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The relationship between the average translational energy〈ε〉 released in a unimolecular reaction and the
internal energyE measured in excess of the dissociation threshold is not necessarily linear. In a purely statistical
situation, it reflects the shape of the functionN(E) which expresses the way the density of vibrational-
rotational states of the pair of fragments increases withE. In fact, 〈ε〉 is seen to vary as a function ofE in
exactly the same way as{d ln[N(E)]/dE-1. The most important feature ofN(E) is a dimensionless parameter
γ ) E{d log10 [N(E)]/dE} evaluated at the internal energy at which the measurement of〈ε〉 is made. The ratio
〈ε〉/E also depends on nonstatistical effects. An “ergodicity index” e-DS, where DS denotes the so-called
entropy deficiency associated with incomplete energy randomization, can be extracted from experiments. It
measures the efficiency of phase space sampling by the pair of fragments. In the case of unimolecular reactions
that proceed without any reverse activation barrier, simple relationships can be derived to relate the value of
e-DS to that ofγ and〈ε〉/E. When the average energy release is measured for a metastable dissociation in a
two-sector mass spectrometer, the ratio〈ε〉/E also depends in principle on the transmission efficiency function
T(E). However, the necessary correction is small and often negligible. Applications to the halogen loss reactions
from C2H5I+, C6H5Br+, and C6H5I+ are presented. Phase space appears to be sampled with an efficiency
close to 100% both at very low and very high values of the internal energy. For intermediate values ofE, the
minimal efficiency is of the order of 75%. At higher values of the internal energy, numerous surface crossings
bring about chaotic dynamics and efficient phase space sampling.

I. Introduction

A matter of considerable interest, both for its intrinsic
importance in the study of the dynamics of unimolecular
reactions and for its practical usefulness in the derivation of
correct thermodynamic data, concerns the partitioning of the
excess energy of a dissociation process among the translational,
rotational, and vibrational degrees of freedom of the products.
Mass spectrometric experimentation1-11 is able to provide a so-
called kinetic energy release distribution (KERD), denoted
P(ε|E), giving the probability of generating fragments with a
relative translational energy equal toε if E denotes the internal
energy, measured in excess of the dissociation threshold. This
function is required to be normalized:

Average translational energy releases〈ε〉 are defined by

In the present paper, attention will be focused on the
proportion of the excess energy released as translation〈ε〉/E.
Furthermore, the discussion will be restricted to reactions that
proceed without any reverse activation barrier.

Early attempts to rationalize this ratio12-17 were based on
the RRKM-QET theory.1,12,18 Assuming (i) a fully statistical
situation and (ii) that the kinetic energy in the reaction coordinate
at the transition state is entirely converted into translational

energy of the pair of fragments (thus neglecting exit channel
effects), and (iii) ignoring the rotational degrees of freedom,
the following equation can be derived:

where N‡(E) denotes the density of vibrational states of the
transition state.

Assuming further thatN‡(E) increases withE as predicted
by the classical approximation,1,12,18 that is, assuming that

whereNreact is the number of vibrational degrees of freedom in
the reactant, one obtains an expression of the KERD:

The substitution of eq 5 into eq 2 leads to the simple
equipartition limit 〈ε〉 ) E/Nreact. Klots,13 Franklin and co-
workers,14-16 and Carter17 made various attempts to replace the
classical density of states by a more accurate expression (e.g.,
the Whitten-Rabinovitch approximation).1,12,18,19Nevertheless,
most authors have adopted the simple, but purely empirical
correction proposed by Haney and Franklin,14 which involves
an effective number of oscillators in the transition state and
which leads to the linear relationship〈ε〉 ) E/0.44Nreact.

However, the classical approximation (4) is known to be
inaccurate, especially at low internal energies,1,12,18and its use
is always somewhat suspicious. We note first that if it is replaced† E-mail: jc.lorquet@ulg.ac.be.
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by an alternative empirical parametrization

which is still reasonable, although it somewhat overestimates
the rate of increase of the density of states, then the conclusions
change completely.

One has which, in practice, is apparently very close to eq 5.
However, when eq 7 is substituted into eq 2, one gets simply
〈ε〉 ≈ R-1, i.e., a constant energy release, independent of the
internal energy!

Another possible parametrization of the density of states has
been previously found20 to be quite appropriate in a number of
cases:

However, when introduced into eqs 3 and 2, it predicts that the
average translational energy release〈ε〉 should approximately
increase as the square root of the available internal energy:

Clearly, these observations call for further investigation into
the matter.

