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In this work are considered nonadiabatic matrices which werenot derived from first principles. For this type
of nonadiabatic matrices we derived the conditions for such anN × N matrix to yield anN × N diabatic
potential matrix which is continuous throughout configuration space. It is shown that these conditions are
very close to being quantization type conditions which select from all possible matrices only a certain group.
The final theoretical results are supported by examples (a) for theN ) 2 case and (b) for theN ) 3 case.

I. Introduction

In a recent publication we discussed difficulties related to
the application of electronic nonadiabatic matrices,τ, which are
not obtained from first principles and which are therefore
incapable, in general, of producing physical diabatic potentials.1

It was then found, for one class of nonadiabatic models, that,
provided their parameters fulfill certain conditions, they will
form physically meaningful diabatic potentials. In this article
the discussion of this subject is extended to any type of
nonadiabatic matrices. Moreover, it is shown that the condition
to be satisfied by these matrices is reminiscent of the Bohr-
Sommerfeld “quantization” law as is applied to angular mo-
mentum operators.2

In the next section is presented the theory that led to the
“quantization” of the nonadiabatic coupling matrix, in the third
section a few examples are discussed, and the conclusions are
summarized in the fourth section.

II. “Quantization” of the Nonadiabatic Coupling Matrix
along a Closed Path

II.1. Necessary Conditions for an Adiabatic-to-Diabatic
Transformation Matrix To Produce Unique Diabatic Po-
tentials. To study the necessary conditions for having a uniquely
defined diabatic potential matrix, we assume the existence of
an adiabatic-diabatic transformation (ADT) matrixA(s,s0)
which transforms a given adiabatic potential matrixu(s) to a
diabatic potential matrixW(s,s0):3-6

HereA†(s,s0) is the complex conjugate ofA(s,s0), s0 is a given
initial point in configuration space (CS), ands is some other
point. Next, it is assumed thatW(s,s0) is uniquely defined
throughout CS, and our aim is to derive the features to be
fulfilled by A(s,s0) in order to ensure the uniqueness ofW(s,s0).
In this respect it is important to mention thatu(s) is also assumed
to be uniquely defined throughout CS.

To reveal the features ofA(s,s0), we introduce a closed path
Γ defined in terms of a continuous parameterλ so that the
starting points0 of the path is atλ ) 0. Next we defineâ as the

value attained byλ once the path completes a full cycle and
returns to its starting point. Thus, for instance, in the case of a
circle â ) 2π.

Having introduced these definitions, we can now express our
assumption regarding the uniqueness ofW(s,s0) in the following
way: At each point s0 in CS the diabatic potential matrixW(λ)
(≡W(s,s0)) fulfills the relation

Following eq 1, this requirement implies that for every points0

we have

To continue, we introduce another transformation matrix,D,
defined as

which for everys0 and a given pathΓ connects betweenu(â)
andu(0):

TheD matrix is by definition a unitary matrix (it is a product
of two unitary matrices), and at this stage, except for being
dependent onΓ and, eventually, on the initial point s0, it is rather
arbitrary. In what follows we shall derive some features ofD.

Since the adiabatic eigenvalues are uniquely defined at each
point in CS, we haveu(0) ≡ u(â) and therefore eq 5 can also
be written as

Performing the multiplication, it can be shown that it yields
the following system of relations between the adiabatic eigen-
valuesuj(0) and theD-matrix elements:

Equation 7 has to hold at every arbitrary points0 (≡λ ) 0)
and for an essential, arbitrary set of nonzero adiabatic eigen-
values,uj(0), j ) 1, ...,N. Due to the arbitrariness of theuj(0)’s,
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W(s,s0) ) A†(s,s0) u(s) A(s,s0) (1)

W(λ)0) ) W(λ)â) (2)

A†(0) u(0) A(0) ) A†(â) u(â) A(â) (3)

D ) A(â)A†(0) (4)

u(â) ) D u(0) D† (5)

u(0) ) D u(0) D† (6)

∑
j)1

(D†
kj Dkj - δkj)uj(0) ) 0; k ) 1, ...,N (7)
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eqs 7 can be satisfied if and only if theD-matrix elements fulfill
the relation11

or

Thus D is a diagonal matrix which contains in its diagonal
complex numbers whose norm is 1.

