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A theoretical framework is presented that connects “classic” fluorescence correlation spectroscopy (FCS)
treating averages of many freely diffusing molecules and FCS single-molecule analysis. By assuming a general
two-state emission dynamics of the single molecule, expressions describing the autocorrelation of the total
fluorescence fluctuations are derived. By studying an idealized experimental situation, the relation between
signal-to-noise and signal-to-background ratios are discussed. Under appropriate conditions it is possible to
make statistically feasible measurements of single molecule dynamics despite low signal-to-background. The
quantum yield ratio of the background molecules to the single molecule as well as the position of the single
molecule inside the detection volume are crucial in obtaining good signal-to-noise ratios in single-molecule
experiments.

1. Introduction

Fluorescence Correlation Spectroscopy (FCS) is used in a
wide range of experiments involving temporal dynamics of the
fluorescence from molecules in solution.1 The fluorescence
fluctuations can have different origins such as Brownian motion
of the molecules,2 rotational Brownian motion of the molecule,3

chemical reactions changing the fluorescence properties of the
molecule,2 or singlet-triplet interactions in a molecule.4 Re-
cently, FCS has been applied to experiments involving the study
of single immobilized molecules.5,6 The autocorrelation of the
detected fluorescence is a very informative addition to the
fluorescence intensity trace of which both are recorded in real
time during the experiment.

So far, the experimental introduction of FCS on single
immobilized molecules5,6 has not been accompanied by a more
in depth theoretical treatment that penetrate the connection
between “classic” FCS with many particles undergoing Brown-
ian motion and the case of a single immobilized molecule. In
this paper, we derive autocorrelation functions describing the
situation with a single immobilized molecule in a background
of many freely diffusing molecules. Furthermore, we study the
statistical properties of the autocorrelation function with the aim
to investigate the feasibility to do single molecule analysis under
different experimental conditions.

In the typical single-molecule experiment, effort is put in to
optimize the conditions in the direction of highest possible ratio
between the fluorescence intensity signal of the single molecule
and the fluorescence signal of the background (e.g.,S/B ratio
) single molecule fluorescence intensity/background fluores-
cence intensity). However, many experiments on single mol-
ecules studied under biologically relevant conditions have an
inherent fluorescence background, which often is difficult to
reduce without paying a price of less biological significance.6

It is therefore motivated to make a more detailed investigation
with aim to penetrate how the experimental conditions in a
typical single molecule experiment affect the visibility of the
spectroscopic dynamic features of the single molecule. The
visibility is here defined as the signal-to-noise ratio (S/N )

signal/standard deviation of the signal) of the autocorrelation
of the emission dynamics of the single molecule in a back-
ground. The analysis is carried out assuming an idealized
situation ignoring limited measuring time, and the discrete
representation of time in the measurement equipment.7 Also,
so-called shot-noise effects8 will not be included in the present
analysis, which means that we assume that the absolute values
of the quantum yields are not very small. This should not induce
a restriction to the present analysis since it makes use of the
differences (ratios) of the quantum yields of the single molecule
and the background.

The variance of the autocorrelation function enables for the
S/N ratios of a given model to be defined yielding an analytical
expression betweenS/B andS/N ratios. One of the goals in the
present paper, to assess various experimental conditions versus
the visibility of single molecule dynamics in a background, can
then be achieved. An analysis is made on the interplay of the
single molecule and the background fluorescence with regard
to physical parameters. Examples of such parameters are the
optical properties of the molecules, the position of the single
molecule in relation to the excitation light profile, the excitation
light intensity, autocorrelation time scales implied by diffusion
times, and the dynamics of the single molecule.

The expressions of the variance should also be useful as
weight functions in evaluation (fitting) of experimental data to
a given model. However, we point out that the best possible
weight function is obtained by the variance of the experimental
autocorrelation data when available.9

2. Derivation of the Correlation Function

2.1. No Background Fluorescence.Consider a general
expression of the autocorrelation of the fluorescence intensity
fluctuations as given in3

In eq 1, I(t) denotes the detected photon flux at timet. δI(t)
denotes the photon flux deviation from its mean value at time

