under this condition accelerates further
the nuclear motion, and the population gets accumulated at the
excited-state minimum. In addition, the population distribution
around the sink point becomes broad at higher temperatures.
Thus, an increase in broad distribution above the sink decreases
kI and leads to a negative temperature dependence.

A similar crossover in temperature dependence is also
observed when the wavelength of the excitation light is increased
(cf. Figure 10b). Such wavelength-mediated turnover from
negative to positive activation energy in the Arrhenius plot is
not been reported theoretically. The origin for this crossover in

the temperature dependence is also attributed to the shift in the
rate-governing process from the diffusion of the wave packet
in the harmonic surface to the S1 f S0 radiationless relaxation.
The significance of the present theoretical analysis to the
recently obtained experimental results is briefly reviewed in the
next section.

(b) Experimental Observations and Interpretations.
(i) Photoisomerization and Ground-State Potential Energy

Surface. In the experimental investigations on TPM dyes38-40

(crystal violet and ethyl violet) and 1,1′-diphenyl-4,4′-cyanine
(1144C),37 temperature-dependent crossover is observed in the
Arrhenius plot when the viscosity is varied. As illustrated in
the previous section (cf. Figure 10a), such turnover arises due
to the change in the rate-determining step from relaxation in
the excited surface (S1) to the sink transfer. Near this viscosity
value, wavelength-mediated crossover is also expected from
Figure 10b. To our knowledge, no experimental results exist
for such a turnover for varying excitation wavelengths. More
recent data by Alvarez et al.37 on 1144C photoisomerization at
7 cP for 450, 660, and 770 nm excitation show a similar trend.
However, it requires further experimental confirmation.

The observation of viscosity-mediated temperature crossover
and the absence of wavelength-mediated crossover in most of
the experimental studies on the barrierless isomerization reaction
suggest (i) a narrow S0 surface potential curvature and/or (ii)
internuclear separation between the reactant and the product
ground-state minima to be far away. For the latter to be true,
the wave packet is expected to move a relatively long distance
on the excited-state potential energy surface before it encounters
the sink to decay. Thus, the motion of the wave packet on the
S1 surface becomes rate controlling. Under this condition, the
isomerization kinetics is expected to be strongly coupled to the
solvent viscosity and the turnover in temperature dependence
is not expected. In contrast, the experimental studies on TPM
dyes38-40 show a viscosity-mediated crossover in temperature
dependence.

For the former case, however, when the ground-state potential
energy surface is narrow, the change in excitation wavelength
does not appreciable changeø0 in the S1 surface. Thus, even
when a viscosity-dependent temperature crossover is observed,
the Arrhenius plot does not show a change in temperature
dependence for varying wavelengths. Reports on TPM dyes39,40

seem to indicate this feature, and our theory predicts a narrow
ground-state potential energy surface for these molecules. On
the contrary, for a reactant molecule with a broad potential
curvature, different excitation pulses can create the initial
distribution at different positions in the excited S1 surface. This
indicates that the distance traveled by the wave packet can be
controlled by the wavelength of the excitation pulse. Thus, by
properly tuning the wavelength for a fixed viscosity, the
crossover in temperature dependence is expected in the Arrhe-
nius plot. As discussed earlier, such an observation is visible
under close examination of Alvarez et al.37 results for the 1144C
molecule. Its ground-state surface is expected to be relatively
broad. Our analysis thus suggests the wavelength-dependent
turnover in activation energy provides valuable information
concerning the structure of the ground-state reactant potential
energy surface.

(ii) Decay Dynamics of Rhodopsin and Isorhodopsin.The
time-resolved spectral dynamics of 11-cis to all-trans isomer-
ization of rhodopsin is shown by Schoenlein and co-workers9,41

to be complete within 200 fs. Experimental observations show
that no red-shifted stimulated emission is observed in the time-
resolved measurements, which suggests a rapid torsional motion

Figure 10. Temperature dependence of the nonradiative decay rate
showing the crossover from negative to positive activation energy as
the value of the solvent relaxation time constant,τ2, and initial excitation
position, ø0, are varied. The calculated values are for model I. The
values of potential curvature zero time friction are the same as those
in Figure 5. (a) Arrhenius plot forks ) 1 × 1012 s-1 andø0 ) 0.5. The
curves are calculated forτ2 values of 0.1 (solid line), 0.2 (dash-dot
line), 0.3 (solid line with open circle), 0.4 (dotted line), and 0.5 (solid
line with closed circle). (b) Arrhenius plot obtained forτ2 andks values
of 0.2 ps and 2.5× 1012 s-1, respectively. The various curves obtained
are for the initial excitation position,ø0 values of 0.3 (solid line), 0.5
(dash-dot line), and 0.9 (solid line with open circle). See the text for
details.
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of the excited species during its motion along the Franck-
Condon region (lowτ1 andτ2 values). Excited-state relaxation
is shown to be of the order of 100 fs. This fast relaxation in the
S1 surface is further confirmed by resonance Raman intensity
analysis as well.42 Our model calculations show a fast sink
transfer (ks ) 1 × 1014 s-1) and short Brownian motion (ø0 )
0.25-0.32) along the excited-state surface to account for the
observed 145-205 fs delay dynamics (kI ≈ (6.8-4.9) × 1012