Recalling eq 4, we obtain

It is noticed thatA(â) does not have to be identical toA(0);
namely, it does not have to be uniquely defined at every point
in CS in order to be able to produce physically meaningful
diabatic potentials, but then, upon following a closed path, it
has to fulfill the conditions specified by eqs 9 and 10.

II.2. “Quantization” of the Nonadiabatic Coupling Matrix.
Our next step is to deriveA(â), and this we do by applying the
first-order vector equation:3

whereτ, as was mentioned earlier, is the nonadiabatic coupling
matrix. This equation does not necessarily yield a uniquely
definedA matrix. Uniquely definedA matrices are guaranteed
if and only if all theτ-matrix elements are regular functions at
eVery point in CS. Here, purposely, we consider cases where
the τ-matrix elements are not regular throughout CS, and the
question we intend to answer is: What kind of conditions have
to be imposed on theτ-matrix elements in order for them to
yield an A matrix that transforms (see eq 1) the adiabatic
potential matrix to auniquelydefined diabatic potential matrix?
Equation 11 can always be solved, by simply integrating it along
a path (in case of a single variable, this path is a straight line).
The only difficulty one may encounter in the multidimensional
case is that the solution may not be uniquely defined. As we
have seen in the previous paragraph, this deficiency does not
necessarily rule out the possibility of forming uniquely defined
diabatic potentials. Thus, what we intend to do is as follows:
We shall integrate eq 11 along a line and look for conditions to
be imposed on theτ-matrix elements so that theA matrix, even
if not uniquely defined in CS, will yield a uniquely defined
diabatic potential matrix. The formal solution of eq 11 can be
written as an ordered integral7,8

where the integration is performed along a pathΓ that combines
s ands0. For a closed path eq 12 becomes similar to eq 10 so
that theD matrix can be derived from the expression

Equation 13 shows a very important feature of theD matrix,
namely, that it depends solely on the pathΓ while not depending
on any particular point on the path. Next in order for this matrix
to yield a physical diabatic potential matrix, it also has to fulfill
the condition given in eq 9. These two conditions form the
general “quantization” condition to be imposed on aτ matrix.

It is important to mention that althoughτ is a vector of
matrices, the fact that we encounter in eq 13 the scalar product
τ‚ds (which is equal toτs ds, whereτs is a scalar matrix) permits

continuing the derivation as though a scalar and not a vector
matrix is involved. Next we rewrite eq 13 in a more “explicit”
form as7

where{sk, k ) 0, 1, ...,M} is a series of points alongΓ (the
point sM, the last point in this series, is identical tos0), G(sk) is
a unitary matrix that diagonalizesτ(sk) atsk (G†(sk) is its complex
conjugate) andE(sk) is a diagonal matrix with elements

where it is assumed thatsk is close enough tosk-1 to allow the
expansion in eq 14. The order in eq 14 is such that thek ) 0
term is the most right-hand one in the product. The matrix it(s)
is the diagonal matrix that contains the eigenvalues ofτ(s) as
calculated at a pointsonΓ (we recall that since allτ(s) matrices
are antisymmetric, they all have imaginary (or zero) eigenvalues
itn(s)).

To get some insight into what this relation implies for theD
matrix we make a simplifying assumption, namely, thatG(s) is
a slowly varying (or nonvarying) function of the coordinates
along a given path so that for each two adjacent points we may
assume

If this is the case, then eq 15 can be written as

whereâ (andλ) were defined in the previous paragraph. It is
important to emphasize that although bothG matrices are
defined at thesame point in CS, they are not necessarily
identical, because it is not obvious that theτ matrices are the
same. In the case in which theτ matrix is uniquely defined at
each point in CS, eq 17 becomes

It can be seen that the explicit representation of theD matrix in
eq 17 is consistent with the requirement imposed onD as
expressed in eq 5. MatrixD transformsu(0) to u(â) while
moving along a closed pathΓ in a certain direction. From eq 5
we also obtain thatD† transformsu(â) to u(0) while moving
alongΓ but in the opposite direction.D matrix in eq 17 indeed
possesses this feature. From eq 17 matrixD† is given in the
form

It is seen that it produces the backward transformation where
we start withG(â), move with directional step sizes (-ds)
(namely, backward), and end up withG(0).