G(τ) ) 〈I〉2 + 〈δI(0)δI(τ)〉 (1)
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t. A stationary state is assumed in which photons are detected
with equal probability in the sample volumeV. Also3

wheref(r ,τ|r0)dr dt denotes the probability that a molecule that
emitted a photon within the interval [0,dt] from a small volume
centered aroundr0 emits another photon within the interval
[τ,τ+dt] from a small volume centered aroundr . M is the
number of molecules in the total sample volumeV. No particle
transport can take place through the surface ofV. In this paper
we will assume thatV is infinitely large as compared to all other
characteristic volumes. Below, we hence setV equal to full
three-dimensional space (V ) R3). 〈C(r )〉dr dt is the uncondi-
tional probability to detect a photon from a very small volume
centered aroundr in a time period dt originating from any of
the totalM sample molecules.

In a single-molecule experiment we haveM ) 1. For
simplicity we will assume that the spectroscopic fluctuations
of the single molecule consist of two states, one fluorescent
state and one nonfluorescent state. The binary description of
the molecule’s spectroscopic fluctuation is supported by the
experimental conditions of a large set of single molecule
experiments.5,6,10-12

〈C(r )〉 is related to the molecular concentrationcm(r ) per unit
volume, the laser light intensityi(r ), the probability that a laser
light photon incident at the molecule will give rise to an by the
molecule emitted photon (qm), and the probability that the
molecule is in its fluorescent statepf. We have

wheref(τ) is the probability that the immobilized single molecule
situated atrm is in its fluorescent state timeτ given that the
molecule was in its fluorescent state time 0. The difference
between the conditional probabilityf(τ) and the unconditional
probability pf gives the correlation between two detected
photons. Observe thatf(τ) is a conditional probability that
provide information about local variations of the stationary
fluorescence intensityI(t).

Hence,

In the case of a single immobilized molecule, the concentration
c(r ) is concentrated to one single spotrm:

Equations 3-5 substituted into eq 2 yields

The molecule always emits fluorescence at the same single spot
rm, hence

The analysis in this paper is based on an immobilized single
molecule that shifts its fluorescent properties between one
nonfluorescent state and one fluorescent state. The fluorescent
state is characterized by that a photon incident at the molecule

with probabilityqm will give rise to a by the molecule emitted
photon.

Combining eqs 6 and 7 yields

The mean intensity from the single molecule is equal to

Equationss 8 and 9 in eq 1 gives the expression of the
normalized autocorrelation functions for the case of a single
immobilized molecule without background fluorescence,

2.2. Background Fluorescence.In the case of fluorescence
from freely diffusing molecules, in addition to the fluorescence
of the single molecule, the photon fluxI(t) will have two origins.
First, the fluorescence from the single molecule (Im(t)) and
second the fluorescence from the freely diffusing molecules (If-
(t)),

Hence,

We still have one single immobilized molecule, eq 2 withM )
1 provides the expression of〈δIm(0)δIm(τ)〉. On the other hand,
the total number of freely diffusing fluorescent molecules within
the volumeV is very large in the typical FCS experiment
wherefore eq 2 derived for an ensemble of background
molecules yield

where the indices “f” indicate that the entities are defined for
the case of freely diffusing molecules.

In this paper we will assume that

meaning that the fluorescence from the single molecule is not
correlated with the fluorescence of the free molecules, and vice
versa. This assumption is based on experimental facts from the
study of single immobilized enzyme molecules6 where the time
scales of the dynamics of the single molecule and the charac-
teristic passage time of the background molecules through
detection volume are very different.

Using eqs 8 and 12-14 in eq 12, we obtain

wherec is the homogeneous concentration per unit volume of
free molecules,qf is the probability that a laser light photon

〈δI(0)δI(τ)〉 ) (f(τ) - pf)pf[i(rm)qm]2 (8)

〈I〉 ) ∫R3c(r )i(r )qmpf dr ) i(rm)qmpf (9)

G(τ)

〈I〉2
) GN(τ) ) 1 + [f(τ)

pf
- 1] )

f(τ)
pf

(10)

I(t) ) Im(t) + If(t) (11)

〈δI(0)δI(τ)〉 ) 〈δ(Im(0) + If(0))δ(Im(τ) + If(τ))〉 )

〈δIm(0)δIm(τ) + δIm(0)δIf(τ) + δIf(0)δIm(τ) +
δIf(0)δIf(τ)〉 )

