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The relationship between the average translational engfdseleased in a unimolecular reaction and the
internal energye measured in excess of the dissociation threshold is not necessarily linear. In a purely statistical
situation, it reflects the shape of the functidiE) which expresses the way the density of vibratienal
rotational states of the pair of fragments increases ®ithn fact, [¢[Jis seen to vary as a function & in

exactly the same way dsl IN[N(E)]/dE . The most important feature df(E) is a dimensionless parameter

y = E{d logio [N(E)]/dE} evaluated at the internal energy at which the measuremeaftisfmade. The ratio

[4[JE also depends on nonstatistical effects. An “ergodicity inde¥*Sewhere DS denotes the so-called
entropy deficiency associated with incomplete energy randomization, can be extracted from experiments. It
measures the efficiency of phase space sampling by the pair of fragments. In the case of unimolecular reactions
that proceed without any reverse activation barrier, simple relationships can be derived to relate the value of
e DS to that ofy and€[JE. When the average energy release is measured for a metastable dissociation in a
two-sector mass spectrometer, the raide also depends in principle on the transmission efficiency function
T(E). However, the necessary correction is small and often negligible. Applications to the halogen loss reactions
from GHsl™, CsHsBrt, and GHsl™ are presented. Phase space appears to be sampled with an efficiency
close to 100% both at very low and very high values of the internal energy. For intermediate véiiéiseof
minimal efficiency is of the order of 75%. At higher values of the internal energy, numerous surface crossings
bring about chaotic dynamics and efficient phase space sampling.

I. Introduction energy of the pair of fragments (thus neglecting exit channel
effects), and (iii) ignoring the rotational degrees of freedom,

A matter of considerable interest, both for its intrinsic . ; o
the following equation can be derived:

importance in the study of the dynamics of unimolecular
reactions and for its practical usefulness in the derivation of s E .\t :
correct thermodynamic data, concerns the partitioning of the P(e|E) = N"(E — 6)/ﬁ) N*(E’) dE @)
excess energy of a dissociation process among the translational,

rotational, and vibrational degrees of freedom of the products. Where N*(E) denotes the density of vibrational states of the
Mass spectrometric experimentatloft is able to provide aso-  transition state.

called kinetic energy release distribution (KERD), denoted  Assuming further thal\*(E) increases wittE as predicted
P(¢|E), giving the probability of generating fragments with a by the classical approximatidit2*8that is, assuming that
relative translational energy equalddf E denotes the internal . N o

energy, measured in excess of the dissociation threshold. This N*(E) O E™e=t (4)

function is required to be normalized: . L .
g whereNeactis the number of vibrational degrees of freedom in

L/;E P(c|E) de = 1 (1) the reactant, one obtains an expression of the KERD:
. . _ Nreac:— 1 € |Nreac2

Average translational energy releaseSare defined by P(e|E) = —k Il E (5)
= f(])EeP(e|E) de (2) The substitution of eq 5 into eq 2 leads to the simple

equipartition limit [d0= E/Njeae: Klots 3 Franklin and co-
In the present paper, attention will be focused on the workers}*'¢and CarteY’ made various attempts to replace the

proportion of the excess energy released as translatidB. classical density of states by a more accurate expression (e.g.,
Furthermore, the discussion will be restricted to reactions that the Whitten-Rabinovitch approximatioh}?**Nevertheless,
proceed without any reverse activation barrier. most authors have adopted the simple, but purely empirical

Early attempts to rationalize this ratfol” were based on  correction proposed by Haney and Frankfinwhich involves
the RRKM-QET theony:1218 Assuming (i) a fully statistical ~ an effective number of oscillators in the transition state and
situation and (ii) that the kinetic energy in the reaction coordinate Which leads to the linear relationshipl}= E/O.44Neact

at the transition state is entirely converted into translational ~However, the classical approximation (4) is known to be
inaccurate, especially at low internal enerdiés!8and its use

T E-mail: jc.lorquet@ulg.ac.be. is always somewhat suspicious. We note first that if it is replaced
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by an alternative empirical parametrization

N*(E) O exp(E) (6)

which is still reasonable, although it somewhat overestimates
the rate of increase of the density of states, then the conclusion
change completely.