In the previous section we showed thatD has to be a diagonal
matrix with numbers of norm 1 in its diagonal (but not
necessarily a unit matrix). TheD matrix is explicitly presented
in eq 17 in terms of the eigenvalues of theτ matrix. It is obvious
that no arbitrary set of functionst(s) would yield aD matrix
with the features just mentioned. In other words the functions
t(s) (or theτ matrix) have to have certain qualifications in order
to form such diagonalD matrices. The conditions to be fulfilled
by the τ matrix (or better, its eigenvalues) are reminiscent of

(Djk)
†Djk ) δjk; j, k ) 1, ...,N (8)

Djk ) δjk exp(iøk) (9)

A(â) ) DA(0) (10)

∇A + τA ) 0 (11)

A(s) ) exp(- ∫s0

s
ds‚τ) A(s0) (12)

D ) exp(IΓ ds‚τ) (13)

D ) ∏
k)0

M

G†(sk) E(sk) G(sk) (14)

En(sk) ) exp(-i∫sk-1

sk ds‚tn(s)) (15)

G(sk) G†(sk-1) ∼ I (16)

D ) G†(λ)â) exp(-iIΓds t(s)) G(λ)0) (17)

D ) G†(s0) exp(-iIΓds‚t(s)) G(s0) (18)

D† ) G†(λ)0) exp(iIΓds‚t(s)) G(λ)â) (18′)
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the quantization of the component of the angular momentum
operator along a closed path, as was assumed (by Bohr and
Sommerfeld2) in the early days of quantum mechanics.

III. Quantization of Simplified Systems

In this section we discuss two simple examples to show that
eq 18 indeed implies quantization.

III.1. Two-State System.Theτ matrix in this case is given
as

where t, at this stage, is an arbitrary function of the nuclear
coordinates. The matrixG that diagonalizesτ is of the form

and the corresponding eigenvalues are(it. SinceG is a constant
matrix, the matrixD can be derived explicitly (see eq 18):

It is noticed that in order forD to be diagonal (and to have
either (+1)’s or (-1)’s in the diagonal) thet matrix element
along a given pathΓ has to fulfill the condition

wheren is aninteger. These conditions are very close to being
the Bohr-Sommerfeld quantization conditions (as applied to
the eigenvalue of theτ matrix).

Equation 22 presents the condition for the extended conical
intersection case. It is important to indicate that if casen is an
even integer, the diagonal of theD matrix contains (+1)’s (thus
theD matrix becomes a unit matrix) and in this case theτ matrix
will not produce any topological (or symmetry) effects. How-
ever, ifn is an odd integer, the diagonal of theD matrix contains
(-1)’s and in this case theτ matrix will produce topological
(or symmetry) effects, as is well-known from the study of
Herzberg and Longuet-Higgins9 for the case in whicht ds )
(1/2)dæ, whereæ is an angularpolar coordinate.

III.2. The Three-State System.The second example is the
following general three-stateτ matrix

wheretj, j ) 1, 2, 3 are, at this stage, arbitrary functions of the
nuclear coordinates. TheG matrix that diagonalizesτ is of the
form

whereλ and$ are defined as

The three eigenvalues of theG matrix are (0,(i$). Next we
derive theD matrix (see eq 18), where it is assumed that thes

dependence ofτ(s) is such that the approximation expressed in
eq 16 is fulfilled:

Here all tj’s are calculated at the end point andS1, C1, andS2

are defined as follows:

It is noticed thatD becomes diagonal if and only if

wheren is an integer. Similar quantization laws exist if one of
the tj’s becomes zero (if two out of the threetj’s become zero,
then we are back to the two-state case andn is allowed to be
half an integer). Returning now to eq 23, it is noticed that the
elements of theτ matrix cannot be arbitrary functions but have
to be chosen in such a way that they fulfill the quantization
law given in eq 28. This condition, as in the two-state case,
limits significantly the number of 3× 3 τ matrices that can be
employed to form physical diabatic potentials.

IV. Conclusions

In this work are considered arbitrary nonadiabatic matrices
which werenot derived from first principles. For this type of
nonadiabatic matrices we derived the conditions to be fulfilled
for such anN × N matrix to yield anN × N diabatic potential
matrix which is continuous throughout CS. It is shown that these
conditions are reminiscent of quantization type conditions which
select, from all possibleτ matrices, only a certain group. To
clarify the meaning of the theoretical outcome, we analyzed
two simplified cases: the well-known two-state (e.g. conical
intersection) model and a similar three-state model.