〈δIm(0)δIm(τ)〉 + 〈δIm(0)δIf(τ)〉 + 〈δIf(0)δIm(τ)〉 +

〈δIf(0)δIf(τ)〉 (12)

〈δIf(0)δIf(τ)〉 ) ∫R3 ∫R3 ff(r ,τ|r0)〈Cf(r0)〉dr dr 0 (13)

〈δIm(0)δIf(τ)〉 ) 〈δIf(0)δIm(τ)〉 ) 0 (14)

〈δI(0)δI(τ)〉 ) qf
2c∫R3 ∫R3 i(r )p(r ,τ|r 0)i(r 0)dr dr 0 +

(f(τ) - pf)pf[i(rm)qm]2 (15)

〈δI(0)δI(τ)〉 ) ∫V ∫V[f(r ,τ|r0) -
〈C(r )〉

M ]〈C(r0)〉 dr dr0 (2)

pf ) lim
τf∞

f(τ) (3)

〈C(r )〉dr dt ) cm(r )i(r )qmpfdr dt (4)

cm(r ) ) δ(r - rm) (5)

〈δI(0)δI(τ)〉 ) ∫R3 f(r ,t|rm)pfqmi(rm)dr - [pfqmi(rm)]2 (6)

f(r ,τ|rm)dr dt ) f(τ)i(rm)qmδ(r - rm)dr dt (7)
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incident at the free molecule will give rise to an emitted photon.
p(r ,τ|r 0)drdt is the probability that a freely diffusing molecule
is situated in a small volume aroundr within the time [τ,τ+dt],
provided that it was situated in a very small volume aroundr0

at time [0,dt]. Assuming that the background molecules are
undergoing Brownian motion with diffusion constantD, the
solution is obtained by the Fokker-Planck equation as

The laser light intensity profile is given by13

wherew andz0 are constants>0 and thez direction is parallel
with the laser beam. The maximum laser light intensity is given
by i0. Inserting eqs 16 and 17 in eq 15 and executing the
integrals then yield

Also,

If eq 18 and eq 19 are inserted into eq 1, the general expression
of the normalized autocorrelation function follows

If the fluorescence intensity from the immobilized single
molecule is much larger than the fluorescence intensity from
the freely diffusing molecules, and also the photophysical
properties of the immobilized molecule and the free molecules
are assumed equal so thatq ) qm ) qf,

In eq 21,N denotes the average number of freely diffusing

molecules that are inside the open volume element (VE) from
where the fluorescence is detected from, defined by all points
having i0exp(-2) or higher laser light intensity. The volume
VVE of the VE is that of an ellipsoid,

and

If the fluorescence from the freely diffusing molecules is very
much larger than the fluorescence of the immobilized single
molecule,

The constant

Observe that the constantεE is not an implication of the
special case of an immobilized single molecule and background
fluorescence considered here. It is a general correction term for
autocorrelation models that describe fluorescence fluctuations
from molecules undergoing Brownian motion in three dimen-
sions excited to fluorescence by the laser light profile as given
by eq 17. If a Gaussian profile is used in the perpendicular plane
to the laser beam (x-y directions), but a uniform profile in the
direction of the laser beam (z direction)εE ) 1.2

3. Statistical Aspects of the Autocorrelation Function

3.1. Variance of the Autocorrelation Function. In the
following section, all entities having the subscript “exp” are
considered experimental observables. Consider an experimental
measurement of the fluorescence autocorrelation function,

If a measurement is performedN times, the best estimate of
the autocorrelation functions is

We will assume that the measurements are independent. The
variance of the correlation function is defined by

p(r ,τ|r 0) ) 1

(4πDτ)3/2
exp(-

(r - r 0)
2

4Dτ ) (16)

i(r ) ) i0 exp(-2
x2 + y2

w2 ) exp(-2
z2

z0
2) (17)

〈δI(0)δI(τ)〉 ) qf
2 i0

2c
π3/2

8

w2z0

(1 + 4D

w2
τ)x1 + 4D

z0
2

τ

+

(f(τ) - pf)pf[i(rm)qm]2 (18)

〈I〉 ) qfi0c
x2
4

w2z0π
3/2 + qmi(rm)pf (19)

GN(τ) )
G(τ)