A new impetus to the theory was given when Klots applied
the principle of microscopic reversibility to the fragmentation
and its reverse association reaction.21-23 It follows that the
relevant density of states is that of the pair of fragments and no
longer that of the reactant or of the transition state. A major
development in the study of translational energy releases resulted
when various versions of phase space theory were introduced1,3-6,9

in order to ensure conservation of angular momentum. Ad-
ditionally, Klots assumed canonical equilibrium among trans-
lational, rotational, and vibrational degrees of freedom. The
usual laws of statistical thermodynamics predict progressive
excitation of vibrational levels as the temperature increases. This
leads to a nonlinear, transcendental yet very simple equation
between〈ε〉 andE.1,24,25

It will be argued in the present paper that the nonlinear
relationship between〈ε〉 and E has a double origin. First, it
reflects the distribution of energy levels of the pair of fragments,
i.e., the way densities of states increase withE, represented by
the functionN(E). Second, the relationship is also influenced
by nonstatistical effects, i.e., by incomplete energy randomiza-
tion.

II. Maximum Entropy Method

What is the dynamical significance of the translational energy
at an infinite value of the reaction coordinate? There exists a
method, called the maximum entropy analysis,26-31 which
addresses this problem. This theory is based on a new concept,
denoted theentropy deficiencyDS, which is directly related to
the amount of vibrational energy not being randomized. More
properly, any constraint acting on the dynamics along the
reaction path (and thus leading to nonstatistical behavior) brings
about a nonzero value of DS. In that approach, the concept of
effective degrees of freedom is elaborated upon and replaced
by an effectiVe number of phase space cellssampled by the
products. This number of cells is known32 to be equal to the
number of the vibrational-rotational states to which the
fragments are effectively excited. In the maximum entropy
approach, the fraction of states effectively populated with respect

to its maximum value is measured by the quantity e-DS.33,34

Therefore, this quantity measures the efficiency of the random-
ization process. It can also be referred to as an“ergodicity
index”, with e-DS ) 1 corresponding to a complete exploration
of the available phase space whereas small values ofe-DS

indicate inefficient energy randomization. In previous papers
of this series20,35-38 it has been shown how the value of e-DS

can be extracted from an analysis of the entire KERD. Values
of the order of 80% have been commonly obtained in the
fragmentation of various ions like those of the halogenoben-
zenes,35,36pyridine,37 and vinyl bromide,38 while the dissociation
of ionized iodopropane is found to proceed nearly statistically.20

The variation with energy of the efficiency of phase space
sampling has also been studied.38

The maximum entropy method starts by considering a
hypothetical situation where the dynamics would proceed
without any constraint other than energy conservation (thus
disregarding the requirement that angular momentum be con-
served). If this were the case, then all accessible quantum states
of the pair of fragments would be populated with the same
probability. The corresponding distribution of translational
energies is called theprior distribution.1,26-30,39 It is simply
proportional to the total density of states and will be denoted
by P0(ε|E).

At a given total energyE, let us denote byε the amount of
energy that has flowed into the reaction coordinate with the
remainder (E - ε) appearing as vibrational-rotational energy
of the pair of fragments. Denoting asN(E - ε) the density of
vibrational-rotational states of the pair of fragments, one has
simply

since the density of translational states in a three-dimensional
space1,26-30,32 is proportional toε1/2. The prior distribution is
normalized according to eq 1.

As explained in previous papers of this series,20,35-38 a
maximum entropy analysis reveals that, in all cases studied so
far, the actual KERD is related to the prior distribution in the
following way:

The physical meaning of this equation is that the unimolecular
distribution of ions is not completely statistical. It is subject to
a dynamical constraint which is directly related to the square
root of the translational energyε, i.e., to the linear momentum
of the separating fragments. The factor exp(-λ1ε

1/2) which
occurs in eq 11 results from this dynamical constraint. The
constraint can be identified with the so-called momentum gap
law30,40-43 which is known to operate in molecular predisso-
ciation processes, and whose role will be discussed in section
IX. The factor exp(-λ0) is simply a normalization factor to be
calculated by substituting eq 11 into eq 1. The entropy deficiency
is then given by

III. Parametrization

Since the density of states is best calculated by a direct count
method such as the Beyer-Swinehart algorithm,1,18,44 the
function N(E) is known as a numerical table only. Therefore,

N‡(E) ∝ exp(RE) (6)

P(ε|E) ) [R/(1 - e-RE)]e-Rε ≈ Re-Rε (7)

N‡(E) ∝ exp(âE1/2) (8)

