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In this work are considered nonadiabatic matrices which wetelerived from first principles. For this type

of nonadiabatic matrices we derived the conditions for suciNan N matrix to yield anN x N diabatic
potential matrix which is continuous throughout configuration space. It is shown that these conditions are
very close to being quantization type conditions which select from all possible matrices only a certain group.
The final theoretical results are supported by examples (a) foNtke2 case and (b) for thél = 3 case.

I. Introduction value attained byl once the path completes a full cycle and
returns to its starting point. Thus, for instance, in the case of a
circle p = 2.

Having introduced these definitions, we can now express our
assumption regarding the uniqueness\(s,s) in the following
way: Ateach point gin CS the diabatic potential matri&/(1)
(=W(s,)) fulfills the relation

In a recent publication we discussed difficulties related to
the application of electronic nonadiabatic matriagsyhich are
not obtained from first principles and which are therefore
incapable, in general, of producing physical diabatic potentials.
It was then found, for one class of nonadiabatic models, that,
provided their parameters fulfill certain conditions, they will
form physically meaningful diabatic potentials. In this article —0) — —
the discussion of this subject is extended to any type of WE=0)=W(=p) 2)
nonadiabatic matrices. Moreover, it is shown that the condition Following eq 1, this requirement implies that for every paint
to be satisfied by these matrices is reminiscent of the Bohr e have
Sommerfeld “quantization” law as is applied to angular mo-
mentum operators. T —at

In the next section is presented the theory that led to the A UOADQ)=ATB) u) AP) ®)
“quantization” of the nonadiabatic coupling matrix, in the third To continue, we introduce another transformation matb,
section a few examples are discussed, and the conclusions areefined as
summarized in the fourth section.

D = A(HA'(0) 4)
II. “Quantization” of the Nonadiabatic Coupling Matrix
along a Closed Path which for everysy and a given pati” connects between()
I1.1. Necessary Conditions for an Adiabatic-to-Diabatic andu(0):
Transformation Matrix To Produce Unique Diabatic Po- u(B) = D u(0) D )

tentials. To study the necessary conditions for having a uniquely
defined diabatic potential matrix, we assume the existence of
an adiabatie-diabatic transformation (ADT) matriA(s,S)
which transforms a given adiabatic potential matis) to a
diabatic potential matrixV(s,sg):3~®

The D matrix is by definition a unitary matrix (it is a product
of two unitary matrices), and at this stage, except for being
dependent ol and, eventually, on the initial poing,st is rather
arbitrary. In what follows we shall derive some featureof
: Since the adiabatic eigenvalues are uniquely defined at each

W(ss) = A'(ss) U(s) A(ssp) (1) point in CS, we havei(0) = u(8) and therefore eq 5 can also

be written as

HereAT(s,s) is the complex conjugate &(s,sy), S is a given
initial point in configuration space (CS), arsds some other u(0)=D u(0) D" (6)
point. Next, it is assumed that/(s,s) is uniquely defined
throughout CS, and our aim is to derive the features to be Performing the multiplication, it can be shown that it yields
fulfilled by A(s,s) in order to ensure the uniquenessfs,s). the following system of relations between the adiabatic eigen-
In this respect it is important to mention thes) is also assumed ~ valuesu;(0) and theD-matrix elements:
to be uniquely defined throughout CS.

To reveal the features @f(s,s), we introduce a closed path Z(DTH Dy — 0)u(0)=0; k=1,..,N (7
T" defined in terms of a continuous paramefeso that the =

tarti i f th this af = 0. Next we defi th
starting point ofthe path s extwe defings as the Equation 7 has to hold at every arbitrary pasat(=4 = 0)
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egs 7 can be satisfied if and only if tBematrix elements fulfill
the relatiod!

(Djk)TDjk =0j; 1, k=1,..,N (8)

or
9)

Thus D is a diagonal matrix which contains in its diagonal
complex numbers whose norm is 1.
Recalling eq 4, we obtain

Dy = Oy explix)

A(B) = DA(0) (10)
It is noticed thatA () does not have to be identical £10);
namely, it does not have to be uniquely defined at every point
in CS in order to be able to produce physically meaningful
diabatic potentials, but then, upon following a closed path, it
has to fulfill the conditions specified by eqs 9 and 10.
I1.2. “Quantization” of the Nonadiabatic Coupling Matrix.
Our next step is to derivA(8), and this we do by applying the
first-order vector equatiof:

VA+7A=0 (11)

wherer, as was mentioned earlier, is the nonadiabatic coupling
matrix. This equation does not necessarily yield a uniquely
definedA matrix. Uniquely definedA matrices are guaranteed
if and only if all thez-matrix elements are regular functions at

every point in CS. Here, purposely, we consider cases where

the z-matrix elements are not regular throughout CS, and the
guestion we intend to answer is: What kind of conditions have
to be imposed on the-matrix elements in order for them to
yield an A matrix that transforms (see eq 1) the adiabatic
potential matrix to ainiquelydefined diabatic potential matrix?
Equation 11 can always be solved, by simply integrating it along
a path (in case of a single variable, this path is a straight line).
The only difficulty one may encounter in the multidimensional
case is that the solution may not be uniquely defined. As we
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continuing the derivation as though a scalar and not a vector
matrix is involved. Next we rewrite eq 13 in a more “explicit”
form ad