〈I〉2
) 1 +

qf
2 i0

2c
π3/2

8

w2z0

(1 + 4D

w2
τ)x1 + 4D

z0
2

τ

+ (f(τ) - pf)pf[i(rm)qm]2

(qfi0c
x2
4

w2z0π
3/2 + qmi(rm)pf)2

(20)

GN(τ) )
f(τ)
pf

+ c
π3/2

8[i(rm)pf]
2

w2z0

(1 + 4D

w2)τx1 + 4D

z0
2

τ

)

f(τ)
pf

+ 1

[i(rm)pf]
2

3
32

xπN

(1 + 4D

w2
τ)x1 + 4D

z0
2

τ

(21)

VVE ) 4
3

πw2z0 (22)

N ) VVE c (23)

GN(τ) ) 1 + 1
εEN

1

(1 + 4D

w2
τ)x1 + 4D

zo
2

τ

(24)

εE ) 3
4
xπ ≈ 1.33 (25)

Gexp(τ) ) 〈I〉exp
2 + 〈δI(0)δI(τ)〉exp (26)

Gexp(τ) )
1

N
∑
i)1

N

Gexpi
(τ) )

1

N
∑
i)1

N

Iexpi

2 +
1

N
∑
i)1

N

δI(0)δI(τ)expi

(27)
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In the limit whenN f ∞,

The variance is given by the mean-square deviation fluctuation:

In eq 32,t denotes time (brackets denotes time averages). See
Figure 1 for a complementary description of the involved
entities. For the mean-square squared-intensity fluctuation, eq
33, the result is given by

or explicitly

For the case of eq 32, the interpretation is somewhat abstract
since the physical meaning is that of “the fluctuation of the
fluctuations” of the fluorescence intensity (Figure 2). An

expression is derived in the appendix yielding the following
expression,

An explicit form of eq 35 is obtained upon execution of the
integrals:

3.2. S/N Ratios. Here, the signal-to-noise (S/N) ratio is
defined by

Figure 1. Definitions of the components used in the analysis and
derivation of〈(δ(δI(0)δI(τ)))2〉.

Figure 2. Description of the quantityδI(0)δI(τ)|t that fluctuates around
its mean value〈δI(0)δI(τ)〉. At a given timet the deviation from the
mean value, referred to as the fluctuations of the fluctuations, is denoted
(δ(δI(0)δI(τ)))|t. The time-average of the squared value of (δ(δI(0)δI(τ)))|t
is equal to〈(δ(δI(0)δI(τ)))2〉, the variance of〈δI(0)δI(τ)〉.

〈(δ(δI(0)δI(τ)))2〉 )

cqf
4 ∫R3 ∫R3 i2(r ′)p(r ′,0|r ′′,-τ)i2(r ′)dr ′ dr ′′ +

c2qf
4(∫R3 ∫R3 i(r )p(r ,0|r ′,-τ)i(r ′)dr dr ′)2 +

c2qf
4(∫R3 ∫R3 i2(r )dr )2 + (qmi(rm))4(pf(f(τ) - pf) -

((f(τ) - pf)pf)
2) (35)

〈(δ(δI(0)δI(τ)))2〉 ) cqf
4 i0

4x2π3/2

32

w2z0

(1 + 8D

w2
τ)x1 + 8D

w2
τ

+

c2qf
4 i0

4(π3/2

8

w2z0

(1 + 4D

w2
τ)x1 + 4D

z0
2
τ)2

+

c2qf
4 i0

4 x2
32

π3/2w2z0 + (qmi(rm))4(pf(f (τ) - pf) -

((f(τ) - pf)pf)
2) (36)

Var(Gexp(τ)) )
1

N
∑
i)1

N (Gexpi
(τ) -

1

N
∑
j)1

N

Gexpj
(τ))2

)

1

N
∑
i)1

N

(Gexpi
(τ))2 - (1

N
∑
i)1

N

Gexpj
(τ))2

)

1

N
∑
i)1

N

(Iexpi

2 + δI(0)δI(τ)expi
)2 -

(1

N
∑
i)1

N

(Iexpi

2 + δI(0)δI(τ)expi
))2

)