〈ε〉 ) (2/â)E1/2[1 - 3/(2âE1/2) ...] (9)

P0(ε|E) ∝ ε
1/2N(E - ε) (10)

P(ε|E) ) e-λ0e-λ1ε
1/2

P0(ε|E) (11)

DS ) ∫0

E
P(ε|E) ln[ P(ε|E)

P0(ε|E)] dE ) -λ0 -

λ1∫0

E
ε

1/2P(ε|E) dE ) -λ0 - λ1〈ε
1/2〉 (12)
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there is no loss of generality in fitting the computed sequence
of data to an empirical equation. For well-chosen functions, it
may then be possible to carry out analytically the integrations
required in eqs 1, 2, and 12, and to derive equations in closed
form for the translational energy release. Three possible
parametrizations for the functionN(E) will be examined in the
present paper:

The rate of increase ofN(E) is directly related to the parameters
R, s, or â.

The first two equations are considered for their mathematical
simplicity. From past experience, the third one is believed to
often be very realistic.

With each possible parametrization of the density of states
is associated a particular expression of the prior distribution,
which can be normalized via standard calculations.45,46

If the density of states increases exponentially with the
internal energy (eq 13), one finds

Note that this distribution depends onε alone. All reference
to the total energyE has vanished because of the property of
the exponential function which splitsN(E-ε) (occurring in eqs
10 and hence 11) into the product exp(RE) exp(-Rε). The first
factor exp(RE), which contains all reference to the total energy
E, vanishes in the normalization procedure. The physical
consequences of this mathematical property will be discussed
later on.

If N(E) increases as thesth power ofE (eq 14), then

whereΓ(x) denotes the gamma function.45-47

Equation 15 has been observed to provide an adequate
parametrization ofN(E). Then

with

whereI2(x) andL2(x) denote the hyperbolic Bessel and Struve
functions, respectively.45-47

IV. Energy-Resolved Measurements

As already mentioned, the purpose of the present paper is to
show that the magnitude of the ratio〈ε〉/E is determined by two
factors: the density of statesN(E) and the efficiency of phase
space sampling e-DS.

If N(E) increases as thesth power ofE (eq 14), then the
function that results from eqs 11 and 17 is equal to

The factor exp(-λ0) is a normalization coefficient which can
be calculated by substitution into eq 1. The factor exp(-λ1ε

1/2)
expresses the fact that the actual distribution may be dynamically
constrained. The value of the Lagrange multiplierλ1 is a priori
unknown and varies from case to case. It is advantageous to
replace it by the more physically transparent ergodicity index
exp(-DS). Substituting eq 20 into eq 2 leads to integrations
that can be carried out analytically.45 It turns out that the
quantities 〈ε〉 and e-DS can both be expressed in terms of
hypergeometric functions46 of the reduced parameterσ ≡
(λ1xE/2). Explicitly, one has

Equations 21 and 22 are then substituted into eq 12. The
quantities exp(-DS) ) exp(λ0) exp(λ1〈ε1/2〉) and〈ε〉/E are seen
to both depend on parameters and on the reduced variableσ
only. The latter can be numerically eliminated by substitution
and the result fitted to a simple expression. This leads to a
surprisingly simple yet accurate equation:

The quality of the fit is excellent for any value ofs when
0.2 e exp(-DS) e 0.9. In that range, the joint value of the
pair 〈ε〉/E and exp(-DS) is very close to that obtained by the
much more laborious solution of eqs 21, 22, and 23. Equation
24 implies that, as commonly expected,〈ε〉 increases propor-
tionally to E in the entire energy range where eq 14 is realistic,
i.e., in the range where the exponents remains constant.

The same procedure can be repeated when the density of
statesN(E) increases exponentially with energy (as in eq 13).
The distribution that satisfies eqs 1, 11, and 16 is given by

Note again that, just as for eq 16, this result is independent
of the internal energyE as a result of the factorization properties
of the exponential function.

Substituting it into eqs 1 and 2 leads to integrations that can
be carried out analytically.45 The results are

whereDν(x) denotes45,46the parabolic cylinder function of order
ν and argumentx.

