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The relation of molecular structure to the six perturbation parametershD, sD, lD, h, s, and l of the theory of
MCD (magnetic circular dichroism) spectra ofπ systems derived from 4N-electron perimeters (parts 1-3) is
developed explicitly. The MCD spectra of acenaphthylene and pleiadiene are interpreted in the way of
illustration. Simple PMO arguments are used to derive general rules for the response of the MCD spectra of
nonaromatic cyclicπ chromophores to inductive and mesomeric effects of substituents.

The purpose of this paper is to work out the consequences
of the general theory of the MCD (magnetic circular dichroism)
and polarized electronic spectra of nonaromatic2 molecules
derived from 4N-electron perimeters, such as1-12, developed
in parts 1,2 2,3 and 31 using the 4N-electronn-center perimeter
model and to point out similarities and differences relative to
the spectra of aromatic molecules, derived from a (4N + 2)-
electronn-center perimeter.4,5 We distinguish three categories
of nonaromatic molecules: (i) antiaromatic biradicals with a
very small energy gap (less than about 2 eV) between the
orbitals that are occupied and those that are unoccupied in the
lowest energy configuration and closed-shell, (ii) unaromatic
and (iii) ambiaromatic, molecules in which this energy gap is
sizable. The difference between unaromatic and ambiaromatic
molecules is that the latter can also equally well be derived
from a (4N + 2)-electron perimeter. All results of the present
paper apply equally to unaromatic and ambiaromatic molecules.

In parts 23 and 3,1 we showed that qualitative information
about absorption intensities and polarizations, and about the
signs of the MCDB terms, can be deduced simply for six low-
lying ππ* excited states of unaromatic and ambiaromatic
molecules with a plane of symmetryσv perpendicular to the
molecular plane. This information is obtained from the knowl-
edge of the relative size and signs of six quantities. Three are
derived from orbital energy differences,∆HSL, ∆HL, andΣHL,
and three are the phase angles,η, σ, andλ. For molecules with
a plane of symmetryσv or σd, the phase angles are dictated by
the energy order of orbital symmetries relative to this plane.1

These six quantities can be obtained from the six parameters
hD, sD, lD, h, s, and l that describe in terms of degenerate
perturbation theory how the perturbation converts the degenerate
complex frontier orbitals of the perimeter,ψ((N-1), ψ(N, and
ψ((N+1), into the six frontier orbitals of the resulting molecule,
h(, s(, andl(. Next, the six important perturbation parameters
hD, sD, lD, h, s, andl need to be related to molecular structure.
The arguments are similar to those more4,5 or less6 implicitly
contained in the earlier work on the (4N + 2)-electron perimeter
model.

Second, we illustrate the use of the model by showing how
it accounts for the low-energy transitions of acenaphthylene (9)

and pleiadiene (10). These are ambiaromatic molecules and their
low-lying electronic states have been already interpreted in terms
of the ordinary (4N + 2)-electron perimeter model for aromat-
ics.7 The present alternative description permits us to contrast
the 4N- and (4N + 2)-electron perimeter models. The two yield
different state labels but predict the same MCD signs, and these
are in agreement with experiment. In subsequent papers of this
series, we plan to report and interpret the MCD spectra of several
families of unaromatic compounds.

Third, we use first- and second-order perturbation theory to
formulate general rules for the effect of substituents on the MCD
of the first two allowed bands of soft unaromatic and ambiaro-
matic chromophores. Although reminiscent of the rules for
aromatics,5,6 they are distinctly different.

Results and Discussion

Perturbation of the Perimeter. Earlier, we presented the
results for spectroscopic properties of high-symmetry (threefold
or higher order rotational axis, part 23) and low-symmetry (part
31) unaromatic and ambiaromatic molecules in terms of quanti-
ties describing their parent perimeter, i.e., the number of centers
n and the number of electrons 4N, and in terms of quantities
describing the perturbation that formally converts the perimeter
into the molecule in question. These were three off-diagonal
and three diagonal matrix elements of the one-electron operator
â that provides an approximate description of the perturbation,
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where ψk and ψ-k are the complex perimeter MOs with
“magnetic quantum numbers”(k (k g 0) that belong to the
irreducible representationsεk andε-k in Cn, respectively (in this
convention basis vectors rather than functions are subjected to
symmetry operations). In terms of the Lo¨wdin-orthogonalized
AOs øν, labeled counterclockwiseν ) 0, 1, 2, ...,n - 1 modulo
n (0 ) n, 1 ) n + 1, etc.):

The description of the structural perturbation by a one-electron
operator is compatible with the use of first-order perturbation
theory. Since the orbitals themselves are assumed not to change
as a result of the perturbation (except for mixing within
degenerate pairs that have equal two-electron contributions to
their Hartree-Fock orbital energies), the two-electron contribu-
tions to HF orbital energies do not change, either. Changes in
relative energies of configuration state functions, which deter-
mine the resulting MCD patterns, then originate only in the
effects of the perturbation on the one-electron parts of orbital
energies. Throughout the present paper, we shall therefore mean
the one-electron part of an orbital energy when we refer to the
energyE of an orbital.