P(€|E) = [a/(l — e_aE)]e_af ~ ae—ae (7)

One has which, in practice, is apparently very close to eq 5.
However, when eq 7 is substituted into eq 2, one gets simply
0~ oL, i.e., a constant energy release, independent of the
internal energy!
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to its maximum value is measured by the quantitfs33:34
Therefore, this quantity measures the efficiency of the random-
ization process. It can also be referred to as‘engodicity
index”, with e PS = 1 corresponding to a complete exploration
of the available phase space whereas small values ©¥

Sndicate inefficient energy randomization. In previous papers

of this serie¥’3538 it has been shown how the value of°8

can be extracted from an analysis of the entire KERD. Values
of the order of 80% have been commonly obtained in the
fragmentation of various ions like those of the halogenoben-
zenes®30pyridine$” and vinyl bromide®® while the dissociation

of ionized iodopropane is found to proceed nearly statistiéélly.
The variation with energy of the efficiency of phase space

Another possible parametrization of the density of states hasS@mpling has also been studiéd.

been previously fourfd to be quite appropriate in a number of
cases:

N*(E) O expBE™?) (8)

However, when introduced into egs 3 and 2, it predicts that the
average translational energy releas@should approximately
increase as the square root of the available internal energy:

L= (218)EY 1 — 3/(28E™?) ..] (9)

Clearly, these observations call for further investigation into
the matter.

A new impetus to the theory was given when Klots applied
the principle of microscopic reversibility to the fragmentation
and its reverse association reactfér?® It follows that the
relevant density of states is that of the pair of fragments and no
longer that of the reactant or of the transition state. A major

development in the study of translational energy releases resulted

when various versions of phase space theory were introbéié€d

in order to ensure conservation of angular momentum. Ad-
ditionally, Klots assumed canonical equilibrium among trans-
lational, rotational, and vibrational degrees of freedom. The
usual laws of statistical thermodynamics predict progressive

The maximum entropy method starts by considering a
hypothetical situation where the dynamics would proceed
without any constraint other than energy conservation (thus
disregarding the requirement that angular momentum be con-
served). If this were the case, then all accessible quantum states
of the pair of fragments would be populated with the same
probability. The corresponding distribution of translational
energies is called therior distribution126-30.39 |t is simply
proportional to the total density of states and will be denoted
by P%(¢|E).

At a given total energ¥, let us denote by the amount of
energy that has flowed into the reaction coordinate with the
remainder E — ¢) appearing as vibrationarotational energy
of the pair of fragments. Denoting &E — ¢) the density of
vibrational-rotational states of the pair of fragments, one has
simply

Poe|E) O €"°N(E — €) (10)

since the density of translational states in a three-dimensional
spacé26-30.32js proportional toe2. The prior distribution is
normalized according to eq 1.

As explained in previous papers of this sefe% 38 a
maximum entropy analysis reveals that, in all cases studied so

excitation of vibrational levels as the temperature increases. Thisfar, the actual KERD is related to the prior distribution in the
leads to a nonlinear, transcendental yet very simple equationfollowing way:

betweenléUand E.124.25

It will be argued in the present paper that the nonlinear
relationship betweemnéand E has a double origin. First, it
reflects the distribution of energy levels of the pair of fragments,
i.e., the way densities of states increase ithepresented by
the functionN(E). Second, the relationship is also influenced
by nonstatistical effects, i.e., by incomplete energy randomiza-
tion.

II. Maximum Entropy Method

What is the dynamical significance of the translational energy
at an infinite value of the reaction coordinate? There exists a
method, called the maximum entropy analy$i$! which
addresses this problem. This theory is based on a new concep
denoted theentropy deficiencS, which is directly related to
the amount of vibrational energy not being randomized. More
properly, any constraint acting on the dynamics along the

reaction path (and thus leading to nonstatistical behavior) brings
about a nonzero value of DS. In that approach, the concept of
effective degrees of freedom is elaborated upon and replaced

by an effectve number of phase space ceflampled by the
products. This number of cells is knoWrto be equal to the
number of the vibrationatrotational states to which the
fragments are effectively excited. In the maximum entropy

P(¢|E) = e " "< *PY(e|E) (11)

The physical meaning of this equation is that the unimolecular
distribution of ions is not completely statistical. It is subject to
a dynamical constraint which is directly related to the square
root of the translational energy i.e., to the linear momentum
of the separating fragments. The factor exp{e’?) which
occurs in eq 11 results from this dynamical constraint. The
constraint can be identified with the so-called momentum gap
laws3040-43 which is known to operate in molecular predisso-
ciation processes, and whose role will be discussed in section
IX. The factor exp{-Ao) is simply a normalization factor to be