N(E) ) C exp(RE) (13)

N(E) ) CEs (14)

N(E) ) C exp(âE1/2) (15)

P0(ε) ) (2/π1/2)R3/2
ε

1/2e-Rε (16)

P0(ε|E) )
Γ(s + 5/2)

Γ(3/2)Γ(s + 1)
E-s-3/2

ε
1/2(E - ε)s (17)

P0(ε|E) ) A(E)ε1/2 exp(âxE - ε) (18)

A(E)-1 ) (2/3)E3/2 + (π/â)E[I2(âE1/2) + L2(âE1/2)]
(19)

P(ε|E) )
Γ(s + 5/2)

Γ(3/2)Γ(s + 1)
exp(-λ0)E

-s-3/2
ε

1/2(E - ε)s

exp(-λ1xε) (20)

eλ0 ) 1F2(32;
1
2
,s + 5

2
;σ2) -

2Γ(s + 5/2)

Γ(3/2)Γ(s + 3)
1F2(2;

3
2
,s + 3;σ2)σ

(21)

λ1〈ε
1/2〉 ) 2e-λ0σ[ Γ(s + 5/2)

Γ(3/2)Γ(s + 3)
1F2(2;

1
2
,s + 3;σ2) -

3

(s + 5/2)
1F2(52;

3
2
,s + 7

2
;σ2)σ] (22)

〈ε〉
E

) e-λ0[ (3/2)

(s + 5/2)
1F2(52;

1
2
,s + 7

2
;σ2) -

4Γ(s + 5/2)

Γ(3/2)Γ(s + 4)
1F2(3;

3
2
,s + 4;σ2)σ] (23)

〈ε〉/E ) [0.13/(s + 2.5)] (1+ 2.0e-DS)2 (24)

P(ε) ) (2/π1/2)R3/2e-λ0 ε
1/2e-λ1ε

1/2
e-Rε (25)

e-λ0 ) 2(2/π)1/2 exp(λ1
2/8R)D-3(λ1/x2R) (26)

〈ε〉 ) (6/R)D-5(λ1/x2R)/D-3(λ1/x2R) (27)
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In a similar way

Since both〈ε〉 and e-DS are functions of the same reduced
parameter (λ1/x2R) alone, it is possible to eliminate the latter
by substitution, and to fit the result to a simple expression. This
leads to

Here again the very simple eq 29 leads to results that are
practically equivalent to those obtained by the solution of eqs
26-28 when 0.2e exp(-DS) e 0.9.

Thus, strange as it may seem but just as in the case of eq 7,
the average translational kinetic energy release is seen to be
independent of the value ofE whenN(E) increases exponentially
with E. This result may seem unrealistic and unphysical, but it
should be viewed as a limiting case that reveals tendencies. The
steeper the density of states increases with internal energy, the
less sensitively the average translational energy depends onE.

If N(E) now increases as the exponential ofE1/2 (eq 15) (i.e.,
the more realistic parametrization), one obtains, after similar
but more complicated calculations:

The average energy release now increases approximately as the
square root ofE.

Equations 24, 29, 30, and 31 are quantitatively valid in the
range 0.2e e-DS e 0.9. They underestimate〈ε〉/E when e-DS

g 0.9 and overestimate it when e-DS e 0.2. Simple analytical
expressions are also available in the limiting case where
e-DS ) 1:

The latter equation is valid provided thatâE1/2 > 5.
The significance and the relationships which exist among eqs

24, 29, 30, and 31, as well as among eqs 32-34 will be analyzed
in sections VI and IX.

V. Energy-Averaged Measurements

Unfortunately, eqs 24 and 29-31 cannot be expected to
remain directly valid when the measurement generates a value
of 〈ε〉/E averaged over a certain energy range, as in the study
of metastable transitions in sector instruments. In these experi-
ments, only dissociations that occur in a time window defined
by the entry and exit times in the field-free region (denotedτ1

andτ2) are registered. A bell-shaped transmission functionT(E)
can be defined,7 which depends on the rate constantk(E) of the
dissociation process

whereB is determined by the normalization condition

The functionT(E) thus represents the distribution of internal
energies of those ions that dissociate in the metastable time
window. The experimentally determined KERD is therefore
given by the average

However, the correction resulting from imperfect energy
selection of the metastable ion is, in the worst cases, of the
order of 2% or 3% at most. In practice, this is smaller than the
experimental uncertainties on〈ε〉 and on the average internal
energy. A demonstration is given in the Appendix.

VI. Unified Presentation

So far, the rate of increase of the density of vib-rotational
states of the pair of fragments has been measured by the
parametersR, s, or â. It is also possible to express it in terms
of the logarithmic derivative ofN(E) [i.e., the slope ofN(E)
when plotted on a logarithmic scale]. Let us define the
dimensionless quantity

evaluated at the internal energyE at which the measurement of
〈ε〉 is made.