s-1) of rhodopsin.43 These values have several implications. The
low value ofø0 suggests the isomerization should be independent
of the viscous drag of the solvent particles. The short nuclear
motion is justified by the resonance Raman studies,44,45 indicat-
ing that the overall structural change associated with the
isomerization is relatively small. A physical reason for this is
the 11-cis-rhodopsin already exists in its twisted form along
the reaction coordinate because of the steric interaction between
the C-13 methyl and C-10 hydrogen groups.46 In an earlier
analysis by Wang et al.47 on rhodopsin isomerization, excited-
state vibrational coherence was invoked to account for the very
low delay time observed. Our analysis here clearly shows that
short-distance nuclear motion is also an important factor for
this ultrafast femtosecond isomerization.

An interesting comparison can be made between the isomer-
ization dynamics of rhodopsin and isorhodopsin (9-cis-rhodop-
sin). In contrast to rhodopsin, the isomerization in isorhodopsin
occurs about the C9-C10 double bond (cf. Figure 11). Neverthe-
less, the photoproduct of the 9-cis isomer is the same forall-
trans-bathorhodopsin as that of rhodopsin. A schematic sketch
of 9-cis-rhodopsin and the 11-cis-rhodopsin and theall-trans
photoproduct (bathorhodopsin) is shown in Figure 11. Spectral
measurements on isorhodopsin show a delay time of∼600 fs,
which is nearly 3 times longer than that for rhodopsin. Our
theoretical calculations for the isorhodopsin isomerization for
ø0 ) 0.5 andτ2 ) 200 fs suggest a time delay of 575-660 fs
(kI ≈ (1.7-1.5)× 1012 s-1) depending on the sink-transfer rate
constant (ks ) (2-1.5) × 1012 s-1).48

These calculations predict comparatively long distant nuclear
motion, i.e.,ø0 ) 0.5 for isorhodopsin as opposed to 0.25-0.3
for rhodopsin. The highø0 value can also be attributed to the
lack of any strong intramolecular nonbonded interactions that
distort the polyene skeleton in the vicinity of the cis bond.49

Our prediction of the relatively long distant motion in the S1

surface for isorhodopsin is in good agreement with the
photochemical quantum yield analysis50 where the 9-cis isomer-
ization shows a wavelength and temperature dependence while
rhodopsin isomerization does not. This indicates the excited-

state relaxation is the rate-limiting process in the isomerization
dynamics of isorhodopsin. The wavelength dependence of the
reaction also seems to indicate this fact.

In addition to the highø0 value (compared to the rhodopsin
isomerization), the slow relaxation dynamics of isorhodopsin
is attributed to the long time, slow component decay time
constant,τ2 from our theory. The highτ2 value indicates that
the excited-state electronic relaxation of isorhodopsin (9-cis
isomer) is controlled by the slow excited-state dynamics. Recent
experimental results49 show that the excited-state absorption
persists even after 150 fs for the 9-cis isomer. Note here that
the S1 surface absorption for rhodopsin is complete before 100
fs.47 In addition, the spectral breathing of the stimulated emission
of isorhodopsin49 also indicates the wave packet motion in the
S1 surface is slower than in the rhodopsin case. Thus, the
relatively long-lived excited-state absorption explains the high
τ2 value. A detailed viscosity variation study can give some
useful insights. However, to our knowledge, such a study has
not yet been carried out.

(iii) Conflicting Crystal Violet Isomerization Mechanism.
Another interesting problem where the present theoretical
analysis helps us in understanding the experimental results is
in the isomerization dynamics of crystal violet. Lewis et al.51

performed the absorption studies on crystal violet and suggested
two ground-state conformers to be present under thermal
equilibrium. They confirmed one isomer to haveD3 symmetry
structure with all three phenyl rings tilted in one direction and
proposed the other to haveC2 symmetry (one phenyl ring is
tilted in the opposite direction). A schematic representation of
these conformers is shown in parts a and b of Figure 12 . The
proposedC2 symmetry structure has been under constant study
and debate for the past 5 decades now. In fact, the existence of
two ground-state conformers itself has been questioned (cf. ref
11). Recently, Maruyama et al.11 confirmed the presence of two
ground-state isomers using femtosecond pump-probe measure-
ments and predicted the other conformer to have aC3 symmetry
structure using molecular orbital calculations (cf. Figure 12c).
Since experiments could not resolve this issue directly, indirect
methods have been employed by both Lewis et al. and
Maruyama et al. (in an attempt) to prove their proposed
conformer.