(calculated by substituting eq 11 into eq 1. The entropy deficiency

is then given by

DS= [“P(e[E) In PO((E“E)

e = —4,—
P-(¢|E)
2 [y €%P(e|E) dE = —2, — 2,870 (12)

Ill. Parametrization

Since the density of states is best calculated by a direct count
method such as the BeyeBwinehart algorithn};1844 the

approach, the fraction of states effectively populated with respectfunction N(E) is known as a numerical table only. Therefore,
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there is no loss of generality in fitting the computed sequence The factor exp{Ao) is a normalization coefficient which can

of data to an empirical equation. For well-chosen functions, it be calculated by substitution into eq 1. The factor exp¢ld

may then be possible to carry out analytically the integrations expresses the fact that the actual distribution may be dynamically
required in egs 1, 2, and 12, and to derive equations in closedconstrained. The value of the Lagrange multipfieis a priori

form for the translational energy release. Three possible unknown and varies from case to case. It is advantageous to
parametrizations for the functidd(E) will be examined in the replace it by the more physically transparent ergodicity index

present paper: exp(—=DS). Substituting eq 20 into eq 2 leads to integrations
that can be carried out analyticafliy.It turns out that the
N(E) = C exp(E) (13) quantities é0and ePS can both be expressed in terms of
hypergeometric functiorié of the reduced parameter =
N(E) = CE® (14 (1,VE2). Explicitly, one has
N(E) = C exp8E"?) (15)

The rate of increase M(E) is directly related to the parameters 2’0

a, S, or 3.

20 (s+
A S Fof25s+ 300
22 r(,)(s+ 3) 2

The first two equations are considered for their mathematical (21)
simplicity. From past experience, the third one is believed to I(s+ 5 ) 1
often be very realistic. 2, @Y= 2e Mg 3—2 L 2(2;_,5+ 3;02) -

With each possible parametrization of the density of states I'¢/)r(s+ 3) 2
is associated a particular expression of the prior distribution,
which can be normalized via standard calculatitfs. _3 1F2(§?§,S+ 2;02)0 22)

If the density of states increases exponentially with the (s+ 5/2) 22 2
internal energy (eq 13), one finds

3
Pe) = (2" A% e (16) 0 oo (1) (§_ 1, Z_Oz) B
E (s+°%,)" 2227 2

Note that this distribution depends eralone. All reference 5
to the total energy has vanished because of the property of Ar(s+ 1) 3_§ 142 23
the exponential function which splitd(E—¢) (occurring in eqs F(3/2)F(s+ 4) 1 2( ’2’5 o )a (23)

10 and hence 11) into the product exg exp(—ae). The first
factor exp@E), which contains all reference to the total energy
E, vanishes in the normalization procedure. The physical
consequences of this mathematical property will be discussed
later on.

If N(E) increases as thgh power ofE (eq 14), then

Equations 21 and 22 are then substituted into eq 12. The
quantities expDS) = exp(lo) exp@1[é¥2) and[&[/E are seen
to both depend on parameteand on the reduced variable
only. The latter can be numerically eliminated by substitution
and the result fitted to a simple expression. This leads to a
I(s+ 5/2) surprisingly simple yet accurate equation:

—s—3/2 112/~ _ \S
r@are+n; ¢ E-9 (D0

0 =
P (e|E) RIE = [0.13/(s + 2.5)] (1 + 2.06 9?2 (24)

wherel'(X) denotes the gamma functiéhi*” The quality of the fit is excellent for any value sfwhen

Equation 15 has been observed to provide an adequatey » < exp(—DS) < 0.9. In that range, the joint value of the

parametrization oN(E). Then pair [¢[JE and exp{-DS) is very close to that obtained by the
0 . 12 —_— much more laborious solution of egs 21, 22, and 23. Equation

P(c|E) = A(E)e " expBVE — ¢) (18) 24 implies that, as commonly expectéél,lincreases propor-
with tionally to E in the entire energy range where eq 14 is realistic,
i.e., in the range where the exponanemains constant.
A(E)_l — (2/3)E3/2+ (n/ﬂ)E[Iz(ﬁEl/z) + Lz(ﬂEl/z)] The same procedure can bg repgated when thg density of

(19) statesN(E) increases exponentially with energy (as in eq 13).