Being derived from a logarithmic derivative,γ does not
depend on the energy units used to measureE and N(E).
Calculatingγ for the densities of states given by eqs 13 to 15
leads to

Replacing the original parameters byγ unifies the description
and leads to strikingly similar equations.

If N(E) increases exponentially with energy (eq 13), one has,
by substitution into eq 29

If N(E) increases as thesth power ofE (eq 14), one has,
from eq 24

If N(E) increases as the exponential ofE1/2 (eq 15), then,
from eq 30

Equations 40-42 are remarkably similar. They are valid in
the range 0.2e e-DS e 0.9. The predicted behavior is even
more similar in the limiting case where e-DS ) 1 (i.e., in a
fully statistical situation). Considering the parametrizations
expressed by eqs 13, 14, and 15, one has, respectively:

VII. Ethyl Iodide

The average translational energy released in the reaction
C2H5I+ f C2H5

+ + I for energy-selected ethyl iodide ions has
been measured by Baer et al.48 up to an internal energy of 2.4
eV by the photoion-photoelectron coincidence (PIPECO)

P̃(ε) ) ∫0

∞
P(ε|E) T(E) dE (37)

γ ) E{d log10[N(E′)]/dE′}|E (38)

2.3026γ ) s or RE or 0.5âE1/2 (39)

〈ε〉/E ) (0.049/γ)(1 + 2.18e-DS)2 (40)

〈ε〉/E ) [0.057/(γ + 1.09)](1+ 2.0e-DS)2 (41)

〈ε〉/E ) [0.059/(γ + 0.48)](1+ 1.85e-DS)2 (42)

〈ε〉/E ) 0.65/γ (43)

) 0.65/(γ + 1.09) (44)

) 0.65/(γ + 0.54) (45)

λ1〈ε
1/2〉 ) 3(λ1/x2R)D-4(λ1/x2R)/D-3(λ1/x2R) (28)

〈ε〉 ) (0.11/R)(1 + 2.18e-DS)2 (29)

〈ε〉/E ) [0.27/(âE1/2 + 2.2)](1+ 1.85e-DS)2 (30)

〈ε〉 ) (0.27/â)(1 + 1.85e-DS)2[E1/2 - 2.2/â +
(4.84/â2)E-1/2 - ...] (31) (31)

〈ε〉/E ) 1.5/RE (32)

) 1.5/(s + 2.5) (33)

) 3/(âE1/2 + 2.5) (34)

T(E) ) B{exp[-k(E) τ1] - exp[-k(E)τ2]} (35)

∫0

∞
T(E) dE ) 1 (36)
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technique. In order to interpret the results obtained by these
authors, the vibrational frequencies and rotational constants of
the C2H5

+ fragment ion have been calculated49 by the B3LYP/
6-31G(d) method and scaled afterward by a factor of 0.9806,
as recommended by Scott and Radom.50 In its most stable
conformation, the C2H5

+ ion adopts the nonclassical bridged
structure, belonging to theC2V point group. However, there also
exists a classical isomer, which provides a shallow secondary
minimum or a saddle point a few kcal/mol above the nonclas-
sical minimum.51,52 Therefore, the potential energy surface is
certainly anharmonic. Just as in the case of the C2H3

+ ion,38

the hydrogen atoms of the ethyl ion can be expected to undergo
large-amplitude motions when isomerization becomes possible.
The lowest b2 vibrational bending mode at 509 cm-1 (which
certainly connects the two structures) has been treated as an
anharmonic oscillator that converges to an energy of 2500 cm-1

and transforms above into a one-dimensional internal rotor. The
vibrational-rotational density of states of the C2H5

+ ion has
been calculated by a direct count algorithm,1,18,44 modified to
account for this transformation. In the energy range between
900 and 20 000 cm-1, the resulting vibrational-rotational
density of states is found to be nicely fitted by eq 15:

whenE is expressed in wavenumber units.
Therefore, eqs 42 and 45 can be applied to the experimental

results obtained by Baer et al.48 to estimate the efficiency of
phase space sampling as a function of the internal energyE.
The results are plotted in Figure 1. First, it follows from a simple
logical argument that e-DS must be equal to 1 atE ) 0. The
reason is that phase space is completely sampled when, at
threshold, it is reduced to a single cell. This situation is
represented by the filled diamond in the lower part of Figure 1.
As the energy increases, the ergodicity index can only decrease.
It is found to reach a minimum value of 0.77( 0.06 atE )
1.38 eV. More surprising is the fact that e-DS increases again

and is observed to approach an efficiency of 100% at high
internal energies. The overall picture is very similar to that
recently obtained (by a variety of experimental techniques) in
the case of the C2H3Br+ f C2H3

