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The bonding distances, vibrational frequencies, and dissociation energies of a series of dihalogen radical
anions, X∴Y- (X, Y ) F, Cl, Br, I), held together by three-electron bonds, are calculated at the MP2 and
MP4 levels and compared to the CCSD(T) level and to experimental values when available. In agreement
with a qualitative model which is expressed in valence bond terms, it is found that Møller-Pesset calculations
offer a good description of symmetrical homonuclear three-electron bonds by providing fairly accurate
equilibrium bond lengths, stretching frequencies, and dissociation energies. By contrast, the Møller-Plesset
method fails for some unsymmetrical systems, leading to largely erroneous equilibrium distances and stretching
frequencies. The qualitative model predicts such errors to be related to an inaptitude of the UHF reference
determinant to properly describe the sharing out of the charge between the two fragments. This inadequacy
results in a set of optimized molecular orbitals that is poorly adapted to the subsequent perturbation calculation,
and carries over to the MP2 and MP4 levels. In such a case, the three-electron bond is systematically found
too short, while the corresponding stretching frequency is found too high. The MP2 error is shown to linearly
correlate with a simple function of the calculated net charges, thus providing a simple way to check the
validity of MPn calculations for dissymmetrical three-electron-bonded radical anions. The thumb rules that
follow are further confirmed by applicatory test calculations on some three-electron-bonded anions of chemical
interest: HO∴SH-, HO∴SCH3

-, HO∴CF3
-, HS∴SCH3

-, and H3CS∴CF3
-.

I. Introduction

The electron attachment to dihalogen molecules or other
molecules of biological interest has attracted much attention in
recent years. The resulting molecular anions are held together
by a three-electron bond (noted∴), also called aσ* bond, in
which one bondingσ molecular orbital (MO) is doubly occupied
while the correspondingσ* antibonding MO is singly occupied,
leading to a net bond order of 0.5 and to a bonding energy on
the order of 1 eV or more.

A firm knowledge of the bonding characteristics of halogen
molecule negative ions is of interest for interpreting phenomena
related to self-trapped holes in ionic crystals,1 in which two
neighboring X- anions are replaced by an X2

- molecule.
Accurate potential energy curves for the ground-state anions
are also needed to interpret the absorption spectra of halogen
molecule ions and the dynamics of their dissociation and
recombination as well as the effects of solvation. Chen and
Wentworth2 have combined experimental data based on Raman
spectroscopy in a rare gas matrix, electron spectroscopy in a
crystal, and gas-phase dissociation attachment experiments for
most of the diatomic halogen anions to create semiempirical
potential energy curves for ground and excited states. Recently,
these fits were improved by incorporating newer data.3,4 It
should be pointed out, however, that so far only the dissociation
energies and vibrational frequencies have been measured
directly. The equilibrium bond length, an essential parameter
for the construction of the excited-state curves, was most of
the time taken as the sum of covalent and ionic radii,2,3 or
indirectly obtained through simulations of the conventional
photoelectron spectrum within the Franck-Condon approxima-

tion.4 It is also unknown what effect matrixes or solutions have
on the measurements to which the curves were fit. As a
consequence, the considerable uncertainties in the potential
parameters for halogen molecule anions, particularly the bond
lengths, are in stark contrast to the precisely known neutral state
curves.

In analogy to halogen molecule anions, three-electron bonds
are also observed in molecular anions of biological interest,
especially those involving an S-S linkage.5-10 Thus, one-
electron reduction of disulfides, leading to three-electron-bonded
radical anions of the general type RS∴SR′-, is one of the ways
of cleaving the disulfide linkage present in numerous proteins,
enzymes, and antibiotics. More generally, disulfide anions
are involved in protection mechanisms for biological systems
subject to ionizing radiations or other forms of free radical
damage.9 Other three-electron-bonded organic anions (F3C∴SH-,
F3C∴SCH3

-, RO∴OR-) have also been suggested to be
absolute minima or critical points on the potential surface.11,12

Now, while some of them have been subject to experimental
observation,5-10 the experimental probe of their spectroscopic
parameters seems to be even more difficult than in the case of
halogen molecule ions, hence the usefulness of theoretical
studies13-26 and the need to assess the adequacy of the various
computational methods that are currently available.

As far as theoretical methods are concerned, it is well
established that electron correlation is essential for the descrip-
tion of three-electron bonds, as the Hartree-Fock level yields
bonding energies that are consistently much too small.24 The
Møller-Plesset many-body perturbation theory has often been
used, at second order (MP2) for the determination of geometries
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and vibrational frequencies,8,11,16,17 and sometimes at fourth
order (MP4) for the dissociation energies.8,25 The Gaussian-2
(G2) level, more accurate than MP2 for dissociation energies
but using MP2 geometries and Hartree-Fock frequencies, has
also been used for some halogen molecular ions.18,19 The
MCSCF approach, even in its complete-active-space version
(CASSCF) including all valence orbitals, has proved disap-
pointing,20 showing that the electron correlation in this type of
bond is essentially dynamical in nature. Thus, the multireference
configuration interaction (MRCI) method, which has sometimes
been used,21,22 is not expected to be significantly better than
single-reference methods, unless the starting MCSCF uses a very
large active space. Last, the very popular density functional
theory (DFT) has recently been shown to be definitely inap-
propriate for the description of three-electron bonds,26,27 with
the exception of the BHLYP functional that is better than the
others in this respect,23,26,27but still not fully reliable. Thus, if
one excludes very accurate methods such as those based on the
couple-cluster or quadratic CI theories, the only candidate for
the status of a standard economical method, which can serve
as a routine tool for calculating physicochemical properties of
molecule ions involving three-electron bonds, seems to be of
the Møller-Plesset perturbation type. This latter level has been
tested for its convergence from second to fourth order25 and
for its agreement with higher levels26,28,29in a number of three-
electron-bonded radical cations, and is generally believed to be
quite reliable. However, it should be noted that all the
methodological comparisons that have been published to date
have been performed on molecule ions displaying homonuclear
three-electron bonds, withleft-right symmetry, while the
performances for unsymmetrical systems were taken for granted.

Now why should dissymmetric species cause problems? There
is a clue that suggests that it might be so: the fact that F2

- is
subject to a symmetry-breaking artifact at the UHF level, in its
equilibrium geometry, leading to nonsensical MP2 or MP4 wave
functions if symmetry is not forced at the UHF step. Of course
the remedy is obvious for a symmetrical species such as F2

-,
but what if one fluorine atom is replaced by one chlorine or
bromine atom? Although symmetry is not formally present,
some artifacts that are close in nature to symmetry breaking
can be expected to spoil the MPn wave functions, and this
remark holds for any dissymmetrical three-electron-bonded
anion. It follows that such systems are potentially problematic
and that their ability to be studied by standard economical
computational methods must be verified. Our aim in this paper
is therefore to compare the performances of the Møller-Plesset
method in symmetrical vs dissymmetrical cases, using the family
of dihalogen anions as model systems.