The distribution that satisfies eqs 1, 11, and 16 is given by
wherely(x) andLy(x) denote the hyperbolic Bessel and Struve

functions, respectivel§f=47 P(e) = (2730 %e 0 Y2g e Pgae (25)
IV. Energy-Resolved Measurements Note again that, just as for eq 16, this result is independent

As already mentioned, the purpose of the present paper is toof the internal eqergE asa result of the factorization properties
show that the magnitude of the rafi/E is determined by two ~ of the exponential function.

factors: the density of staté(E) and the efficiency of phase Substituting it into egs 1 and 2 leads to integrations that can
space sampling®s. be carried out analyticall§® The results are
If N(E) increases as theth power of E (eq 14), then the
function that results from eqs 11 and 17 is equal to e "= 2(2im)"? exp(.,°/8a)D_4(1,/v20)  (26)
I(s+°,) [é0= (6/0)D_g(A,/v/200)/D_5(A,/v/2a1) (27)

P(¢|E) = —————— exp(-A)E S ¥%YAE - ¢)°
T(T(s+ 1) ’ o _
whereD,(x) denote$>46the parabolic cylinder function of order

eXp(_/ll\/E) (20) v and argumenk.
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In a similar way The functionT(E) thus represents the distribution of internal
energies of those ions that dissociate in the metastable time
A, @Y= 3(/11/«/51)D_4(11/@)/D_3(/11/@) (28) window. The experimentally determined KERD is therefore
given by the average
Since bothiéOand ePS are functions of the same reduced

parameter {1/+/2a) alone, it is possible to eliminate the latter P(e) = ﬂ)m P(¢|E) T(E) dE (37)
by substitution, and to fit the result to a simple expression. This
leads to However, the correction resulting from imperfect energy
_bso selection of the metastable ion is, in the worst cases, of the
0= (0.11k)(1 + 2.18¢ %) (29) order of 2% or 3% at most. In practice, this is smaller than the

experimental uncertainties dalJand on the average internal

Here again the very simple eq 29 leads to results that areenergy. A demonstration is given in the Appendix.

practically equivalent to those obtained by the solution of eqs
26—28 when 0.2< elxp(—DS) =09. ) VI. Unified Presentation

Thus, strange as it may seem but just as in the case of eq 7,
the average translational kinetic energy release is seen to be So far, the rate of increase of the density of vib-rotational
independent of the value &whenN(E) increases exponentially ~ states of the pair of fragments has been measured by the
with E. This result may seem unrealistic and unphysical, but it Parametersy, s, or . It is also possible to express it in terms
should be viewed as a limiting case that reveals tendencies. Theof the logarithmic derivative oN(E) [i.e., the slope ofN(E)
steeper the density of states increases with internal energy, thevhen plotted on a logarithmic scale]. Let us define the
less sensitively the average translational energy depenés on dimensionless quantity

If N(E) now increases as the exponentiaEd® (eq 15) (i.e., , ,
the more realistic parametrization), one obtains, after similar y = E{d log,[N(E")]/dE'} | (38)
but more complicated calculations: . .

evaluated at the internal energyat which the measurement of

E = [0.27/(BEY? + 2.2)](1+ 1.85€ P52 [¢is made.
o 102716 2 85e S) (30) Being derived from a logarithmic derivative, does not
[é0= (0.27h)(1 + 1.85e PHYEY2 — 2.28 + depend on the energy units used to meadgrand N(E).

- Calculatingy for the densities of states given by egs 13 to 15
(4.84BE*— .1(31) (B31)  |eads to

The average energy release now increases approximately as the . 12
square root oE. 2.302¢/ =s oroE or0.5E (39)

Equations ?;‘Sv 29, 30, and 31 are quantitatively vaIidDigl the Replacing the original parameters pyunifies the description
range 0.2< e P> < 0.9. They underestimaté/E when € and leads to strikingly similar equations.