+ + Br reaction.38 This is totally
unexpected because, as the internal energy increases, the volume
of phase space to be sampled increases enormously whereas
the lifetime decreases. As discussed in more detail in ref 38,
we ascribe this behavior to the strong vibronic interactions that
result from the numerous surface crossings that bring about
internal conversion to the ground state of the molecular ion.
These surfaces cross along seams and strong nonadiabatic
interactions are known to arise in the neighborhood of these
seams.53-56 The higher the internal energyE, the more extended
and complicated the network of seams, especially in the case
of open-shell molecular ions.57,58As a result, chaos is introduced
into the nuclear dynamics.

Baer et al. have also calculated48 the KERD predicted by
Klots’ theory,1,23 which is based on the assumption that the
Langevin model can be used to calculate the forces between
separating fragments. The agreement between the predictions
based on this model and the experimental results is good both
at low and at high internal energies. However, in the intermedi-
ate range, the experimental〈ε〉/E ratios are slightly lower than
the predicted ones.

It is instructive to compare the KERD resulting from Klots’
model to the prior distribution in order to derive the corre-
sponding ergodicity index. Klots’ model is found to describe a
slightly constrained situation where approximately 91% of the
available phase space is effectively sampled. In the range of
internal energies where e-DS drops down to its minimal value
of 77%, the experimental average energy release is lower than
that predicted by Klots.

In summary, the joint examination of the two parts of Figure
1 provides insight into the problem. Its lower part can be
regarded as the image of the upper part, with a mapping function
defined by eqs 42 and 45. It shows that the prior distribution is
a reference and not a mediocre first approximation.

VIII. Bromo- and Iodobenzene

The translational energy released in the reaction C6H5X+ f
C6H5

+ + X (where X is either Br or I) in the metastable time
window has been previously36 determined in a two-sector mass
spectrometer in both field-free regions with different amounts
of internal energy. For example, when bromobenzene ions
dissociate in the first field-free region with a fragment ion
translational energy equal to 4 keV in the laboratory frame, the
most probable internal energyES is equal to 0.85 eV and the
measured average kinetic energy〈ε〉 is found to be equal to
0.060 eV. In that energy range, the rate constant varies as the
6-th power of energy (eq A2), and the rovibrational density of
states of the C6H5

+ fragment can be fitted to eq 15 with a value
of γ equal to 4.62. When these values are introduced into eq
42, one gets e-DS ) 0.79, whereas the tedious integration process
carried out by Urbain et al36 gives 0.77( 0.03.

In practice, neither the exponential parametrization (eq 13)
nor the power law (eq 14) provides a very good representation
of a genuine rovibrational density of states. However, they are
still useful because they are found to bracket the actualN(E)
function, so that eqs 40 (column a of Table 1) and 41 (column
b of Table 1), which are deduced from them, provide a lower
and an upper bound to be compared with the correct value of
e-DS which is reported in column d of Table 1. By contrast, eq
42, deduced from the more realistic parametrization (15),

Figure 1. Upper part: average translational energy release〈ε〉 as a
function of the excess internal energyE for C2H5

+ + I formation from
ethyl iodide. Filled symbols with error bars: experimental PIPECO
measurements of ref 48. Dashed-dotted line: prior distribution. Dashed
line: predictions of Klots’ model. Lower part: ergodicity index
exp(-DS) obtained by applying eqs 42 and 45 to these data.

N(E) ) exp(0.164E1/2) (46)
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provides right away a better approximation (reported in column
c of Table 1).

IX. Discussion

The ratio between the average translational energy〈ε〉 divided
by the internal energyE is seen to depend both on the way the
density of vib-rotational states of the pair of fragments increases
with energy, represented by the functionN(E), and on the
fraction of phase space sampled by the pair of fragments, e-DS.
We discuss the role played by these two functions in turn.

1. Density of StatesN(E). (a) The most important feature of
N(E) is the dimensionless parameterγ defined in eq 38. Now,
the logarithmic derivative appearing inγ containsE raised to a
particular power. Hence, the behavior predicted by eqs 40-45
as a function of the internal energyE is different and depends
on the shape ofN(E): 〈ε〉 is independent ofE for the exponential
parametrization, but increases linearly withE if the power law
is adopted;〈ε〉 is found to increase approximately asE1/2 in the
intermediate case (whenN(E) is parametrized as in eq 15). In
fact, 〈ε〉 is seen to vary as a function ofE in exactly the same
way as{d ln[N(E)]/dE}-1.