M
D= HG*(SK) E(s) G(s) (14)

where{s, k=0, 1, ...,M} is a series of points along (the
point sy, the last point in this series, is identicaldg), G(s) is
a unitary matrix that diagonalizes,) ats. (G'(sy) is its complex
conjugate) ande(sy) is a diagonal matrix with elements
EA(S0) = exp(i [ dst,(s)) (15)

where it is assumed that is close enough te.—; to allow the
expansion in eq 14. The order in eq 14 is such thatktkeO
term is the most right-hand one in the product. The mat(g} i
is the diagonal matrix that contains the eigenvalues(sf as
calculated at a poirgonI" (we recall that since a#(s) matrices
are antisymmetric, they all have imaginary (or zero) eigenvalues
itn(9))-

To get some insight into what this relation implies for e
matrix we make a simplifying assumption, namely, t6#$) is
a slowly varying (or nonvarying) function of the coordinates
along a given path so that for each two adjacent points we may
assume

G(s) G'(5n) ~ | (16)
If this is the case, then eq 15 can be written as
D= GT(Azﬁ) exp(i frds 1(s)) G(A=0) a7

wheref (and1) were defined in the previous paragraph. It is
important to emphasize that although bdgh matrices are
defined at thesamepoint in CS, they are not necessarily
identical, because it is not obvious that thenatrices are the
same. In the case in which thematrix is uniquely defined at

have seen in the previous paragraph, this deficiency does note@ch pointin CS, eq 17 becomes

necessarily rule out the possibility of forming uniquely defined
diabatic potentials. Thus, what we intend to do is as follows:
We shall integrate eq 11 along a line and look for conditions to
be imposed on the-matrix elements so that thee matrix, even

if not uniquely defined in CS, will yield a uniquely defined
diabatic potential matrix. The formal solution of eq 11 can be
written as an ordered integrél

A(s) = exr(— f:) ds~r) A(s)

where the integration is performed along a pathat combines

(12)

sands. For a closed path eq 12 becomes similar to eq 10 so

that theD matrix can be derived from the expression
D= exp(yfF ds-r)

Equation 13 shows a very important feature of enatrix,
namely, that it depends solely on the phtivhile not depending
on any particular point on the path. Next in order for this matrix
to yield a physical diabatic potential matrix, it also has to fulfill
the condition given in eq 9. These two conditions form the
general “quantization” condition to be imposed om matrix.

It is important to mention that although is a vector of

(13)

D = G'(s) exe{~if ds(9) G(sy

It can be seen that the explicit representation of@heatrix in
eq 17 is consistent with the requirement imposedDras
expressed in eq 5. Matrib transformsu(0) to u(8) while
moving along a closed pathin a certain direction. From eq 5
we also obtain thab' transformsu(g) to u(0) while moving
alongI" but in the opposite directio matrix in eq 17 indeed
possesses this feature. From eq 17 mdiixis given in the
form

(18)

D' = G'(2=0) exp(fdst(s) G(1=p)  (18)

It is seen that it produces the backward transformation where
we start with G(5), move with directional step sizes-(ls)
(namely, backward), and end up wi@(0).

In the previous section we showed titahas to be a diagonal
matrix with numbers of norm 1 in its diagonal (but not
necessarily a unit matrix). THe matrix is explicitly presented
in eq 17 in terms of the eigenvalues of thematrix. It is obvious
that no arbitrary set of functionigs) would yield aD matrix
with the features just mentioned. In other words the functions
t(s) (or ther matrix) have to have certain qualifications in order

matrices, the fact that we encounter in eq 13 the scalar productto form such diagondDd matrices. The conditions to be fulfilled

t-ds (which is equal tas ds, wherers is a scalar matrix) permits

by the r matrix (or better, its eigenvalues) are reminiscent of
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the quantization of the component of the angular momentum dependence af(s) is such that the approximation expressed in
operator along a closed path, as was assumed (by Bohr andeq 16 is fulfilled:

Sommerfeld) in the early days of quantum mechanics.

Ill. Quantization of Simplified Systems

In this section we discuss two simple examples to show that

eq 18 indeed implies quantization.
I1l.1. Two-State System.Ther matrix in this case is given

as
[0t
~t 0

wheret, at this stage, is an arbitrary function of the nuclear
coordinates. The matri that diagonalizes is of the form

=2

and the corresponding eigenvalues-aie SinceG is a constant
matrix, the matrixD can be derived explicitly (see eq 18):

cosft-ds) —sin(ft-ds)

D=]|_.
sin(ft-ds) cos(t-ds)

It is noticed that in order foD to be diagonal (and to have

either (+1)’s or (—1)’s in the diagonal) thé matrix element
along a given patfi" has to fulfill the condition

(19)

(20)

(21)

1 _n
anrt ds=23 (22)
wheren is aninteger. These conditions are very close to being
the Bohr~Sommerfeld quantization conditions (as applied to
the eigenvalue of the matrix).