The paper is organized as follows. First, the spectroscopic
parameters of a series of dihalogen anions, X∴Y- (X, Y ) F,
Cl, Br, I), will be computed at the MP2 and MP4 levels and
compared to the results of the very accurate CCSD(T) level
which will serve as a reference. Then the MPn performances
in symmetrical vs dissymmetrical cases will be compared, and
the findings will be interpreted by means of a qualitative valence
bond model. From these results and their interpretation, some
thumb rules will be derived to predict which conditions have
to be met for Møller-Plesset calculations to be trusted. Last,
the study will be extended to some molecule anions of chemical
interest, to verify the generality of the aforementioned rules.

II. Theoretical Methods

One reason the performances of the MP2 method in 6-31G(d)
basis set are of particular interest is that it is the standard method

for geometry optimization in the G2 procedure.30 A basis set
of this type (BS1) has therefore been used throughout the present
study, complemented with diffuse functions to account for the
anionic character of the dihalogen species. A larger BS2 basis
set has also been used for comparison. While BS1 is expected
to be sufficient for geometry optimizations and vibrational
frequencies, BS2 is required for calculations of bonding energies
since it is the diffuse-augmented analogue of the standard
6-311G(3df) basis set that is routinely used for single-point
energy calculations at the G2 level.30 More specifically, for
fluorine and chlorine, BS1 and BS2 consist of the standard
6-31+G(d) and 6-311+G(3df) basis sets, respectively. For
bromine, BS1 consists of the SV4P basis set31 augmented with
d anf f polarization functions and s and p diffuse functions as
recommended by Glukhovtsev et al.19 for geometry optimiza-
tions, and BS2 is an all-electron basis set of the 6-311G type,
also complemented with d,f polarization and s,p diffuse func-
tions, devised by McGrath and Radom32 and recommended by
Glukhovtsev et al.19 for single-point G2 energies. For iodine,
both BS1 and BS2 valence basis sets use the orbital-adjusted
effective core potential (ECP) of Hay and Wadt.33 BS1 and BS2
consist, respectively, of the [21,21] and [111,111] contraction
schemes of the Hay-Wadt basis set for iodine,33 augmented
by d and f polarization as well as by s and p diffuse functions
as optimized by Glukhovtsev et al. for iodine-containing
molecules.19

The Møller-Plesset many-body perturbation theory has been
used at second (MP2) and fourth (MP4) order, as well as
coupled-cluster theory34 with inclusion of all single and double
excitations and perturbative treatment of triple excitations
(CCSD(T)). Unless otherwise specified, all theoretical methods
have been used in their spin-unrestricted forms. The frozen core
approximation has been used throughout. To estimate the effect
of spin contamination at the MP2 level, the spectroscopic
parameters have also been calculated at the PMP2 level, which
annihilates spin contamination by projection. Throughout this
work, the MP4 acronym stands for the MP4 level that includes
single, double, triple, and quadruple interactions, usually referred
to as MP4(SDTQ).

As first-order spin-orbit coupling effects are known to have
a significant influence on the calculated dissociation energies
of molecules involving heavy atoms, they have been included
for species containing bromine or iodine. As in ref 19, first-
order spin-orbit corrections were calculated for the atomic
species from the experimental atomic levels in Moore’s tables,35

and amount to 3.51 kcal/mol for Br and 7.25 kcal/mol for I.
These values have to be subtracted from the uncorrected
dissociation energies each time the dissociation products involve
either of these two atoms.

All calculations have been performed with the GAUSSIAN94
series of programs.36

III. Results for the Dihalogen Radical Anions

All the calculations of geometries, frequencies, and bonding
energies have been performed with both BS1 and BS2 basis
sets, to verify that the effect we are pointing out is independent
of basis set improvements. Within each basis set, the notoriously
accurate CCSD(T) level has been taken as the reference against
which the other methods are evaluated.

A. Equilibrium Distances. The optimized bond lengths for
the X∴Y- anions are displayed in Table 1. Let us first comment
on the calculated bond lengths of the symmetrical molecules
(F2

-, Cl2-, Br2-, I2-). In both basis sets, the UMP2 bond lengths
are in reasonable agreement with the CCSD(T) values, being
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in all cases slightly too short with deviations on the order of
0.02-0.03 Å (0.04 Å for I2-), probably due to spin contamina-
tion as can be judged from the rather large〈S2〉 values as
compared to the expected 0.75 value. Indeed, the PMP2 results
are consistently better, with maximal errors of 0.02 Å. The MP4
results are even better and never depart from the accurate values
by more than 0.01 Å. The magnitudes and the tendencies of
the MPn errors are the same in both basis sets. On the other
hand, the calculated values for the equilibrium bond lengths
are more or less basis set dependent, depending on the halogen.
Thus, Cl2- is much more sensitive to basis set improvement
than F2

-, as expected since chlorine is more polarizable than
fluorine, a property that requires diffuse high-rank polarization
functions to be computationally reproduced. The effect is less
clear in Br2-, probably because the 6-311+G(3df) itself is far
from being complete for bromine, and the same remark holds
for the pseudopotentials used for I2

-. Be it as it may, the
calculation of accurate spectroscopic parameters for the anions
involving heavy halogen atoms would require very large basis
sets and passes the scope of the present study.

Interestingly, even the modest UHF level is found to be rather
reliable as far as equilibrium distancesof symmetrical species
are concerned, and quite close to CCSD(T) results. This good
agreement with higher levels, which may appear as counter-
intuitive in view of the known complete failure of the Hartree-
Fock level to reproduce bonding energies of three-electron
bonds24,25,37(vide infra), has however already been noticed for
a series of three-electron-bonded radical cations and demon-
strated to be general in symmetrical cases.37 Briefly summarized,
the qualitative study of the dynamic electron correlation that is
at work in a three-electron bond shows that a UHF dissociation
energy curve is essentially correct for symmetrical species
provided the symmetry is imposed to the wave function at all
interatomic distances, from equlibrium all the way to infinite
separation. As this symmetry condition is naturally met at short
distances, it follows that UHF-calculated and accurately calcu-
lated dissociation energy curves of symmetrical three-electron-

bonded species have locally the same shape in the vicinity of
the equilibrium distance, leading to nearly similar optimized
distances and vibrational frequencies.

In sharp contrast to the above results, some rather uneven
performances are observed for the MPn-calculated bond lengths
in unssymmetrical cases. In the BS1 basis set, the bond lengths
of two molecules, FBr- and FCl-, are severely underestimated
at the MP2 level, by 0.09 Å in the first case and as much as
0.15 Å in the second. The error is not related to spin
contamination, as the PMP2 values are practically no better,
nor to basis set quality, as the errors are only slightly reduced
in the BS2 basis set (0.08 and 0.13 Å, respectively). In such
circumstances, the standard answer is to push the level of theory
to higher Møller-Plesset orders, but remarkably, the MP4 level
does not perform much better than MP2, whatever the basis
sets. These poor performances of MPn calculations are indicative
of severe inadequacies of the calculated orbitals, as further
indicated by the nonsensical equilibrium bond lengths that are
calculated at the UHF level for FBr- and FCl-. On the other
hand, the bond lengths of the other unsymmetrical dihalogen
anions, namely, FI-, ClBr-, ClI-, and BrI-, are fairly well
reproduced at the MP2 and PMP2 levels, and very well at the
MP4 level.