= 0.9 and overestimate it when® < 0.2. Simple analytical If N(E) increases exponentially with energy (eq 13), one has,
expressions are also available in the limiting case where py gpstitution into eq 29
ebsS=1:
_ —DS\2
GUE — 1 5kE (32) [e[JE = (0.0494)(1 + 2.18¢ "9 (40)
If N(E) increases as thgth power ofE (eq 14), one has,
— 1/2
=3/(pE™ +2.5) (34) [G[JE = [0.057/¢ + 1.09)](1+ 2.06 °5?  (41)

I . . ,
The latter equation is valid provided t VﬁElz_ > 5. If N(E) increases as the exponential B¥2 (eq 15), then,
The significance and the relationships which exist among eqs ¢, eq 30

24, 29, 30, and 31, as well as among eqgs 32 will be analyzed
In sections VI and IX. [¢IE = [0.059/¢ + 0.48)](1+ 1.85¢*9?  (42)

V. Energy-Averaged Measurements Equations 46-42 are remarkably similar. They are valid in

Unfortunately, eqs 24 and 281 cannot be expected to the range 0.2< e™®S < 0.9. The predicted behavior is even
remain directly valid when the measurement generates a valug™ore similar in the limiting case where® =1 (i.e., in a
of [2IJE averaged over a certain energy range, as in the studyfully statistical situation). Considering the parametrizations
of metastable transitions in sector instruments. In these experi-€xPressed by egs 13, 14, and 15, one has, respectively:
ments, only dissociations that occur in a time window defined

by the entry and exit times in the field-free region (denated [¢[IE = 0.65) (43)
andr,) are registered. A bell-shaped transmission funci(i) = 0.65/f + 1.09) (44)
can be definedwhich depends on the rate constk() of the

dissociation process = 0.65/(y + 0.54) (45)

T(E) = B{exp[—K(E) 7,] — exp[—K(E)z,]} (35) VII. Ethyl lodide

The average translational energy released in the reaction
CoHsl™ — CoHs™ + | for energy-selected ethyl iodide ions has
been measured by Baer et*&lp to an internal energy of 2.4
eV by the photoiorphotoelectron coincidence (PIPECO)

whereB is determined by the normalization condition

JoTE) dE=1 (36)
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Figure 1. Upper part: average translational energy rel€asas a
function of the excess internal energyfor C,Hs" + | formation from
ethyl iodide. Filled symbols with error bars: experimental PIPECO
measurements of ref 48. Dashatbtted line: prior distribution. Dashed
line: predictions of Klots’ model. Lower part: ergodicity index
exp(—DS) obtained by applying egs 42 and 45 to these data.

technique. In order to interpret the results obtained by these

authors, the vibrational frequencies and rotational constants of

the GHs™ fragment ion have been calculatétly the B3LYP/
6-31G(d) method and scaled afterward by a factor of 0.9806,
as recommended by Scott and Rad®nin its most stable
conformation, the €Hs" ion adopts the nonclassical bridged
structure, belonging to th@,, point group. However, there also

exists a classical isomer, which provides a shallow secondary

minimum or a saddle point a few kcal/mol above the nonclas-
sical minimum?152 Therefore, the potential energy surface is
certainly anharmonic. Just as in the case of thel« ion,38

Lorquet

and is observed to approach an efficiency of 100% at high
internal energies. The overall picture is very similar to that
recently obtained (by a variety of experimental techniques) in
the case of the £13Br™ — C,H3" + Br reaction®® This is totally
unexpected because, as the internal energy increases, the volume
of phase space to be sampled increases enormously whereas
the lifetime decreases. As discussed in more detail in ref 38,
we ascribe this behavior to the strong vibronic interactions that
result from the numerous surface crossings that bring about
internal conversion to the ground state of the molecular ion.
These surfaces cross along seams and strong nonadiabatic
interactions are known to arise in the neighborhood of these
seam$3-56 The higher the internal enerdy the more extended

and complicated the network of seams, especially in the case
of open-shell molecular ior&8:58 As a result, chaos is introduced

into the nuclear dynamics.

Baer et al. have also calculat@dhe KERD predicted by
Klots’ theoryl23 which is based on the assumption that the
Langevin model can be used to calculate the forces between
separating fragments. The agreement between the predictions
based on this model and the experimental results is good both
at low and at high internal energies. However, in the intermedi-
ate range, the experimental/E ratios are slightly lower than
the predicted ones.