We note in this respect that the latter quantity as well asγ
have a simple interpretation in the canonical description of
KERDs. One has59

whereT‡ is an effective temperature defined by Klots.
(b) Why are eqs 40-45 so strikingly similar, in spite of the

different shapes considered for the functionsN(E)?
A partial answer to that question is provided by elementary

mathematics. Consider the identity

from which one easily deduces

Substituting, from eq 39,s ) RE into eq 48 accounts for the
similarity between eqs 40 and 41, at least in the rangeε , E.

As to the third parametrization, let us expand the square root
in eq 18:

The factor exp(âE1/2) can be shifted into the normalization
constant. Substituting, from eq 39, 0.5âE1/2 by s into the second
factor leads to

Substituting 0.5âE1/2 by RE leads to

In summary, the three parametrizations are expected to lead to
similar results whenε , E, and parameterγ, as defined in eq
38, appears to be the most important feature ofN(E).

2. “Ergodicity Index” exp( -DS). Because phase space
exploration is sometimes incomplete as a result of dynamical
constraints, the ratio〈ε〉/E is also influenced by the value of
e-DS. A case is made out in the present paper to replace the
vague concept of “subset of active degrees of freedom” by that
of “ergodicity index measuring the extent of phase space
sampling”, e-DS.

Equations 40-45 allow us to extract the value of this index
in a straightforward way from energy-selected measurements
provided that the value ofγ is known. The procedure is also
possible in a study of metastable ions, but meets with the
difficulty that the value ofES (the most probable energy sampled
in a two-sector instrument), i.e., the kinetic shift, should be
known. Ideally, this requires either a knowledge of the function
k(E) extrapolated to its origin, or time-resolved measurements
both in the micro- and in the millisecond range.60 The fact that
energy is not strictly selected in metastable ion studies is not in
practice a major problem.

It results from previous papers of this series20,35-38 that
incomplete phase space sampling can be surprisingly well
accounted for by the momentum gap law. This law directly
addresses the efficiency of the energy flow between the reaction
coordinate and the remaining degrees of freedom during the
separation of the products. According to this law, there exists
a systematic bias against energy release in the reaction
coordinate as translational motion of the separating fragments.
This reluctance can be understood if the dissociation process is
analyzed as a vibrational predissociation.61 Quantum-mechani-
cally, predissociation involves an interaction between two wave
functions: that of the bound state and that of the translational
motion of the pair of fragments. The latter oscillates rapidly as
a function of the reaction coordinate. The larger the amount of
energy released in the reaction coordinate, the more rapidly the
translational wave function oscillates and the smaller the
efficiency of the predissociation process.36,37,40-42 The analysis
is also possible in classical mechanics.30 Vibrational predisso-
ciations are controlled by the Franck-Condon principle, which
prevents large changes in the nuclear momenta. Here again, large
translational energy releases are disfavored with respect to a
purely statistical partitioning. The energy in excess of the

TABLE 1: Most Probable Internal Energy ES and Average
Internal Energy 〈E〉 Measured for the Halogen Loss Reaction
of the Bromo- and Iodobenzene Cations [Ref 36]a

e-DS
molecular

ion ES (eV) 〈ε〉exp (eV) ν γ a b c d

C6H5I+ 0.47 0.046 5.40 3.46 0.75 0.92 0.84 0.86
C6H5I+ 0.55 0.045 4.80 3.73 0.69 0.83 0.77 0.79
C6H5I+ 0.62 0.051 4.50 3.97 0.73 0.87 0.81 0.81
C6H5Br+ 0.67 0.059 6.30 4.13 0.79 0.94 0.88 0.85
C6H5Br+ 0.75 0.060 6.05 4.36 0.77 0.90 0.84 0.80
C6H5Br+ 0.85 0.060 6.00 4.62 0.73 0.85 0.79 0.77

a The exponentν fits the increase of the rate constant with the internal
energyE (eqs A2 and A4). Parameterγ describes the increase ofN(E)
with the internal energy (eq 38). Column a: lower bound to the
ergodicity index e-DS deduced from eq 40 (exponential parametrization
of N(E)). Column b: upper bound to e-DS deduced from eq 41 (power
law for N(E)). Column c: value of e-DS deduced from eq 42 (more
realistic parametrization ofN(E)). Column d: ergodicity index deduced
(with an uncertainty equal to( 0.03) in ref 36 from a full numerical
integration based on eq 37.