The off-diagonal perturbation parametersh, s, and l are
complex numbers. Their absolute values,∆H/2, ∆S/2, and∆L/
2, respectively, and their complex arguments,η, σ, and λ,
respectively, combined with the three real diagonal elements,
hD, sD, and lD, represent quantities that are adequate for a
complete characterization of the perturbation for the purposes
of the perimeter model description of low-lying electronic states.
In the following, we use the general symbolkD to represent
any one ofhD, sD, or lD, κ to represent any one ofh, s, or l, the
symbol∆K for ∆H, ∆S, or ∆L, andκ for η, σ, or λ. The analogy
of these quantities to those that describe the effect of a one-
electron perturbation on an aromatic (4N + 2)-electron perim-
eter,4,5 richer by two π electrons, is obvious:∆S and ∆L
correspond to∆HOMO and∆LUMO, respectively, andσ and
λ to π + arg a and -argb, respectively. The simple explicit
rules derived in the following for obtaining these quantities by
inspection of molecular structure will therefore be equally useful
for all cyclic π systems.

The quantities needed in parts 23 and 31 for the prediction of
spectral properties were

The overall conversion of an ideal 4N-electron perimeter into
a molecule of interest is described by the operatorÂ, ap-
proximated as a sum of one-electron operators,Â ) ∑i âi, where
the sum runs over all electrons inπ orbitals. In the following,
we list the important classes of simple perturbations and define
the associated elementary operatorsâ. Their matrix elements
are specified in the basis of the AOs of the perimeter or in the
basis of its complex MOs,ψk and ψ-k [k ) 0, +1, +2, ...,
+(n/2 - 1), n/2 if n is even, withψn/2 t ψ-n/2, andk ) 0, +1,
..., +(n - 1)/2 if n is odd]. We assume that the effects of
composite perturbations are additive. In defining the operators
â, we rely heavily on the description of organicπ-electron
structures in terms of perturbation theory (PMO) as summarized
in the book by Dewar and Dougherty.8 The elementary
perturbations are of two kinds: size-conserving and size-
expanding. The matrix elements of the former are defined simply
in the AO basis and are handled using first-order perturbation
theory; those of the latter can be written in a simple approximate
way in the MO basis and are handled using second-order
perturbation theory, in a fashion that avoids an actual expansion
of the size of then-dimensional one-electron function space
(this can be done more formally by partitioning theory).

Note that perturbations that are of purely two-electron nature
in the model used, such as a geometrical distortion of the
perimeter from the shape of a regular polygon without a
significant modification of bonding interactions, do not affect
the wave functions of the perimeter model states in the present
approximation. It is still possible to incorporate the effects of
such geometrical distortions on the matrix elements of electric
dipole or magnetic dipole operators in a very straightforward
way since atomic coordinates enter into their definition.4

After perturbation, each perimeter orbital pairψk, ψ-k will
in general yield a pair of real orbitals,κ- at a lower one-electron
energy,E(ψk) + kD - ∆K/2, andκ+ at a higher energy,E(ψk)
+ kD + ∆K/2, whereE(ψk) is the energy of the unperturbed
orbitalψk. Their separation will be∆K, and their average energy
will be E(ψk) + kD. For systems derived from 4N-electron
perimeters, the knowledge of both∆K andkD is essential, while
for those derived from (4N + 2)-electron perimeters, only∆K
values were needed to predict signs in MCD spectra.4,5

In practice, the relative orbital energies can be estimated in
a variety of ways, starting with PMO theory, through Hu¨ckel,
PPP, DFT or ab initio theories. The values of∆K, with the
exception of ∆S, can in principle also be derived from
experimental data using Koopmans’ theorem. The PMO estimate
is most in keeping with the spirit of the perimeter model, which
keeps all the essential physics for a qualitative understanding
but expends the smallest possible computational effort.