1

N
∑
i)1

N

(Iexpi

2 )2 +
2

N
∑
i)1

N

(δI(0)δI(τ)expi
)2 +

2

N
∑
i ) 1

N

Iexpi

2 δI(0)δI(τ)expi
- (1

N
∑
i)1

N

Iexpi

2 )2

-

(1

N
∑
i ) 1

N

δI(0)δI(τ)expi)2

- 2
1

N
∑
i)1

N

Iexpi

2 1

N
∑
i)1

N

δI(0)δI(τ)expi
)

) [independent measurements])

1

N
∑
i)1

N

(Iexpi

2 )2 - (1

N
∑
i ) 1

N

Iexpi

2 )2

+
1

N
∑
i)1

N

(δI(0)δI(τ)expi
)2 -

(1

N
∑
i)1

N

δI(0)δI(τ)expi)2

)

Var(Iexp
2 ) + Var(δI(0)δI(τ)exp) (28)

lim
Nf∞

Var(Iexp
2 ) ) Var(I2) (29)

lim
Nf∞

Var(δI(0)δI(τ)exp) ) Var(δI(0)δI(τ)) (30)

Var(I2) ) 〈(I2(τ) - 〈I〉2)2〉 ) 〈(δ(I2))2〉 (31)

Var(δI(0)δI(τ)) ) 〈(δI(0)δI(τ)|t - 〈δI(0)δI(τ)〉)2〉 )

〈(δ(δI(0)δI(τ)))2〉 (32)

〈(δ(I2))2〉 ) c2qf
4 ∫R3 i4(r )dr + pf

2(qmi(rm))4 (33)

〈(δ(I2))2〉 ) c2qf
4 i0

4 x2
32

π3/2w2z0 + pf
2(qmi(rm))4 (34)
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or explicitly using eq 20 and eq 36

If the background is assumed very small (N f 0), we obtain

If we study separately the signal from the single immobilized
molecule to the total noise, we finally obtain

4. Discussion

The expression eq 20 gives the most general expression of
the autocorrelation function in the case of a single immobilized
molecule in a background of freely diffusing molecules. It shows
how physical parameters and the dynamics of the background
molecules and the single molecule together contribute to the
autocorrelation function. The amplitude of the background term
is proportional to N whenSm/B is large, but proportional to
N-1 whenSm/B is small. However, for largeSm/B the optical
parametersqm, and i(rm) play a more dominant role as they
directly influence the amplitude by their squared value (eq 21).

One main objective of the present paper is to discuss the
relation betweenSm/B ratios and theSm/N ratios. The eq 40
provides the help necessary to accomplish this. Clearly, if the
single molecule dynamics and the diffusion of background
molecules are in the same time range, theSm/N ratio is highly
dependent on theSm/B ratio. More specifically, the quantum
yield ratio (qm/qf) and the excitation intensity dependent on the

position of the single molecule (rm) inside the VE influence
the Sm/N to its second order. The concentration of the free
molecules (c) influences theSm/N ratio to its first-order value
or its value to the power of1/2 (eq 40).

A single molecule experiencing emission dynamics on a
slower time range than the diffusion of the background
molecules6 will be less sensitive to bad quantum yield of the
single molecule as well as its position in the VE according to
eq 40.

Can a single molecule experiment be statistically feasible even
though theSm/B ratio is low? Assume that the time scale of the
emission dynamics of the single molecule is larger than the time
scale of the background dynamics. Then, on the relevant time
scale of the single molecule dynamics, theSm/N is given by

where

and

Hence, if theSm/B is small due to a high concentration of
background molecules but the quantum yield of the free
molecules is low so thatqf

4 i0
4/qm

4 im
4 , 1, theSm/N is almost as

good as in the absence of any background.
Clearly, the above case is a constructed situation that might

not be the most common case in practice. However, we have
proved that there are situations in which theSm/B does not give
full insight into the actual statistical accuracy in a measurement
of single molecule spectroscopic dynamics. The statistical
quality of a single molecule FCS experiment is assessed via
the eq 41, or in the more general case via eq 40, and not via
the Sm/B alone.