B. Vibrational Frequencies. Hand in hand with the above
results, the MPn performances for the vibrational frequencies
(displayed in Table 2) closely follow the ups and downs of the
performances for bond lengths. In both basis sets, the agreement
between MP2- and CCSD(T)-calculated frequencies is generally
good for symmetrical molecules. Some exceptions (e.g., F2

-)
are due to spin contamination and are well corrected at the PMP2
level, and the MP4-calculated frequencies are close to the MP2
values. The agreement of the MPn- and CCSD(T)-calculated
frequencies is still good for FI-, ClBr-, ClI-, and BrI-, i.e.,
those molecule that are unsymmetrical but the bond lengths of
which are correctly reproduced at the MPn levels. On the other
hand, the MPn errors on the vibrational frequencies are dramatic
for FBr- and FCl-. At the MP2 level, the frequencies are

TABLE 1: Equilibrium Distances (Å) for the Dihalogen Anion Radicals

BS1 BS2

UHF MP2 PMP2 MP4 CCSD(T) 〈S2〉 UHF MP2 PMP2 MP4 CCSD(T) 〈S2〉
F∴F- 1.911 1.916 1.936 1.931 1.939 0.785 1.913 1.909 1.930 1.928 1.934 0.76
Cl∴Cl- 2.675 2.653 2.667 2.673 2.677 0.765 2.642 2.586 2.597 2.613 2.619 0.77
Br∴Br- 2.908 2.876 2.876 2.889 2.894 0.765 2.915 2.836 2.852 2.865 2.870 0.77
I∴I- 3.322 3.267 3.274 3.295 3.299 0.765 3.296 3.186 3.193 3.215 3.221 0.765
F∴Cl- 3.036 2.050 2.054 2.073 2.202 0.77 3.020 2.054 2.059 2.074 2.177 0.775
F∴Br- 3.045 2.174 2.182 2.187 2.259 0.77 3.238 2.174 2.184 2.191 2.249 0.77
F∴I- 2.329 2.344 2.356 2.351 2.352 0.77 2.308 2.302 2.315 2.314 2.313 0.77
Cl∴Br- 2.795 2.748 2.756 2.768 2.780 0.75 2.773 2.705 2.723 2.731 2.737 0.77
Cl∴I- 2.971 2.913 2.918 2.936 2.950 0.765 2.937 2.857 2.862 2.881 2.887 0.77
Br∴I- 3.111 3.062 3.067 3.086 3.091 0.765 3.095 3.003 3.010 3.031 3.036 0.77

TABLE 2: Vibrational Frequencies (cm-1) for the Dihalogen Anion Radicals

BS1 BS2

UHF MP2 PMP2 MP4 CCSD(T) UHF MP2 PMP2 MP4 CCSD(T) exptl

F∴F- 476 486 462 461 460 475 480 456 484 456 459,a 450b

Cl∴Cl- 245 244 244 238 228 252 264 253 249 249 249b

Br∴Br- 155 154 154 156 150 145 156 155 152 147 148b

I∴I- 102 108 104 102 103 101 113 108 107 107 110( 2,c 115b

F∴Cl- 64 688 698 629 363 67 707 706 657 375
F∴Br- 75 536 532 498 333 52 507 499 502 345
F∴I- 316 312 300 302 295 313 319 308 311 306
Cl∴Br- 199 216 210 211 199 196 215 207 204 203
Cl∴I- 169 191 192 186 174 172 191 192 187 186
Br∴I- 125 135 136 132 127 123 136 136 129 129

a Reference 18.b Reference 3.c Reference 4.
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overestimated, relative to the CCSD(T) level, by factors of 1.90
and 1.61, repectively, for these two molecules, in the smallest
basis set. Far from improving things, the PMP2 level proves
even worse than MP2, while the MP4 level still overestimates
the frequencies by factors of 1.73 and 1.54, respectively. The
tendencies in the largest basis set are exactly the same. Besides,
it is noteworthy that our highest level of calculation, CCSD(T)
in the BS2 basis set, provides vibrational frequencies in excellent
agreement with available experimental values.

C. Dissociation Energies.The dissociation energies of the
X∴Y- anions, as calculated at various computational levels,
are displayed in Table 3. Expectedly, the UHF level is found
to be totally inadequate in this respect, as has already been noted
in the case of three-electron-bonded cations,24,25,37and does not
deserve further comments. On the other hand, the MP2 and MP4
levels of calculation prove satisfactory for symmetrical species,
in both basis sets, as predicted from the qualitative analysis.
Both orders of perturbation are in good agreement with each
other and with CCSD(T) results, with deviations never exceed-
ing 2 kcal/mol.

It can be seen in Table 3 that our best level of calculation,
CCSD(T) in the BS2 basis set, yields some calculated dissocia-
tion energies in excellent agreement with available experimental
values, if spin-orbit corrections are omitted. This agreement,
as already noted by some authors,22 is fortuitous for the heaviest
molecules of the series, and falls off as first-order spin-orbit
corrections are included, as expected since very large basis sets
must be used for bromine and iodine to better reproduce the
polarizabilities of these atoms and provide accurate dissociation
energies.

For the unsymmetrical cases that have proved problematic
in the preceding calculations, namely, F∴Cl- and F∴Br-, one
might have expected the Møller-Plesset dissociation energies
to be too small (inadequate orbitals leading to increased MPn
energies). As a matter of fact, the only bonding energy that is
found significantly too small at the MP2 and MP4 levels is that
of F∴Cl- in BS1, while the other results for F∴Cl- and F∴Br-

are surprisingly good. It thus turns out that the Møller-Plesset
errors affect bonding energies less than the other spectroscopic
parameters, a point that will be discussed later.

To summarize, the MPn levels of calculation yield reasonable
geometries, frequencies, and dissociation energies for all sym-
metrical dihalogen anions, in both basis sets. On the other hand,
some dissymmetrical species are well described at these levels
while some are not. F∴Cl- and F∴Br- are found significantly
too short, while their vibrational frequencies are greatly
overestimated, at the MP2, PMP2, and MP4 levels. Last, the

dissociation energy of F∴Cl- is found too small. While the
success of the Møller-Plesset method was expected for
symmetrical anions, the situation is rather confused for some
dissymmetrical species. It is clear that the above results cast
doubt on the validity of MPn calculations as applied to such
species, but does the warning apply toall dissymmetrical three-
electron-bonded anions, or can one find some rules to predict
in which case MPn can be trusted or must be avoided? For this
to be done, it is necessary to analyze in detail the Møller-
Plesset failure, so as to understand why this method fails in
some cases while it succeeds in others. As the above MPn errors
are expectedly related in some way to the symmetry-breaking
artifact (in this case a near-symmetry- or pseudo-symmetry-
breaking artifact), which is generally discussed in valence bond
terms, the analysis will be best carried out by means of a
qualitative valence bond model.