The PMO approximation defines the action of the perturbation
as combining the complex MOs of the perimeter pairwise into
real MOs and changing their energies, but permits no mixing
of members of different degenerate pairs. The pairwise com-
bination of a general orbital pairψk andψ-k proceeds in a way
dictated by the complex phaseκ, and we introduce the
definitions

h ) (∆H/2) eiη ) 〈ψN-1|â|ψ-N+1〉 (1)

s ) (∆S/2) eiσ ) 〈ψN|â|ψ-N〉 (2)

l ) (∆L/2) eiλ ) 〈ψN+1|â|ψ-N-1〉 (3)

hD ) 〈ψN-1|â|ψN-1〉 (4)

sD ) 〈ψN|â|ψN〉 (5)

lD ) 〈ψN+1|â|ψN+1〉 (6)

ψ(k ) n-1/2 ∑
ν)0

n-1

øν exp((2πikν/n) (7)

∆H ) E(h+) - E(h-) g 0

∆S) E(s+) - E(s-) g 0 (8)

∆L ) E(l+) - E(l-) g 0

∆HL ) ∆H - ∆L

ΣHL ) ∆H + ∆L

∆HSL) 2(∆HS- ∆LS) ) 2[2E(SO)- E(HO) -
E(LO) + 2sD - hD - lD]

∆HS) [E(s+) + E(s-) - E(h+) - E(h-)]/2 (9)

∆LS) [E(1+) + E(1-) - E(s+) - E(s-)]/2
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where the energy ofκ- is not above that ofκ+.
The specific three phase angles of interest now,η, σ, andλ,

ultimately determine the phase factorsF( ) σ ( (η + λ)/2 of
part 31 as well as the directions of spectroscopic transition
moments, and thus affect the signs ofB terms. The factorF+

only occurs if the parent perimeter is uncharged. The analogy
to the aromatic (4N + 2)-electron perimeter is also obvious.
There, the specific phase angles arga and argb dictated the
phase factorsγ andφ and thus transition moment directions,
and, in the case of uncharged perimeters (4N + 2 ) n), also
affected the magnitudes of theB terms.4,5

The center of the perimeter is located at the center of the
coordinate system. If the symmetry planeσv perpendicular to
the molecular plane passes through an atom, we let thex axis
pass through this atom (i.e., give it the labelν ) 0), and only
the valuesκ ) 0 or κ ) π are possible. The former applies if
κ- is antisymmetric and the latter ifκ- is symmetric. If the
symmetry plane passes only through bond midpoints, the label
ν ) 0 is assigned to one of the atoms located counterclockwise
next to a midpoint, and only the anglesκ ) 2πk/n or κ ) 2πk/n
- π are possible. The former applies ifκ- is antisymmetric
and the latter ifκ- is symmetric. A general way to visualize
the location of the nodal points inκ- is to first place one of
them at the initial atomµ ) 0 and others at intervals ofn/2k
bond lengths apart, and then move the positions of all of them
clockwise by an amount equal toκ/2π times the internodal
separation. Conversely, if the location of the nodal points in a
particular orbitalκ- is known, it permits the value ofκ to be
deduced.

Size-Conserving Elementary Perturbations.These do not
change the size of theπ system. The most important are (i)
bond torsion, extension, or compression (e.g.,1); (ii) cross-
linking, either by introduction of transannular overlap between
nonneighboring AOs of theπ perimeter (e.g., between 2pz

orbitals on carbon atoms 1 and 7 in2) or by introduction of
sigma bonds (e.g.,3); (iii) introduction of an inductive effect
by heteroatom replacement (e.g.,4, 5, 6) or by inductive
substituents with negligible conjugative and hyperconjugative
effects.

A change in the strength of the valence interaction between
the AOsF andτ as in (i), or an introduction of a new one as in
(ii) are represented by an operator with matrix elementsaFτ )
aτF in the AO basis set. In the Hu¨ckel approximation, they are
a change in the resonance integralâFτ.

In the same basis, an inductive effect of a substituent or a
heteroatom located at atomF is described by the matrix element
aFF. In the Hückel approximation, this corresponds to a change
in the Coulomb integralRF of the AO F. For atoms more
electronegative than carbon,RF < 0 (+I effect), for those less
electronegative,RF > 0 (-I effect).