As for the two-state model our analysis shows that the only
physically possible situation is that the average of the function
t(s) as calculated along a closed pathΓ (see eq 22), i.e.,tΓ,
either attains the value1/2 or is 1 (a case that does not lead to
any topological effects). In other words our derivation shows
that tΓ cannot attain, for instance, the valuetΓ ) 1/3, because
the diabatic potential that will be formed in that case will be
multivalued in configuration space and therefore unsuitable for
any further applications. Thus, Herzberg-Longuet-Higgins
conical intersection model9 (or its extended version) is theonly
possible physical model that can produce topological effects
for a two-state system. All other two-state models either do not
produce topological effects or are not physically acceptable.

To study the three-state model, the treatment was restricted
to the case in which theτ matrix eigenvectors form a smoothly
behavingG matrix (see eq 16). The conditions that such aτ
matrix has to fulfill in order to yield a physical diabatic potential
matrix are given in eq 28 and are very similar to the two-state
model conditions for the case in whichn is aneVen integer. In
such a case theD matrix is theunit matrix, and just like in the
two-state model with an even integern, it will neVer produce
topological effects. This does not necessarily imply that three-
state systems cannot produce topological effects. Recently we

D ) $
-2

(t32 + (t1
2 + t2

2)C1
t1S1$ - 2t2t3S2 -t2S1$ + 2t1t3S2

t1S1$ - 2t2t3S2 t2
2 + (t1

2 + t3
2)C1

-t3S1$ + 2t1t2S2

t2S1$ + 2t1t3S2 t3S1$ + 2t1t2S2 t1
2 + (t2

2 + t3
2)C1

)
(26)

S1 ) sin(IΓ$ ds); C1 cos(IΓ$ ds); S2 sin2(12 IΓ$ ds)
(27)

1
2π

IΓ$ ds ) 1
2π

IΓ[t1
2 + t2

2 + t3
2]1/2 ds ) n (28)

τ ) (0 t
-t 0) (19)

G ) 1

x2
(1 1
i -i ) (20)

D ) (cos(It‚ds) -sin(It‚ds)
sin(It‚ds) cos(It‚ds) ) (21)

1
2π

IΓt‚ds ) n
2

(22)

τ ) (0 t1 t2
-t1 0 t3
-t2 -t3 0 ) (23)

G ) 1

$λx2 ( it2$ - t3t1 -it2$ - t3t1 t3λx2
it3$ + t2t1 -it3$ + t2t1 -t2λx2

λ2 λ2 t1λx2
) (24)

λ ) [t2
2 + t3

2]1/2; $ ) [t1
2 + t2

2 + t3
2]1/2 (25)
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studied a three-state model with more than one point of
degeneracy and found that the corresponding adiabatic-to-
diabatic transformation matrixA will yield a diagonalD matrix
(see eq 4) that has in its diagonal one (+1) and two (-1)’s.10

It is not clear to us whether such a model system is capable of
producing topological effects.

Finally we would like to make the following comment. It is
well-known that the nonadiabatic coupling terms are momentum
type operators. Since we referred here to motions along
nonlinear paths, these operators presentangularmomentum type
operators and these, according to the basic requirements of
quantum mechanics, have to be quantized. If one applies
nonadiabatic terms obtained from first principles, they are
guaranteed to be properly quantized and therefore need not and
should not be modified. However, if one intends to use model
type coupling terms, they have to be quantized before they are
applied. To do that we imposed, in a certain way, what is known
as the Bohr-Sommerfeld quantization rule. We are, of course,
aware that the Bohr-Sommerfeld quantization is done with
respect to a single action variable without applying any
diagonalization of a momentum matrix as we were forced to
do here but the similarity is too striking not to name it, simply,
the “generalized Bohr-Sommerfeld quantization rule”. The next
question to be asked is if this new type of quantization carries
with it any physical significance. This aspect is not clear to us

at this stage. There is some similarity between the quantized
nonadiabatic coupling matrix eigenvalues and the electronicspin,
but it is hard to believe that we encounter here a new measurable
quantized observable.
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