IV. A Qualitative Valence Bond Model

A. Why Do Dissymmetrical Species Cause Problems?The
nature of three-electron bonding and the effect of electron
correlation are best illustrated by considering the symmetric
X∴X- case, in the framework of valence bond theory. It should
first be noted that the Hartree-Fock wave function can always
be expanded, by a simple mathematical operation, into its
valence bond components, displaying in the present case the
expected combination of resonating structures1 T 2, as has

been shown recently.37 It follows that the Hartree-Fock
description of a symmetric three-electron bond presents a
qualitatively correct physical picture, and that no left-right
electron correlation is needed, at variance with the two-electron
bond case. Yet, the Hartree-Fock level dramatically under-
estimates the three-electron bonding energies, owing to a subtle
built-in constraint that makes all the orbitals of1 equivalent to
those of2, while a better wave function would allow the orbitals
of the anionic fragments to be different (i.e., larger) from those
of the neutral fragments, leading to two resonating structures,
each having its specific set of orbitals, as in1′ T 2′. It has

TABLE 3: Dissociation Energies (kcal/mol) for the Dihalogen Anion Radicals

BS2
BS1

UHF MP2 PMP2 MP4 CCSD(T) UHF MP2 PMP2 MP4
CCSD(T)

w/soa sob exptl

other
ab initio

calculations

F∴F- 3.0 26.2 29.4 25.8 27.3 2.8 26.9 30.2 27.4 28.3 28.5,c 30.2d 25.7c

Cl∴Cl- 12.6 24.7 25.5 24.4 24.6 13.5 29.1 29.9 28.3 28.1 31.8d

Br∴Br- 18.5 31.6 30.9 29.6 29.6 14.1 27.9 28.5 27.2 27.0 23.5 27.0,e 27.9d 23.3f

I∴I- 14.4 24.4 24.8 23.4 23.5 13.9 26.0 26.2 24.9 24.7 17.4 23.5,g 24.3d 20.9h

F∴Cl- 1.8 23.7 25.3 24.2 29.5 2.1 29.0 30.9 28.0 28.6
F∴Br- 2.2 31.5 33.1 31.5 32.6 1.7 32.5 34.0 33.1 32.2
F∴I- 3.6 34.0 35.1 33.8 34.5 3.4 35.8 36.7 35.8 36.1 28.9
Cl∴Br- 14.8 25.7 26.4 25.5 25.7 14.2 26.9 27.6 26.6 26.5 23.0
Cl∴I- 14.7 23.8 24.2 23.2 23.4 14.9 24.2 24.7 23.5 23.3 16.1 22.3i 19.2h

Br∴I- 15.3 24.3 24.7 23.4 23.5 13.9 24.0 24.4 23.0 22.8 15.5 23.5i

a Without spin-orbit corrections.b Spin-orbit corrected.c Reference 18.d Reference 3.e Huber, K. P.; Herzberg, G.Molecular spectra and
molecular structure. IV. Constants of diatomic molecules; Van Nostrand Reinhold: New York, 1979.f Reference 19.g Reference 4.h Reference
22. i De obtained from the ZPE-corrected experimentalD0 value from the NIST Standard Reference Database Number 69, November 1998 Release.
ZPE corrections from our calculated frequencies (CCSD(T)/BS2).
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recently been shown that this effect,37 by which the orbitals
instantaneously adapt to the charge fluctuation in the resonating
picture, closely corresponds to the differential electron correla-
tion that is associated with the breaking or formation of the
three-electron bond. Note that although only the active orbitals
(those involved in the X∴X bond) are drawn in the above
schemes,all the orbitals of X- must be different from those of
X in 1′ or 2′. In the VB framework, going from1 T 2 to 1′ T
2′ can be accomplished in a direct way as in the BOVB method38

(BO standing for “breathing orbitals”), or in an indirect way
by performing a CI including1 and 2 and their monoexcited
structures obtained by substituting an occupied atomic orbital
for a virtual one.38c In the MO framework, the equivalent CI
would include all the monoexcitations from theσg

2σu andσgσu
2

configurations.38cTwo points are noteworthy: (i) the appropriate
CI space is included in the standard CISD space, made of the
single and double excitations from the Hartree-Fock determi-
nants; (ii) the correlated wave function that mimicks the orbital
optimization will include a lot of excited configurations, each
having a small coefficient, an ideal situation for perturbation
theories.39 Here are the basic reasons the simple MP2 level is
expected to perform well as a general rule, and to yield results
in agreement with MP4 or higher levels of theory.

Let us now consider the energyE of a wave function that
represents the mixture of the two resonating structures1 and2
in the general X∴Y- case, with the respective weightsλ2 and
ν2:

whereE(1) and E(2) are the energies of structures1 and 2,
respectively, and RE is the resonance energy arising from their

mixing. The first two terms can be gathered in a single variable,
ERS (the weighted energies of the resonance structures, i.e., the
energy of the system if there were no resonance energy), and
it is interesting to visualize separately the variations ofERS

and RE as the wave function represents a delocalized situation
(λ2 ) ν2) when both resonance structures contribute and the
charge is equally divided between both centers, or a localized
situation (λ2 . ν2 or ν2 . λ2) when only one resonance structure
is important. These variations are schematized in the three
diagrams of Figure 1, in which the delocalization is characterized
by λ2 - ν2 in the abcissa.

Thus, from the left-hand side of each diagram all the way to
the right-hand side, the wave function (whatever its level,
correlated or Hartree-Fock) is supposed to represent structure
1 alone (λ2 ) 1), then a mixture of1 and2 (λ2 ) ν2), and last
structure2 alone (ν2 ) 1).

Let us consider the symmerical case first (Figure 1a). In this
case the left- and right-hand parts of the diagram represent
symmetry-broken situations, while the (correct) symmetry-
adapted situation finds its place in the central part of the diagram.
At the correlated level (e.g., in the BOVB wave function), both
1 and2 have their optimal specific set of orbitals at each point
of the diagram, so thatERS(correlated) is a constant and displays
a horizontal line. The situation is different at the Hartree-Fock
level: while the orbitals are ideally optimized at both extremes
of the diagram to fit the unique resonance structure, in the
middle of the diagram the unique set of orbitals is a compromise
that fits neither1 nor 2, so thatERS(HF) displays a maximum.
This bump is at the origin of the (considerable) Hartree-Fock
error on the dissociation energies of three-electron bonds, and
results from a competition between resonance energy and the

Figure 1. Qualitative variations of the energy of a three-electron-bonded anion as a function of the delocalization of the negative charge in the
UHF determinant (see eq 1 in the text): (b) resonance energy; (0) summed energies of the two VB structures, at the UHF level; (4) summed
energies of the two VB structures, at the correlated level; (9) total energy at the UHF level; (2) total energy at the correlated level. The slopes of
the various curves at critical abscissas are emphasized by angular brackets.

E ) λ2E(1) + ν2E(2) + RE λ2 + ν2 ) 1 (1)
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so-called “orbital size effect”:40 delocalization improves reso-
nance, but at the expense of poorly describing each individual
resonance structure.