Expressions forkD, given by 〈ψk|â|ψk〉, follow by direct
substitution from eq 7. For a change in the valence interaction
between AOsF andτ, such as an introduction of a cross-link

and for an inductive effect by a heteroatom or a substituent in
positionF

Expressions for∆K andκ follow from their definition,κ )
(∆K/2)eiκ, by substitution from eq 7 intoκ ) 〈ψk|â|ψ-k〉.
Modification of a valence interaction between AOsF and τ
yields

Inductive effect of a substituent or a heteroatom in position
F yields

For a cross-link (F * τ, τ ( 1), a bond compression (F ) τ (
1), or a+I effect (F ) τ), we haveaFτ < 0, and the complex
phaseκ for these elementary perturbations therefore is

while for bond stretching or twisting (F ) τ ( 1) and for a-I
effect (F ) τ), aFτ > 0, and the phase is

In uncharged perimeters (n ) 4N), the equations forσ (k )
N) simplify. If aFτ < 0, the expression forσ (k ) N) becomes

If aFτ > 0, we obtain

According to Moffitt,9 “even” elementary perturbations are
those for whichτ + F is even. For these, eqs 17′ and 18′ show
that σ is a multiple ofπ andF+ ) F- ) 0. Examples are+I
and -I effects and cross-links forming odd-membered rings.
In this case, the nodal planes ins+ ands- pass through atoms.
For “odd” elementary perturbations,τ + F is odd, eqs 17′ and
18′ show thatσ is an odd multiple ofπ/2, andF- ) 0, F+ ) π.
An example are cross-links forming even-membered rings. Then,
the nodal planes ins+ ands- pass through midpoints of bonds.

Size-Expanding Elementary Perturbations.These are as-
sociated with an increase in the size of theπ system. Two kinds
are important: (i) introduction of mesomeric substituents (e.g.,
7 and 8); (ii) bridging (e.g., 9-12). Such perturbations are
properly described by direct addition of a one-electron space
of dimensionalitymequal to the number ofπ-symmetry orbitals
ψj (j ) n, n + 1, ..., n + m - 1) on the substituent or the
bridge, to the space defined by the perimeter orbitals. The matrix
elements ofâ in the expanded AO basis are like those for cross-
linking (Hückel resonance integrals) but connect the substituent
AO in the exocyclic position to a single perimeter AO, or a
bridge AO or AOs to two or more perimeter AOs. In the order
to characterize this type of perturbation through the quantities
h, s, l, hD, sD, and lD, we need to express the effect of these
interactions within the originaln-dimensional perimeter space.
Since we are treating symmetrical molecules, it is easy to do
this approximately, using degenerate second-order perturbation

κ+ ) [eiκ/2ψk + e-iκ/2ψ-k]/x2 )

(2/n)1/2∑
ν

øν cos(2πkν/n + κ/2) (10)

κ- ) [eiκ/2ψk - e-iκ/2ψ-k]/ix2 )

(2/n)1/2∑
ν

øν sin(2πkν/n + κ/2)

kD ) aFF/n (12)

κ ) 2(aFτ/n) exp[-i(4k/n)(π/2)(τ + F)] (13)

∆K ) 4|aFτ|/n (14)

κ ) (aFF/n) exp[-i(4k/n)πF] (15)

∆K ) 2|aFF|/n (16)

κ ) -(2π/n)[(τ + F)k - n/2] (17)

κ ) -(2π/n)(τ + F)k (18)

σ ) -(π/2)[τ + F - 2] (17′)

σ ) -(π/2)(τ + F) (18′)

kD ) (2/n)aτF cos[2πk(F - τ)/n] (11)
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theory within the spirit of the PMO model8 to derive the energies
and nodal properties of the perturbed perimeter orbitals.

Let the substituent or bridge carrym AOs of π symmetry,
combined into a set ofm delocalized orbitals

with one-electron energiesE(ψj), and let its AOsσ1, σ2, ..., σl,
... be attached to perimeter atomsF1, F2, ..., Fl, ..., respectively.
We consider the effect of the perturbation on one degenerate
perimeter orbital pairψk, ψ-k at a time and ignore substituent-
induced mixing of the members of different pairs.

In the MO basis, the Hamiltonian matrix of the expanded
system takes the form of eq 20 shown in Chart 1 (only those
off-diagonal elements that are pertinent to the behavior of
orbitalsΨ-k andΨk are shown).

For the matrix elements〈(k|â|j〉, substitution from eq 7 yields

whereal ) 〈σl|â|Fl〉. Here and in the following, we useσl and
σ(l) interchangeably in order to avoid subscripts on subscripts.

If the complex phase of the elements〈(k|â|j〉 is the same
for all values of the indexj (or differs byπ), a simple result is

obtained. We specify the complex phase asκ′/2 by writing

The condition thatκ′j be the same for allj, or at most
different byπ, permitting us to drop the subscriptj, is satisfied
for many important structural classes of perturbations. In
particular, it holds if at least one of the following conditions
holds: (i) The perturbing group is a substituent and not a bridge,
i.e., is attached by its AOøσ to a single perimeter AOøF, as in
7. (ii) The substituent or bridge has only one orbitalψj ) ψn

(others are absent or their effects can be ignored). An example
is 12. (iii) The perturbed molecule has one or more planes of
symmetryσν perpendicular to the plane of the perimeter, which
is the case considered here. Examples are7-12. This instance
is particularly important for multiply perturbed perimeters such
as8 and will be discussed below.