Earlier Ben-Amotz and Harris39 employed picosecond ab-
sorption spectroscopy and analyzed the delay time dynamics
of crystal violet in linear alcohol series. The viscosity-mediated
temperature crossover reported by these authors in higher
alcohols can be confirmed from Figure 10a as arising due to
the competition between S1-state relaxation and sink transfer
for rate governing.

Temperature-variation studies of Maruyama et al. on crystal
violet isomerization in lower alcohol solvents indicate that the
overall rate constant is independent of temperature. Even though
only a small temperature range between 283 and 313 K has
been studied, their results suggest from Figure 10b that the sink-
transfer rate is comparable to or slightly less than the excited-
state relaxation time constant in the lower alcohol solvents.

Wavelength dependence on the barrierless isomerization
kinetics of crystal violet has also shown some interesting
insights. Studies by Ben-Amotz and Harris39 in ethanol, butanol,
and octanol and by Sundstro¨m and Gillbro40 in hexanol solvents
show no indication of a wavelength dependence on the
isomerization kinetics. This can be interpreted from Figure 9
as being due to the fast relaxation on the excited-state surface,
thus suggesting the sink-transfer rate to be the rate-governing

Figure 11. Schematic representation of the light-induced isomerization
reactions of 11-cis-rhodopsin (a) and 9-cis-rhodopsin (isorhodopsin)
(b) leading to the same photoproductall-trans-bathorhodopsin.
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step in the crystal violet isomerization, as discussed previously
in this section.

An important observation that invokedC3 symmetry structure
as the unidentified conformer is the viscosity independent of
the relaxation rate observed by Maruyama et al.11 It is clear
from the above discussion thatks is less than the wave packet
relaxation rate in the excited-state surface. In our theoretical
model, Figures 7 and 8 clearly predict such viscosity indepen-
dence does not necessarily mean there is no torsional motion
of the phenyl group in the excited S1 surface but instead only
indicates a slow S1 f S0 transfer rate constant. Thus, our study

resolves all the experimental findings that appeared controversial
in the crystal violet isomerization and suggests theC3 symmetry
structure (Figure 12a) proposed by Maruyama et al. due to
viscosity independence alone to have some caveats.

IV. Conclusions

In this article, we have presented a generalized theory for
the barrierless isomerization reaction in viscous liquids. The
theory is based on a non-Markovian dynamics of the solvent
frictional response. The time dependence of the diffusion
coefficient for motion along the reaction coordinate has been
incorporated via a time-dependent friction. The friction was
modeled using two different models having two different
relaxation time constants to account for the ultrafast and slow
relaxations. The calculatedD(t) vs t curves for both of the
models have features similar to the mode coupling theory results
obtained recently. It is shown that in some cases the kinetics of
excited-state twisting could be dominated by only the short time
dynamics of the solvent. This is clearly because these reactions
are themselves very fast, and they probe only the short time
dynamics of the solvent which is often dominated by the binary,
collisional events in the liquid.

The relevance of the present study can be appreciated if we
recall that in all the existing studies of the barrierless reactions,
a Markovian description of the diffusion coefficient was
employed. In such a description, only the asymptotic, long time
value ofD(t) (and hence of friction) controls the reaction. This
naturally leads to a strong coupling between the isomerization
reaction and the viscosity. However, in many cases, the reaction
can be complete before the long time response of the solvent is
felt by the reaction.

The diffusion that drives the reaction may have nothing to
do with the measured viscosity of the medium. It has been
discussed here that the ultrafast part of solvent response could
have manifested itself in several important isomerization reac-
tions. In addition, the present theoretical formalism predicts that
the wavelength-dependent temperature crossover is possible and
the reason for such turnover is traced back to the change in the
rate-governing process from diffusion in the excited surface to
the rate of sink transfer. The importance of the present study to
understand themechanism of ultrafast isomerization reactions
has been pointed out. The contradictory mechanism of crystal
violet isomerization has been taken as an example, and the
applicability of the present theory has been demonstrated. The
present theory also seems to help us understand the time course
of rhodopsin and isorhodopsin isomerization which has been
the subject of extensive research in recent years. The present
theory suggests that a small nuclear motion of the excited
rhodopsin could be the reason for the very low delay time
observed experimentally.
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