D=w?
t’ + (6" + )C, LS~ 24LS,
LS @ — 264S,
t,S@ + 24t,S,

—t,S@ + 24,t,S,
t,2+ (2 + t,9C, LS + 24,5,
.S +24tS 2+ (4,2 +tA)C,
(26)

Here allt]'s are calculated at the end point aBd C;, andS
are defined as follows:

S =sin(f,w ds); C,cosf,wds); S, sinz(% [ ds)
(27)

It is noticed thatD becomes diagonal if and only if
1 1 2 2 201/2 4o
%fFWdS_EfF[tl +t,°+ ;1" ds=n  (28)

wheren is an integer. Similar quantization laws exist if one of
thet's becomes zero (if two out of the thrg&s become zero,
then we are back to the two-state case ansl allowed to be
half an integer). Returning now to eq 23, it is noticed that the
elements of the matrix cannot be arbitrary functions but have
to be chosen in such a way that they fulfill the quantization
law given in eq 28. This condition, as in the two-state case,
limits significantly the number of X 3 7 matrices that can be
employed to form physical diabatic potentials.

IV. Conclusions

In this work are considered arbitrary nonadiabatic matrices
which werenot derived from first principles. For this type of

Equation 22 presents the condition for the extended conical nonadiabatic matrices we derived the conditions to be fulfilled

intersection case. It is important to indicate that if case an
even integer, the diagonal of tllematrix contains{1)’s (thus
the D matrix becomes a unit matrix) and in this case#imeatrix
will not produce any topological (or symmetry) effects. How-
ever, ifnis an odd integer, the diagonal of tbematrix contains
(—1)’'s and in this case the matrix will produce topological
(or symmetry) effects, as is well-known from the study of
Herzberg and Longuet-Higgif$or the case in which ds =
(1/2)dp, whereg is an angulapolar coordinate.

I11.2. The Three-State System.The second example is the
following general three-state matrix

0t b
r=[-t 0 t 23)
-, —t3 0

wheret;, j = 1, 2, 3 are, at this stage, arbitrary functions of the
nuclear coordinates. TH8 matrix that diagonalizes is of the
form

ity — ity —it,o — toty t,1v/2

G = L\/_ ity +tt, —itgw + t, —t 22 (24)
wherel and @ are defined as
A=[t2+tA"% o=t +t2+t7"  (25)

The three eigenvalues of tl@ matrix are (0, £iw). Next we
derive theD matrix (see eq 18), where it is assumed thatshe

for such anN x N matrix to yield anN x N diabatic potential
matrix which is continuous throughout CS. It is shown that these
conditions are reminiscent of quantization type conditions which
select, from all possible matrices, only a certain group. To
clarify the meaning of the theoretical outcome, we analyzed
two simplified cases: the well-known two-state (e.g. conical
intersection) model and a similar three-state model.

As for the two-state model our analysis shows that the only
physically possible situation is that the average of the function
t(s) as calculated along a closed pdih(see eq 22), i.e.r,
either attains the valu¥, or is 1 (a case that does not lead to
any topological effects). In other words our derivation shows
that tr cannot attain, for instance, the valtie= %3, because
the diabatic potential that will be formed in that case will be
multivalued in configuration space and therefore unsuitable for
any further applications. Thus, Herzberigonguet-Higgins
conical intersection mod¥(or its extended version) is tranly
possible physical model that can produce topological effects
for a two-state system. All other two-state models either do not
produce topological effects or are not physically acceptable.

To study the three-state model, the treatment was restricted
to the case in which the matrix eigenvectors form a smoothly
behavingG matrix (see eq 16). The conditions that suclh a
matrix has to fulfill in order to yield a physical diabatic potential
matrix are given in eq 28 and are very similar to the two-state
model conditions for the case in whichs aneveninteger. In
such a case thB matrix is theunit matrix, and just like in the
two-state model with an even integeyrit will never produce
topological effects. This does not necessarily imply that three-
state systems cannot produce topological effects. Recently we
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studied a three-state model with more than one point of at this stage. There is some similarity between the quantized
degeneracy and found that the corresponding adiabatic-to-nonadiabatic coupling matrix eigenvalues and the electspiic

diabatic transformation matri&k will yield a diagonalD matrix but it is hard to believe that we encounter here a new measurable
(see eq 4) that has in its diagonal orel] and two ¢1)'s.10 guantized observable.

It is not clear to us whether such a model system is capable of

producing topological effects. Acknowledgment. | would like to thank Professors Y. T.
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