The total energy curve in orbital rotation space is of course
the sum of the RE andERS curves. The behavior of the RE
curve is the same at both the Hartree-Fock and correlated
levels: the resonance energy is at its best when the two
resonance structures have equal weights, in the middle of the
diagram. As a consequence, the RE curve (which we will
consider to be the same at both the Hartree-Fock and correlated
levels) displays a minimum. At the Hartree-Fock level, the
curvature ofERS(HF) is in general less sharp than that of RE,
so that the total energy is minimal in the middle of the diagram,
leading to a set of optimized orbitals that display the correct
delocalized charge distribution. Thus, the symmetric situation
is favorable in that the Hartree-Fock wave function displays
about the same electronic density as the correlated wave
function, so that this single-reference determinant is a priori
reasonable and can be safely used as a starting point for the
subsequent Møller-Plesset procedure.

Let us now consider a heteronuclear bond, X∴Y-, and
suppose that the two fragments X and Y have different
electronegativities, e.g., EA(Y)> EA(X) (Figure 1b). At the
correlated level, theERS(correlated) curve is still a straight line,
but it now displays a slope that reflects the different energies
of structures1 and2. As for the RE curve, it is unaffected by
the different stabilities of the resonance structures and still
displays a minimum in the middle of the diagram. Adding the
two curves leads to a minimal energy that is reached when the
RE andERS curves have their slopes opposite in sign and equal
in magnitude, at a point on the abcissa that determines the final
charge distribution in the molecule (correlated minimum in
Figure 1). Turning to the Hartree-Fock level, theERS(HF) curve
can be deduced from the precedingERS(HF) curve of Figure
1a by adding point by point this latter curve to the inclined
straight lineERS(correlated) of Figure 1b, thus assuming the
Hartree-Fock error to be the same in both situations at each
point of the abcissa. It follows from this construction that the
ERS(HF) slope is necessarilylarger, in absolute value, than the
RE slope at the abcissa of the correlated minimum, and that
the Hartree-Fock minimum for the total energy is left-shifted
with respect to the correlated level (HF minimum in Figure 1b).
As a consequence, the orbitals that result from the Hartree-
Fock optimization are inappropriate, as leading to a reference
determinant that does not display the correct electron density,
overlocalizing the charge with respect to the correlated level.
This defect is only incompletely overcome by the Møller-
Plesset process, leading to higher energies than if appropriate
orbitals had been used.41

What happens if the bond is slightly stretched out of its
equilbrium geometry? TheERS curves are unaffected, while the
resonance energy diminishes, because the two fragments have
a diminished overlap. It follows that the RE curve flattens while
theERS(HF) andERS(correlated) curves remain the same. This
inevitably results in an increase of the Hartree-Fock error,42

leading to a concomitant increase of the Møller-Plesset error
which is thereforedistance-dependent.This means that the
quality of the orbitals worsens as the bond is stretched, with
the consequence that the MP2 or MP4 energy will be more and
more upshifted, relative to the exact energy profile, as the bond
is elongated. This error on the dissociation energy curve is
expected to result in two consequences: (i) the bond length
will be found too short and (ii) the vibrational frequency
corresponding to the stretching mode will be found too large.

All the above discussion has been illustrated in the case of
Figure 1b, in which we have supposed that structures1 and2
have different energies but that this difference is correctly
reproduced at the Hartree-Fock level. This is of course not
always the case, owing to the fact, among others, that the
Hartree-Fock error on electronegativities may widely vary from
one fragment to another. The Hartree-Fock level may thus
either underestimate or exaggerate the energy difference of1
and 2, leading in the latter case to an increased tilting of the
ERS(UHF) curve relative toERS(correlated) as illustrated in
Figure 1c. In fact, as will be seen below, it is only in this latter
case that significant MPn errors will be found. As one can see,
a spectrum of situations may be encountered, but in all cases
the MPn error is predicted to be related to the same inadequacy
of the reference UHF determinant: its erroneous description of
the sharing out of the charge between the two fragments that
are three-electron-bonded. In such a case, a sophisticated method
such as CCSD(T) has the definite advantage over perturbation
methods to be much less sensitive to the quality of the starting
orbitals.

B. Discussion of the Computational Results.As yet the
qualitative valence bond analysis predicts that dissymmetrical
three-electron-bonded anions are subject to errors at the MPn
levels while symmetrical systems are not, and explains why the
errors consist in (i) bond lengths being found too short and (ii)
vibrational frequencies being found too large. It remains to be
understood why the errors occur in some systems and not in
others, and, more importantly, to be seen whether the validity
of one given MPn calculation can be ascertained by some easy
mean, without having to launch into high-level computations.

Several factors govern the relative energies of the X¨ - Ẏ vs
ẊŸ- VB structures, among which the relative electron affinities
of X and Y atoms are expected to play the major role, at least
for the lighter atoms of the series, where the effects of atomic
polarizabilities are presumably not predominant. If, for example,
X has a larger electron affinity than Y, then the X¨ -Ẏ VB
structure will be lower in energy than X˙ Ÿ-, as in Figure 1b.
However, it can be seen in Table 4 that the differences in
electron affinities are rather small for the halogen series (X)
F, Cl, Br, I), whether experimental or accurately calculated
values are considered. More important therefore than the electron
affinities themselves are the UHF errors on these quantities,

TABLE 4: Electron Affinities of the Halogen Atoms X and
Differential UHF Errors on the Atomic Electron Affinities in
an X∴Y- Molecule Aniona

BS1 BS2

UHF CCSD(T) UHF CCSD(T) exptlb

EA (X)
F 29.5 71.1 27.5 74.2 78.4
Cl 57.0 71.6 55.4 80.0 83.4
Br 57.3 72.9 55.6 77.0 77.5
I 55.5 67.0 54.0 67.6 70.5

∆∆EA(X,Y)c

F∴Cl- 27.1 22.1
F∴Br- 26.0 25.3
F∴I- 30.1 33.0
Cl∴Br- -1.1 3.3
Cl∴I- 2.9 11.0
Br∴I- 4.0 7.7

a Energies are in kilocalories per mole.b Lias, S. G.; Bartmess, J.
E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Gas-
Phase Ion and Neutral Thermochemistry,J. Phys. Chem. Ref. Data
1988, 17, Suppl. 1 and references therein.c Differential UHF error on
the electron affinities of X and Y, calculated by means of eqs 2 and 3
in the text.
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which can be quite significant (see Table 4). The UHF error,
noted∆EA(X), on the electron affinity of X is calculated by
reference to an accurate calculation, here CCSD(T), in the same
basis set:

Inaccurate MPn results are to be expected when the UHF errors
are very different for X and Y. Indeed, if, for example, the
electron affinity of X is found to be more erroneous (i.e., more
underestimated) than that of Y at the UHF level, then the X¨ -Ẏ
VB structure will be disfavored relative to X˙ Ÿ- and the charge
will be overlocalized on Y at this level, relative to experiment
or to accurate computational levels. In such a case, the root
cause for the UHF inadequacy and the subsequent MPn error
is thedifferential UHF error in the calculated electron affinity
of X and Y, which is defined as follows:

Now that we have tentatively spotted some general cases in
which the MPn levels are likely to be unreliable, can one get a
specific clue indicating that a given calculation is effectively
in error? In other words, how can onemeasurethe extent to
which the UHF determinant is inadequate as a reference deter-
minant for subsequent MPn calculations? As the problem
originates in an erroneous sharing out of the negative charge
at the UHF level, the simplest way to get a quantitative index
for the UHF inadequacy is to compare the UHF- and MP2-
calculated values for the net charges of the X and Y fragments.
Let qx and 1- qx be the net charges of the X and Y fragments,
respectively, as calculated at the UHF level, whileqx′ and
1 - qx′ are the net charges arising from the MP2 calculation.
Calling |1〉 and |2〉 the valence bond structures X¨ -Ẏ vs ẊŸ-,
the valence bond content of the UHF and MP2 wave functions,
namely, ΨUHF and ΨMP2, can be expressed as in eq 4. An

approximate expression (neglecting the〈1|2〉 term) for the
overlap between the UHF and MP2 valence bond (VB)
representations is given by the indexS in eq 5. It is clear that

the resemblance of the UHF and MP2 wave functions in terms
of the sharing out of the charge is measured byS, which is
equal to unity if the net charges are identically estimated at
both levels, and takes smaller values if the UHF and MP2 levels
differ in this respect. Therefore, a large value of 1- S is an
indication that the UHF and MP2 electron densities are in poor
agreement with each other, and that the MPn calculations will
display systematic deviations of bond lengths and frequencies
in proportion to 1- S if our qualitative model is correct.

Let us now put the above qualitative considerations through
the test of numerical data. The electron affinities of the halogen
atoms, as calculated at the UHF and CCSD(T) levels, as well
as the differential UHF errors for the various dihalogen anions
and values of the 1- S factor are displayed in Table 4. All
calculated electron affinities underestimate the electron affinities
relative to experiment. The agreement between experimental
values and CCSD(T) values is better in the BS2 basis set than
in the BS1 basis set, while the UHF values are in error by 1-2

eV in both basis sets. This latter error is however not uniform,
being much larger for fluorine than for the other halogens,
leading to large differential errors as displayed in the lower part
of Table 4.

On the whole, it appears that the MPn errors are related in
some way to the importance of the differential UHF errors on
the fragments’ electron affinities, as expected. Large∆∆EA
values (22-33 kcal/mol) are indeed found for F∴Cl- and
F∴Br-, for which MPn results are inaccurate, while smaller
∆∆EA values are found for Cl∴Br-, Cl∴I-, and Br∴I- that
pose no particular problem. On the other hand, F∴I- is well
described at the MPn levels despite its high∆∆EA value. An
explanation for this apparent anomaly might come from the
high polarizability of iodine, which possibly makes the relative
energies of the F˙ Ï- and F̈-İ VB structures have nothing to do
with the electron affinities of the fragments, and these energies
are rather ruled by other factors. Be it as it may, the various
effects that rule the sharing out of the charge at the UHF level
result in an electron density which agrees or conflicts with that
calculated at higher levels, as characterized by the 1- S index.

The net charges for the X and Y fragments have been
calculated by means of the standard natural population analysis,
known to be more reliable than the Mulliken population analysis,
and are shown in Table 5. Roughly speaking, the discrepancy
between UHF- and MP2-calculated net charges is inferior to
10% for F∴I- and Br∴I-, is somewhat larger (only in BS1)
for Cl∴I- and Cl∴Br-, and becomes quite large for the two
remaining species, irrespective of the basis set. The values of 1
- S are reported side by side with the MPn errors relative to
the CCSD(T) level in terms of X-Y bond lengths and stretching
frequencies. It is found that the 1- S quantity, which can be
considered as a direct measure of the inadequacy of the UHF
determinant, exhibits a remarkable correlation with the MPn
error. Focusing on the calculations performed in BS1, the
1 - S index takes low values, smaller than 0.004, for F∴I-

and Br∴I-, two species that are rather accurately described at
the MP2 level, with errors on the optimized bond lengths in
the range 0.01-0.03 Å, which is quite satisfying if one recalls
that bond lengths in the symmetric cases are found consistently
too short by ca. 0.02 Å at the MP2 level. Slightly larger errors,
0.03-0.04 Å, are found for Cl∴I- and Cl∴Br-, which exhibit
values for 1- S in the range 0.013-0.014. The largest errors,
respectively, 0.085 and 0.152 Å, are found for F∴Br- and
F∴Cl-, and follow the order of the calculated 1- S values,
0.12 and 0.22. Similar correlations are found with the results
obtained in the BS2 basis set. More specifically, one can
establish an empirical linear relationship between the 1- S
index and the MP2 error on the bond length:

∆EA(X) ) EAUHF(X) - EACCSD(T)(X) (2)

∆∆EA(XY) ) ∆EA(X) - ∆EA(Y) (3)

ΨUHF ) qx|1〉 + (1 - qx)|2〉 (4a)

ΨMP2 ) qx′|1〉 + (1 - qx′)|2〉 (4b)

S)
qxqx′ + (1 - qx)(1 - qx′)

[qx
2 + (1 - qx)

2]1/2[qx′
2 + (1 - qx′)

2]1/2
(5)

TABLE 5: Calculated Net Charges for the X Fragment in
X∴Y- and Values of the 1- S and 1 - S′ Indices for the
Dihalogen Anion Radicals

BS1 BS2

qx
a qx′ b 1 - Sc 1 - S′d qx

a qx′ b 1 - Sc 1 - S′ d

F∴Cl- 0.503 0.904 0.218 0.324 0.534 0.895 0.175 0.276
F∴Br- 0.597 0.907 0.118 0.208 0.625 0.903 0.092 0.178
F∴I- 0.749 0.800 0.003 0.078 0.767 0.796 0.001 0.074
Cl∴Br- 0.578 0.493 0.014 0.121 0.576 0.565 0.000 0.104
Cl∴I- 0.672 0.587 0.013 0.113 0.678 0.656 0.001 0.095
Br∴I- 0.611 0.58 0.002 0.101 0.611 0.617 0.000 0.101

a Natural population analysis of the UHF wave function.b Natural
population analysis of the MP2 wave function.c From eq 6.d From eq
8.

∆Req (Å) ) 0.546 (1- S) + 0.020 (6)
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where∆Req is the quantity by which the MP2 bond length is
underestimated relative to the CCSD(T) level. As applied to
the series of dissymmetrical dihalogen radicals, eq 6 is able to
predict the 12 values for the MP2 errors with an accuracy of
(0.013 Å, irrespective of the basis set that has been used. It is
even possible to define an empirical expression that has a better
predicting power than eq 6, at the cost of some extra complexity,
by taking into account the overlap〈1|2〉 between the two VB
structures, a term which is neglected in the expression ofS in
eq 5. This leads to an improved expression for theS index,
now called S′ in eq 7, whereγ is an empirically adjusted

parameter that represents the unknown overlap〈1|2〉. A new
expression for∆Req arises, eq 8, which is now able to reproduce
the 12 MP2 errors on the X-Y bond lengths to an amazing
accuracy of(0.006 Å.