It is instructive to compare the KERD resulting from Klots’
model to the prior distribution in order to derive the corre-
sponding ergodicity index. Klots’ model is found to describe a
slightly constrained situation where approximately 91% of the
available phase space is effectively sampled. In the range of
internal energies where 85 drops down to its minimal value
of 77%, the experimental average energy release is lower than
that predicted by Klots.

In summary, the joint examination of the two parts of Figure
1 provides insight into the problem. Its lower part can be
regarded as the image of the upper part, with a mapping function
defined by eqgs 42 and 45. It shows that the prior distribution is
a reference and not a mediocre first approximation.

the hydrogen atoms of the ethyl ion can be expected to undergo

large-amplitude motions when isomerization becomes possible.

The lowest b vibrational bending mode at 509 ci(which

certainly connects the two structures) has been treated as al’b

anharmonic oscillator that converges to an energy of 2500 cm
and transforms above into a one-dimensional internal rotor. The
vibrational-rotational density of states of thelds™ ion has
been calculated by a direct count algorith#3;** modified to
account for this transformation. In the energy range between
900 and 20000 cmi, the resulting vibrationatrotational
density of states is found to be nicely fitted by eq 15:

N(E) = exp(0.16&"?) (46)

whenE is expressed in wavenumber units.

VIIl. Bromo- and lodobenzene

The translational energy released in the reactigiis® ™ —

sHs™ + X (where X is either Br or [) in the metastable time
window has been previousfdetermined in a two-sector mass
spectrometer in both field-free regions with different amounts
of internal energy. For example, when bromobenzene ions
dissociate in the first field-free region with a fragment ion
translational energy equal to 4 keV in the laboratory frame, the
most probable internal enerdss is equal to 0.85 eV and the
measured average kinetic energylis found to be equal to
0.060 eV. In that energy range, the rate constant varies as the
6-th power of energy (eq A2), and the rovibrational density of
states of the gHs* fragment can be fitted to eq 15 with a value
of v equal to 4.62. When these values are introduced into eq

Therefore, egs 42 and 45 can be applied to the experimental42, one gets @S = 0.79, whereas the tedious integration process

results obtained by Baer et #lto estimate the efficiency of
phase space sampling as a function of the internal engrgy
The results are plotted in Figure 1. First, it follows from a simple
logical argument that &S must be equal to 1 & = 0. The

carried out by Urbain et a¥ gives 0.774 0.03.

In practice, neither the exponential parametrization (eq 13)
nor the power law (eq 14) provides a very good representation
of a genuine rovibrational density of states. However, they are

reason is that phase space is completely sampled when, astill useful because they are found to bracket the ad¥(B)

threshold, it is reduced to a single cell. This situation is function, so that eqs 40 (column a of Table 1) and 41 (column
represented by the filled diamond in the lower part of Figure 1. b of Table 1), which are deduced from them, provide a lower
As the energy increases, the ergodicity index can only decreaseand an upper bound to be compared with the correct value of
It is found to reach a minimum value of 0.4 0.06 atE = e PSwhich is reported in column d of Table 1. By contrast, eq
1.38 eV. More surprising is the fact that® increases again 42, deduced from the more realistic parametrization (15),
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TABLE 1: Most Probable Internal Energy Es and Average
Internal Energy [é[0Measured for the Halogen Loss Reaction
of the Bromo- and lodobenzene Cations [Ref 36]

molecular e
ion Es(eV) [Elp(eVv) v y a b [« d

CeHsl ™ 0.47 0.046 540 3.46 0.75 0.92 0.84 0.86
CeHsl ™ 0.55 0.045 480 3.73 0.69 0.83 0.77 0.79
CeHsl ™ 0.62 0.051 450 3.97 0.73 0.87 0.81 0.81
CeHsBrt 0.67 0.059 6.30 4.13 0.79 0.94 0.88 0.85
CeHsBr™ 0.75 0.060 6.05 4.36 0.77 0.90 0.84 0.80
CeHsBrt 0.85 0.060 6.00 4.62 0.73 0.85 0.79 0.77

aThe exponent fits the increase of the rate constant with the internal
energyE (egs A2 and A4). Parametegrdescribes the increase N(E)
with the internal energy (eq 38). Column a: lower bound to the
ergodicity index ePS deduced from eq 40 (exponential parametrization
of N(E)). Column b: upper bound to &5 deduced from eq 41 (power
law for N(E)). Column c: value of €S deduced from eq 42 (more
realistic parametrization ®(E)). Column d: ergodicity index deduced
(with an uncertainty equal teé- 0.03) in ref 36 from a full numerical
integration based on eq 37.