The general conclusion is however that based on eqs 40 and
41, the quantum yield ratio of the background molecule to the
single molecule as well as the position of the single molecule
inside the VE are the most crucial physical parameters in
obtaining goodSm/N ratio and hence good quality in a single
molecule experiment using FCS.
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Appendix: Calculation of 〈(δ(δI (0)δI (τ)))2〉

The fluctuations of the fluctuations of the fluorescence
intensity can be depicted according to Figure 2. The signal
δI(0)δI(τ)|t can be studied as a not averaged signal that fluctuates
around a mean value (Figure 2). We define

S/N )
〈δI(0)δI(τ)〉

[Var(δI(0)δI(τ))]1/2
(37)

S/N )

qf
2 i0

2c
π3/2

8

w2z0

(1 + 4D

w2
τ)x1 + 4D

z0
2

τ

+ (f(τ) - pf)pf[i(rm)qm]2

[cqf
4 i0

4 x2π3/2

32

w2z0

(1 + 8D

w2
τ)x1 + 8D

z0
2

τ

+

c2qf
4 i0

4(π3/2

8

w2z0

(1 + 4D

w2
τ)x1 + 4D

z0
2

τ)2

+ c2qf
4 i0

4 x2
32

π3/2w2z0 +

(qmi(rm))4(pf(f (τ) - pf) - ((f(τ) - pf)pf)
2)

]1/2

(38)

S/N ) x (f(τ) - pf)pf

(1 - ((f(τ) - pf)pf))
(39)

Sm/N )
(f(τ) - pf)pf

[ qf
4 i0

4

qm
4 im

4

3x2π3/2

128
N

(1 + 8D

w2
τ)x1 + 8D

z0
2

τ

+

c2
qf

4 i0
4

qm
4

im
4(π3/2

8

w2z0

(1 + 4D

w2
τ)x1 + 4D

z0
2

τ)2

+

x2
32

c2
qf

4 i0
4

qm
4 im

4
π3/2w2z0 +

+ (pf(f (τ) - pf) - ((f(τ) - pf)pf)
2)

]1/2
(40)

Sm/N )
(f(τ) - pf)pf

x(ac2 + bc)
qf

4
i0
4

qm
4

im
4

+ (f(τ) - pf)pf (1 - ((f(τ) - pf)pf))

(41)

a ) 4 + x2
32

π3/2w2z0 (42)

b )
x2π3/2

32
w2z0 (43)

δ(δI(0)δI(τ))|t ) δI(0)δI(τ)|t - 〈δI(0)δI(τ)〉 (A1)
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Multiplying both sides of eq A1 byδ(δI(0)δI(τ))|t and averaging
then yields

Calculation of the right-hand side of Eq. A2 using the fact that
I(t) is a stationary process so that we can setT ) |t - t′| yields

If we let T approach zero, we then obtain the expression of the
variance,

If we study separately the variance for the freely diffusing
molecules, we note that the first argument of the right-hand
side of eq A3 as derived for the background molecules has two
main components. Thefirst component is equal to the probability
that one of the background molecules emits a photon from a
small volume aroundr in the time interval [-τ,-τ+dt] (this
probability is equal tocqfi(r)dr dt) and then emits photons within
the time intervals [-τ+T,-τ+T+dt], [0,dt] and [T, T+dt]
(Figure 2), from small volumes around the respective positions
r ′,r ′′, andr ′′′. Thesecondcomponent is the group combinations
of two molecules each emitting two photons in the above time
intervals. There exist three such combinations for two molecules
emitting two photons per molecule.

It is worth mentioning that eq A3 does not describe the
general joint probability to observe any four photons, for which
the case would be much more complicated with many more
combinatorial possibilities. Rather, eq A3 describes the second-
order moment of the fluctuations from the mean〈δI(0)δI(τ)〉.
Therefore, since〈δI(t)〉 ) 0 for anyt (ref 2), if more than two
molecules are used to create the four photons there will be no
contribution to the average fluctuations of the fluctuation of
the fluorescence intensity.

Since the background molecules are undergoing Brownian
motion according to eq 16, the stochastic changes of the spatial
position of each background molecule in time is a Markov
process. The probability of a molecular trajectory is therefore
equal to the product of the probabilities of all pairwise positional
movements that define the entire trajectory. Using this and
taking the above discussion regarding components of eq A3
into account, for the first term of the right-hand-side of eq A3,
we have

if T < τ (Figure 2).