Similar, although more qualitative, correlations with the
1 - Sor 1 - S′ indices are obiously found for the MP2 errors
on the stretching frequencies, since the latter have been found
to be closely connected to the errors on bond lenghs. As for
the dissociation energies, it has already been noted that they
appear to be less affected than geometries and bonding frequen-
cies by the UHF inadequacy. Yet, we believe this good
agreement of MPn bonding energies with higher levels to be
fortuitous. Indeed, the dissociation product of the F∴X- anion
(X ) Cl, Br) is of the type F˙ Ẍ-, while the ground state of the
bonded molecule is a mixture of the F˙ Ẍ-and F̈-Ẋ VB structures.
If for some reason the MPn levels favor the latter VB structure
with respect to the former, then this error tends to lower the
ground state relative to the dissociation product. Examination
of the MPn electron affinities of F, Cl, and Br shows that this
is indeed the case. For example, the MP2/BS1 electron affinity
of fluorine amounts to 78.5 kcal/mol, which is significantly
higher than the CCSD(T) value and even larger than experiment.
On the other hand, the electron affinities of chlorine and
bromine, respectively, 73.5 and 75.2 kcal/mol at the same level,
are less overestimated, clearly favoring F¨-Ċl over ḞC̈l- and
F̈-Ḃr over ḞB̈-. The same tendencies appear at the MP4 level
and in the BS2 basis set. This artifact tends to increase the
energy of the dissociation products relative to the molecule, thus
counterbalancing the bonding energy decrease that was expected
on the basis of the qualitative analysis above. These two sources
of errors, which appear to fortunately cancel out in most cases,
both disappear in symmetrical systems.

C. Trusting or Distrusting Møller -Plesset Calculations
for Three-Electron-Bonded Radical Anions: A Thumb Rule.
As shown from the qualitative considerations that have been
developed in Section IV.A, there are some good theoretical
reasons to trust Møller-Plesset calculations, even at second
order, in the case of symmetrical three-electron-bonded anions.
On the other hand, the unsymmetrical analogues are potentially
subject to systematic errors in some well-defined cases that are
easily recognized by considering some simple information that
is routinely provided by the standard ab initio programs. The
two above statements can be gathered in the following thumb
rule, which is worth considering as a practical safeguard to
check the validity of a computational investigation:Optimized
geometries,Vibrational frequencies, and dissociation energies
of three-electron-bonded radical anions can be calculated at
the MP2 and MP4 leVels and deemed reliable proVided the UHF

and MP2 population analyses yield comparable results, say
within 10%, as regards the sharing out of the charges among
the two fragments. If not, one expects the equilibrium distance
of the three-electron bond to be found too short, while the
corresponding stretching frequency should be found too high.

Owing to its physical basis, the above rule is expected to be
general and to extend beyond the restricted domain of dihalogen
anion molecules. Practically, some difficulties can be anticipated
for systems composed of two fragments which have very
different electron correlation requirements for their electron
affinity to be calculated, leading to large∆∆EA values. This
may happen, for example, when one fragment has compact
orbitals while the other has more diffuse ones. More generally,
a large UHF error on the electron affinity is expected for a
fragment that can only offer a confined space for an additional
electron, thus making correlation effects particularly important.
Finally, it is important to note that the above thumb rule is
proposed on the basis of a two-structure VB model, and
therefore cannot be extended to electronic systems that require
more than two mesomeric structures for their qualitative
description in VB terms. Such cases are encountered when, for
example, one or both fragments have a delocalized electronic
structure.43 In the same way, the above analysis applies to simple
three-electron bonds and not to multiply bonded systems. These
limitations being placed, let us now apply the above rule to
attempt some predictions on some unsymmetrical radical anions
of chemical interest.

V. Application to Some Three-Electron-Bonded Organic
Anions

Candidates for fragments that could possibly form three-
electron-bonded anions are to be searched among good electron
acceptors, displaying comparable electron affinities. HS and
SCH3 are well-known to be prone to form such interactions.
The hydroxyl radical, HO, has an electron affinity comparable
to that of SH (42.2 vs 53.3 kcal/mol experimentally). While
the HO∴OH- isomer is unstable and collapses to hydrogen-
bonded forms because of the large polarity of the O-H bond,
a three-electron-bonded form of the type HO∴SR- can be
thought of. The CF3 radical also has an electron affinity (42.4
kcal/mol) in the same range as that of RS or OH, and has been
shown to form three-electron bonds in HS∴CF3

- or H3CS∴CF3
-

radicals.11 The list is of course by no means exhaustive. To
restrain oneself to the above-cited examples, any combination
between the HO, HS, H3CS, and F3C fragments can a priori
lead to stable three-electron-bonded anions.

The electron affinities of these four radicals, as calculated at
the UHF level in the 6-31+G* basis set (BS1) are displayed in
Table 6 and compared with experimental values.

It appears that, if all UHF values are largely underestimated,
the errors relative to experiment display considerable variations.
While the electron affinities of HS•, H3CS•, and F3C• are
calculated with roughly constant errors on the order of 1 eV,

S′ ) S+ γ(qx + qx′ - 2qxqx′) (7)

∆Req (Å) ) 0.5816(1- S′) - 0.0313 (8)

TABLE 6: Electron Affinities EA(X) a of the Constituent
Fragments of Some Typical Three-electron-bonded Organic
Anions

UHF/BS1
(this work) exptl

UHF/BS1
(this work) exptl

OH -6.47 42.2b SCH3 15.36 42.9c

SH 26.17 53.3c CF3 9.68 42.4( 4d

a All energies in kilocalories per mole.b Celotta, R. J.; Bennet, R.
A.; Hall, J. L. J. Chem. Phys.1974, 60, 1740.c Janousek, B. K.; Reed,
K. J.; Brauman, J. I.J. Am. Chem. Soc.1980, 102, 3125.d Bartmess,
J. E.; Scott, J. A.; McIver, R. T.J. Am. Chem. Soc.1979, 101, 6047.
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that of HO• is calculated with twice this error, and does not
even display the correct sign. These tendencies are reasonable
and expected (see above) since the negative charge in HO-,
which has compact first-row orbitals, is more confined than it
is in HS- or H3CS-. As for the fragment F3C•, the UHF error
on its electron affinity is intermediate between that of HO• and
that of the other two radicals. From these data, one can
tentatively expect that the largest MP2 errors on the optimized
geometries will be found for HO∴SH- and HO∴SCH3

-.
The geometries of the six possible three-electron-bonded

anion radicals that can be made out of the four fragments above
have been optimized at the MP2 level, in the 6-31+G* basis
set (BS1), and the net charges (cumulated for each fragment)
have been calculated at the UHF and MP2 levels. The results
for the net charges, displayed in Table 7, are very contrasted.
H3CS∴CF3

- and HS∴CF3
- have their UHF- and MP2-

calculated net charges in reasonable agreement, within 10%,
and can thus be expected to be accurately described at the MP2
level, according to the above thumb rule. The agreement worsens
for HS∴SCH3

- and HO∴CF3
-,with a discrepancy of 20-30%

between the UHF and MP2 values, leading to the prediction
that the bond lengths for these two species will be found
somewhat too short at the MP2 level, while the stretching
frequencies (more specifically the force constants for the
stretching of the three-electron bond) will be found too large.
An MP2 error of the same type, but still larger, is predicted for
HO∴SCH3

- for which the UHF vs MP2 discrepancy for the
calculated net charges is close to 50%. Last, a huge MP2 error
is predicted for HO∴SH-, which displays completely different
net charges at the UHF and MP2 levels.