provides right away a better approximation (reported in column
c of Table 1).
IX. Discussion

The ratio between the average translational engiiggivided
by the internal energk is seen to depend both on the way the

J. Phys. Chem. A, Vol. 104, No. 23, 2008427

expBVE—¢) = exp(BEY?) exp[—(0.55EY?)(e/E)]
exp[—(BEY¥8)(¢/E)?]
= expBEYA[1 — 0.58EY4¢/E) +
(1/2)0.58EY%(0.58EY2 — 0.5)(/E)? ...] (49)
The factor exp8EY?) can be shifted into the normalization

constant. Substituting, from eq 39, BE/2 by sinto the second
factor leads to

1 — S(e/E) + (1/2)s(s — 0.5)/E)* ~ 1 — S(e/E) + (1/2)s
(s— 1)(e/E)?

~ (1 — elE)® (50)

Substituting 0.BEY2 by oE leads to

1— oe + (1/2)0%(1 — 0.50E)e® ~ 1 — ae + (1/2)(cte) ~
exp(—oae) (51)

In summary, the three parametrizations are expected to lead to
similar results wher < E, and parametey, as defined in eq
38, appears to be the most important featur@().

2. “Ergodicity Index” exp(—DS). Because phase space

density of vib-rotational states of the pair of fragments increases exploration is sometimes incomplete as a result of dynamical

with energy, represented by the functibd{E), and on the
fraction of phase space sampled by the pair of fragments, e
We discuss the role played by these two functions in turn.

1. Density of StatedN(E). (a) The most important feature of
N(E) is the dimensionless parametedefined in eq 38. Now,
the logarithmic derivative appearing jncontainsk raised to a
particular power. Hence, the behavior predicted by egs4
as a function of the internal ener@yis different and depends
on the shape dfi(E): [4[is independent dE for the exponential
parametrization, but increases linearly wighf the power law
is adopted/éLis found to increase approximately B¥2in the
intermediate case (WheW(E) is parametrized as in eq 15). In
fact, [é[Jis seen to vary as a function & in exactly the same
way as{d In[N(E))/dE} %

We note in this respect that the latter quantity as welj as
have a simple interpretation in the canonical description of
KERDs. One ha¥

{d In[N(E)]/dE} * = kBT* (47)
whereT# is an effective temperature defined by Klots.

(b) Why are eqgs 4845 so strikingly similar, in spite of the
different shapes considered for the functioM(&)?

A partial answer to that question is provided by elementary
mathematics. Consider the identity

lim @ —x¥»=¢e"
x—0
from which one easily deduces
lim (1 — e/E)*E=e
e/E—0

(48)

Substituting, from eq 3% = aE into eq 48 accounts for the
similarity between eqs 40 and 41, at least in the rangeE.

constraints, the rati@[/E is also influenced by the value of

e DS, A case is made out in the present paper to replace the
vague concept of “subset of active degrees of freedom” by that
of “ergodicity index measuring the extent of phase space
sampling”, €S,

Equations 46-45 allow us to extract the value of this index
in a straightforward way from energy-selected measurements
provided that the value gf is known. The procedure is also
possible in a study of metastable ions, but meets with the
difficulty that the value oEs (the most probable energy sampled
in a two-sector instrument), i.e., the kinetic shift, should be
known. Ideally, this requires either a knowledge of the function
k(E) extrapolated to its origin, or time-resolved measurements
both in the micro- and in the millisecond ranffelhe fact that
energy is not strictly selected in metastable ion studies is not in
practice a major problem.