WhenT approaches zero we obtain

For the case of the single immobilized molecule using the
definition of an expectation value of a random variable we obtain
by direct application of the right-hand side of eq A4

Because we have assumed (recall eq 14) that the emission
fluctuations from the single molecule and the background are
uncorrelated, we obtain

so that
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〈δ(δI(0)δI(τ))|t δ(δI(0)δI(τ))|t′〉 ) 〈(δI(0)δI(τ)|t -
〈δI(0)δI(τ)〉)(δI(0)δI(τ)|t′ - 〈δI(0)δI(τ)〉)〉 (A2)

〈[δ(δI(0)δI(τ))δ(δI(0)δI(τ))]|T〉 )

〈δI(0)δI(τ)|0 δI(0)δI(τ)|T〉 - 〈δI(0)δI(τ)〉2 (A3)

〈[δ(δI(0)δI(τ))]2〉 ) 〈[δI(0)δI(τ)]2〉 - 〈δI(0)δI(τ)〉2 (A4)

〈δI(0)δI(τ)|0 δI(0)δI(τ)|T〉f )

cqf
4 ∫R3 ∫R3 ∫R3 ∫R3 i(r )p(r ,-τ +

T|r ′,-τ)i(r ′)p(r ′,0|r ′′,-τ + T)i(r ′′)p(r ′′,T|r ′′′,0) ×
i(r ′′′)dr dr ′ dr ′′ dr ′′′ + c2qf

4 ∫R3 ∫R3 ∫R3 ∫R3 i(r )p(r ,T -

τ|r ′,-τ)i(r ′)i(r ′′)p(r ′′,0|r ′′′,T)i(r ′′′)dr dr′ dr′′ dr ′′′ +

c2qf
4 ∫R3 ∫R3 ∫R3 ∫R3 i(r )p(r ,0|r ′,-τ)i(r ′)i(r ′′) ×
p(r ′′,T - τ|r ′′′,T)i(r ′′′)dr dr ′ dr ′′ dr ′′′ +

c2qf
4∫R3 ∫R3 ∫R3 ∫R3 i(r )p(r ,T|r ′,-τ)i(r ′)i(r ′′) ×

p(r ′′,0|r ′′′,T - τ)i(r ′′′)dr dr ′ dr ′′ dr ′′′ (A5)

lim
Tf0

〈[δ(δI(0)δI(τ))δ(δI(0)δI(τ))]T〉f )

cqf
4 ∫R3 ∫R3 ∫R3 ∫R3 i(r )δ(r - r ′)i(r ′)p(r ′,-τ|r ′′,0)i(r ′′) ×

δ(r ′′ - r ′′′)i(r ′′′)dr dr ′ dr ′′ dr ′′′ +

2c2qf
4(∫R3 ∫R3 i(r )p(r ,0|r ′,-τ)i(r ′)dr dr ′)2 +

c2qf
4(∫R3 ∫R3 i(r )δ(r - r ′)i(r ′)drdr ′)2 )

cqf
4∫R3 ∫R3 i2(r ′)p(r ′,0|r ′′,-τ)i2(r ′)dr ′dr ′′ +

2c2qf
4(∫R3 ∫R3 i(r )p(r ,0|r ′,-τ)i(r ′)dr dr ′)2 +

c2qf
4(∫R3 ∫R3 i2(r )dr )2 ) 〈[δ(δI(0)δI(τ))]2〉f (A6)

〈(δ(δI(0)δI(τ)))2〉m ) (qmi(rm))4(pf(f(τ) - pf) - ((f(τ) -

pf)pf)
2) ) (qmi(rm))4(pf(f(τ) - pf))(1 - pf(f(τ) - pf)) (A7)

〈[δ(δI(0)δI(τ))]2〉 )
〈[δ(δI(0)δI(τ))]2〉f + 〈[δ(δI(0)δI(τ))]2〉m (A8)

〈(δ(δI(0)δI(τ)))2〉 )

cqf
4∫R3 ∫R3 i2(r ′)p(r ′,0|r ′′,-τ)i2(r ′)dr ′ dr ′′ +

c2qf
4(∫R3 ∫R3 i(r )p(r ,0|r ′,-τ)i(r ′)drdr ′)2 +

c2qf
4(∫R3 ∫R3 i2(r )dr )2 + (qmi(rm))4(pf(f(τ) - pf) -

((f(τ) - pf)pf)
2) (A9)
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