Figure 2 shows the structures of the six radical anions,
together with selected geometrical data and force constants, as
fully optimized at the MP2 level and fully or partially optimized
at the CCSD(T) level. The quality of the MP2 results, in terms
of geometries and force constants, runs from excellent to very
poor, depending on which system is considered. Thus, the MP2
bond lengths of H3CS∴CF3

- and HS∴CF3
- are found to be

quite close to the CCSD(T) values, only 0.01-0.02 Å too short,
an excellent agreement if one recalls that MP2 bond lengths
are found systematically slightly too short in symmetrical
systems. The MP2 force constants are also reasonably accurate
for these two species, leading to stretching frequencies within
4% of the CCSD(T) values. Next in accuracy come the
HS∴SCH3

- and HO∴CF3
- systems with MP2 errors of 0.04-

0.05 Å on the bond lengths, and nonnegligible overestimations
of the force constants. Last, large MP2 errors are found for the
two remaining systems, especially HO∴SH- for which the bond
length is 0.21 Å too short at this level, while the relative
orientation of the two fragments, which is related to the strength
of the three-electron bond, is also very poor. As for the force
constant, it is more than 3 times too large, leading to a stretching
frequency that would be overestimated by a factor of 1.75. All

this closely follows the predictions that have been made above
on the basis of calculated net charges. Moreover, the MP2 errors
on the bond lengths of these organic systems are found to
quantitatively correlate with the 1- S′ index in eq 8, just as
the errors on the dihalogens. This correlation is illustrated in
Figure 3, which displays the whole set of MP2 errors that have
been found in the 18 calculations of dissymmetrical systems
that have been performed in the present work, in the BS1 or
BS2 basis set, as a function of 1- S′. It is clear that a nice
linearity appears, meaning that the MP2 errors in dissymmetrical
radical anions do not happen by accident but are on the contrary
physically rooted and predictable.

TABLE 7: Calculated Net Charges for the X Fragment in
X∴Y- and Values of the 1- S and 1 - S′ Indices for the
Organic Radical Anions

qx
a qx′ b 1 - Sc 1 - S′ d

HO∴SH- 0.288 0.711 0.304 0.429
HO∴SCH3

- 0.574 0.839 0.099 0.195
HO∴CF3

- 0.575 0.733 0.041 0.140
HS∴SCH3

- 0.598 0.505 0.017 0.123
HS∴CF3

- 0.533 0.493 0.003 0.110
H3CS∴CF3

- 0.459 0.466 0.000 0.106

a Natural population analysis of the UHF wave function.b Natural
population analysis of the MP2 wave function.c From eq 6.d From
eq 8.

Figure 2. Geometries of (a) HO∴SH-, (b) HO∴SCH3
-, (c) HO∴CF3

-,
(d) HS∴SCH3

-, and (e) H3CS∴CF3
-, as optimized at the MP2 and

CCSD(T) levels in the BS1 basis set. At the CCSD(T) level, the only
parameters that are reoptimized relative to the MP2 geometry are those
indicated.
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VI. Conclusion

A qualitative model, based on a valence bond reading of MO
wave functions for three-electron-bonded species, vindicates the
often assumed fact that Møller-Pesset calculations offer a good
description of symmetrical homonuclear three-electron bonds
by providing fairly accurate equilibrium bond lengths, stretching
frequencies, and dissociation energies. By contrast, the same
model predicts that these optimistic conclusions cannot be
extended blindly to isoelectronic systems devoid of left-right
symmetry, and may break in some cases ofdissymmetricalthree-
electron-bonded anions. The present calculations show that such
systems are indeed potentially problematic, as MP2 or even MP4
results can display considerable errors on the optimized
geometries and stretching frequencies. This warning is all the
more relevant as the lowest of our MPn levels, MP2 in basis
set BS1, is precisely the standard level for geometry optimization
and better than standard for calculations of vibrational frequen-
cies in the G2 procedure. Thus, among a series of dissymmetri-
cal dihalogen anions, calculated in two different basis sets,
completed by a set of three-electron-bonded organic anions,
some errors peaking to 0.21 Å have been found in three-electron
bond lengths at the MP2 level, while some vibrational frequen-
cies are overestimated by a factor of almost 2.

The reason for the Møller-Plesset failure in such cases lies
in a severe inaptitude of the UHF level to represent the sharing
out of the negative charge among the two fragments. This
inadequacy results in a set of optimized molecular orbitals that
is poorly adapted to the subsequent perturbation calculation,
and carries over to the MP2 and MP4 levels. Such situations
have a chance to be encountered whenever the UHF errors on
the electron affinities of the two fragments happen to be widely
different.

The occurrence of the UHF inadequacy, and therefore of the
MPn error, can fortunately be accurately detected by examining
the net charges of the two fragments, as calculated by means
of a standard natural population analysis performed at both the
UHF and MP2 levels. The MP2 errors, relative to the accurate
CCSD(T) level, on the interfragment bond lengths and on the
stretching frequencies are shown to be systematic and predict-
able, as linearly related to a simple function of the fragments’
net charges. There follow some simple thumb rules: (i) The
MP2 and MP4 levels are predicted to perform well for
symmetrical three-electron-bonded anions, and provide equi-
librium geometries, vibrational frequencies, and dissociation
energies that are in good agreement with each other and with

higher levels of computation. (ii) Unsymmetrical three-electron-
bonded anions X∴Y- subdivide into two cases. If the MP2-
calculated net charges for the X and Y fragments remain
comparable to the UHF-calculated ones, then the MP2 and MP4
levels should be reliable for the study of the X∴Y- system. If
on the contrary the two sets of net charges widely differ from
each other, then the MPn levels should lead to errors that consist
of systematically biased geometries and frequencies for X∴Y-,
the X-Y bond length being found too short and the corre-
sponding vibrational frequency too high.

The above rulessand in particular the optimistic conclusions
for the MP2 description of symmetrical systemssare limited
to simple three-electron bonds and do not extend to multiply
bonded systems nor to delocalized three-electron-bonded sys-
tems that must be represented by more than two mesomeric
structures. This restriction being placed, no exception to these
rules has been found among the 26 calculations of symmetrical
or dissymmetrical species that have been performed in this work.

What then are the best alternative computational methods in
cases where the MPn levels are expected to fail? DFT might
be thought of, as in such methods the orbitals are determined
by taking electron correlation into account, thus avoiding the
inappropriate orbitals arising from the Hartree-Fock level.
Unfortunately, DFT methods have been shown to perform very
poorly for three-electron bonds,26 with the exception of the
BHLYP functional that is better than the others but still not
very reliable. On the other hand, a valence bond method like
BOVB38 completely avoids the competition between orbital size
effects and resonance, which is the root cause of the UHF and
subsequent MPn problems. However, this method is not
applicable to large systems for reasons of computational cost,
like any method dealing with nonorthogonal orbitals, owing to
the well-knownn! problem. Work is presently in progress, in
our laboratory, for defining small MCSCF expansions that would
reproduce the valence bond results in the framework of
molecular orbitals. In the meantime, difficult cases such as those
that have been defined above require CCSD(T) or other high
computational levels.
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