{d ln[N(E)]/dE}-1 ) kBT‡ (47)

lim
xf0

(1 - x)1/x ) e-1

lim
ε/Ef0

(1 - ε/E)RE ) e-Rε (48)

exp(âxE-ε) ) exp(âE1/2) exp[-(0.5âE1/2)(ε/E)]

exp[-(âE1/2/8)(ε/E)2]

) exp(âE1/2)[1 - 0.5âE1/2(ε/E) +
(1/2)0.5âE1/2(0.5âE1/2 - 0.5)(ε/E)2 ...] (49)

1 - s(ε/E) + (1/2)s(s - 0.5)(ε/E)2 ≈ 1 - s(ε/E) + (1/2)s

(s - 1)(ε/E)2

≈ (1 - ε/E)s (50)

1 - Rε + (1/2)R2(1 - 0.5/RE)ε2 ≈ 1 - Rε + (1/2)(Rε)2 ≈
exp(-Rε) (51)
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dissociation asymptote is preferentially released as rotational
or vibrational energy of the fragments.

Equations 40-45 are in line with these views for the
following reasons.

(a) It follows from these equations that the larger the
efficiency of phase space sampling, the larger the ratio〈ε〉/E.
In other words, when nonstatistical effects show up, they lead
to a reduction of the translational energy released in the reaction
coordinate, as exemplified in Figure 1.

(b) The linear relationship between e-DS and the square root
of 〈ε〉/E that exists in eqs 40-45 may be related to eq 11, which
specifies that the constraint which operates on the dynamics is
related to the momentum, and not to the translational energy.
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Appendix

The average translational energy release measured in meta-
stable ion studies does not correspond to a well-defined energy,
but to a distribution represented by the functionT(E) defined
in eq 35. Substituting eqs 35 and 37 into eq 2 and changing the
order of integration,45 one obtains

where〈ε〉E denotes the average translational energy that would
have been released if all the decaying ions had strictly the
internal energyE, i.e., the quantity defined in eq 2 and calculated
in section IV.

Assume now that, in the energy range whereT(E) is nonzero,
the rate constant can be fitted to the following empirical
equation35-37

whereES is the energy at whichT(E) reaches its maximum and
where

is the rate constant that is sampled with the highest probability.
The empirical exponentν is related to the rate of increase with
energy of the rate coefficientk(E):

In practice,ν is commonly found to range between about 4
and 10.35-37

With this parametrization, the calculation of average trans-
lational energies via eq A1 is readily carried out.

(1) If N(E) increases exponentially withE [as expressed in
eq 13], then〈ε〉 is independent of E and eqs 29 and 32 remain
valid. The imperfect energy selection achieved in metastable
ion studies has then no effect on the translational energy release.

(2) If N(E) rises as thesth power ofE, one finds, from eqs
14, 24, 35, 36, A2, A3, and after a bit of algebra45

In the limiting case where e-DS ) 1, one has, from eq 33:

The imperfect energy selection achieved in metastable ion
studies leads to a very slight underestimate of the average
translational energy but the distortion is very small. For example,
in the case of metastable bromobenzene ions,35,36τ1 ) 1.74µs,
τ2 ) 3.77 µs. The correcting factor

is equal to 1.03 whenν ) 3. It drops down to its minimum
value of 0.97 whenν ) 8 and approaches 1 at still higher values
of ν.

(3) If, finally, N(E) is parametrized as expressed in eq 15,
then the relationship between〈ε〉 and E becomes more com-
plicated. With respect to the energy-selected case, it involves
correction factors which, however, are in practice even smaller
than in case (2).

In the limiting case where e-DS ) 1, one has, from eq 34:

For τ1 ) 1.74µs andτ2 ) 3.77µs, the main correcting factor
is equal to 1.00 whenν ) 3. It admits its minimum value of
0.98 whenν ) 6 and approaches 1 at still higher values ofν.
The correction resulting from imperfect energy selection of the
metastable ion is thus in practice smaller than the experimental
uncertainties on〈ε〉 andES.
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(53) Leitner, D. M.; Köppel, H.; Cederbaum, L. S.J. Chem. Phys.1996,

104, 434.
(54) Leonardi, E.; Petrongolo, C.; Hirsch, G.; Buenker, R. J.J. Chem.

Phys.1996, 105, 9051.
(55) Santoro, F.J. Chem. Phys.1998, 109, 1824.
(56) Salzgeber, R. F.; Mandelshtam, V. A.; Schlier, C.; Taylor, H. S.J.

Chem. Phys.1999, 110, 3756.
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