It results from previous papers of this seffe% 38 that
incomplete phase space sampling can be surprisingly well
accounted for by the momentum gap law. This law directly
addresses the efficiency of the energy flow between the reaction
coordinate and the remaining degrees of freedom during the
separation of the products. According to this law, there exists
a systematic bias against energy release in the reaction
coordinate as translational motion of the separating fragments.
This reluctance can be understood if the dissociation process is
analyzed as a vibrational predissociattéiQuantum-mechani-
cally, predissociation involves an interaction between two wave
functions: that of the bound state and that of the translational
motion of the pair of fragments. The latter oscillates rapidly as
a function of the reaction coordinate. The larger the amount of
energy released in the reaction coordinate, the more rapidly the
translational wave function oscillates and the smaller the
efficiency of the predissociation proce$s74¢42 The analysis
is also possible in classical mechanitd/ibrational predisso-
ciations are controlled by the FraneiCondon principle, which
prevents large changes in the nuclear momenta. Here again, large

As to the third parametrization, let us expand the square root translational energy releases are disfavored with respect to a

in eq 18:

purely statistical partitioning. The energy in excess of the
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dissociation asymptote is preferentially released as rotational I'(1+ 2) 1yl 1T — 1)2 0,13/
or vibrational energy of the fragments. ST 1/, (—)(— —) .
Equations 494§yare in Iing with these views for the T +1m) vy 3\
following reasons. (s+ 2.5)](1+ 2.0 *%?* (A5)
(@) It follows from these equations that the larger the o
efficiency of phase space sampling, the larger the rafitk. In the limiting case where®S = 1, one has, from eq 33:
In other words, when nonstatistical effects show up, they lead 5
to a reduction of the translational energy released in the reactionz ., g [+ 2h) + (i)(} + 1)(72 — rl) [1.5/
. P S .
coordinate, as exemplified in Figure 1. T'(1+ 1) 2v)\v 3\t t+ 1,
(b) The linear relationship between® and the square root (s+ 2.5)] (A6)

of [4[/E that exists in eqs 40845 may be related to eq 11, which

specifies that the constraint which operates on the dynamics is The imperfect energy selection achieved in metastable ion

related to the momentum, and not to the translational energy.studies leads to a very slight underestimate of the average
translational energy but the distortion is very small. For example,
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value of 0.97 whemw = 8 and approaches 1 at still higher values

de la Communaulté&angaise de Belgique.
The average translational energy release measured in metaof v,
stable ion studies does not correspond to a well-defined energy, (3) If, finally, N(E) is parametrized as expressed in eq 15,
but to a distribution represented by the functitfit) defined then the relationship betweéaland E becomes more com-
in eq 35. Substituting egs 35 and 37 into eq 2 and changing theplicated. With respect to the energy-selected case, it involves

order of integratiorf> one obtains correction factors which, however, are in practice even smaller
than in case (2).

(A7)

Appendix

= J;m € P(e) de = j(;w de e J:o dE T(E) P(¢|E)
(e[ (0.27p) (1 + 1.85 eDS)Z{ gl dt 3/2)

= ["dET(E) [, deeP(eE) = [ dE T(E) (3 T(1+ 1h)
T, — 77\?
(AL) (1/12u)(2§ + 1)( 2 1) ] — 22+ Es V2 x
wherelé[g denotes the average translational energy that would v LT

have been released if all the decaying ions had strictly the

(@sapy V2, (1/21/)(% n 1)(72 _ Tl)z] - }

internal energy, i.e., the quantity defined in eq 2 and calculated T(1+ 1h) 3\, + 1,
in section IV. (A8)
Assume now that, in the energy range wWhg(€) is nonzero,
the rate_constant can be fitted to the following empirical |, the limiting case where®S = 1, one has, from eq 34
equatiod®>37
I+ 3/2v) 5
K(E) = kop(EES" (A2) RO~ Esl’z(s/ﬁ)m 1+ (1/12V)(ﬂ + 1) x
. . . . — 2
whereEs is the energy at whicfi(E) reaches its maximum and L0 L 5p2 4 E1218 7553 1+ 1/2v) 1-
where T, + 1, SPB s (18.756) 1+ 1m)
1, 32" uf?
=k(Eg) = [In /(t, — A3 e | SR I
= KED = IN(er)l(r,~ ) (A3) w2t + 3)(11 - Tz) ] - (A9)

is the rate constant that is sampled with the highest probability. ) )
The empirical exponent s related to the rate of increase with  FOr 71 = 1.74us andz, = 3.77us, the main correcting factor

energy of the rate coefficier(E): is equal to 1.00 whem = 3. It admits its minimum value of
0.98 whernv = 6 and approaches 1 at still higher values/of
v = 2.3026[d log,{ K(E)} /dE] _¢ (A4) The correction resulting from imperfect energy selection of the

metastable ion is thus in practice smaller than the experimental

In practice,v is commonly found to range between about 4 uncertainties oriéllandEs.
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