We now define real orbitalsκ1 andκ2 in the same way asκ+
andκ-, respectively, were defined in eq 10, using the angleκ′
instead ofκ. From eq 21, we then obtain

CHART 1

ψj ) ∑
ν)n

n+m-1

cνjøν (19)

〈(k|â|j〉 ) n-1/2∑
l

cσ(l)jexp(-2πikFl/n)al (21)

〈(k|â|j〉 ) |〈(k|â|j〉|e(iκ′/2 (22)

〈κ1|â|j〉 ) (2/n)1/2 |∑
l

cσ(l)j exp(-2πikFl/n)al| (23)

〈κ2|â|j〉 ) 0
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Next, we treat the effect of the substituent or bridge to second
order in perturbation theory, assuming that its orbitals are not
degenerate with theψk, ψ-k pair. We obtain for the one-electron
energies of the perturbed perimeter orbitals

Since by definitionE(ψk) + kD ) [E(κ1) + E(κ2)]/2 and∆K )
|E(κ1) - E(κ2)|, we obtain

and

While in eq 24 the numerator is positive for eachj, the
denominator can be positive (donor orbitalsj) or negative
(acceptor orbitalsj). If the one-electron energy of the perturbed
orbital κ1 lies aboveE(ψk), the perturber acts as a net donor,
and we introduce the notation

If the one-electron energy of the perturbed orbitalκ1 lies
below E(ψk), the perturber acts as a net acceptor, and we
introduce the notation

With eqs 24-26 and either eq 27 or 28 we can now effectively
replace the size-expanding elementary perturbationâ by a size-
conserving one and proceed with the application of the perimeter
model. This perturbation behaves in a manner very similar to a
true size-conserving inductive perturbation, except that its effect
on the orbital pairψk, ψ-k depends on the orbital energyE(ψk)
through the factorE(ψk) - E(ψj).

Because of the presence of the energy denominators, a
transformation of the Hamiltonian matrix containing the diagonal
shifts kD given by eq 12 from the MO basis back to the AO
basis yields a complicated matrix with many off-diagonal
elements containing energy differences. Thus, while the size-
expanding mesomeric effect of a perturbation can formally be
expressed in then-dimensional one-electron space of the
perimeter also in the AO basis, like those of size-conserving

perturbations given above, this is not particularly useful in
practice.

Simple results are obtained for special cases. Throughout,
we have∆K ) 2|kD|.

A. If only a single substituent orbital,ψn, needs to be
considered, the results simplify to

(i) The substituent is only attached to atomF of the perimeter:

These results for mesomeric (E) substituents thus are very
similar to those given in eqs 12, 17, and 18 for a purely inductive
(I) substituent (F ) τ), with cσj

2 aFσ
2 playing the role ofaFF,

except that the contribution of the mesomeric effect is attenuated
by division by the orbital energy differenceE(ψk) - E(ψj). The
phase factors are the same for both types of donor (-I and-E)
substituents, and also for both types of acceptor (+I and +E)
substituents.

(ii) The substituent (bridge) is attached to two atoms of the
perimeter, throughσ1 to F1 and throughσ2 to F2, and the
resonance integrals are equal,a ) aF(1)σ(1) ) aF(2)σ(2).

Then, if the coefficients inψn at the position of attachment
are equal, or the same position of the substituent is attached to
both F1 andF2, cσ(1)n ) cσ(2)n ) cσn (if the substituent consists
of a single atom,cσn ) 1):

If the coefficients inψm are equal in size and opposite in
sign,cσ(1)n ) -cσ(2)n ) cσn,

B. If the substituent is attached in a single positionF of the
perimeter, through its AOσ, we obtain

E(κ1) ) E(ψk) + (2/n)∑
j

|∑
l

cσ(l)j exp(-2πikFl/n)al|2/

[E(ψk) - E(ψj)] (24)

E(κ2) ) E(ψk)

kD ) n-1∑
j

{∑
l,l′

cσ(l)jcσ(l′)jalal′ cos[2πk(Fl′ - Fl)/n]}/

[E(ψk) - E(ψj)] (25)

∆K ) 2|kD|

exp(iκ′/2) ) ∑
l

cσ(l)j exp(-2πikFl/n)al/

{∑
l,l′

cσ(l)jcσ(l′)jalal′ cos[2πk(Fl′ - Fl)/n]}1/2 (26)

k+ ) κ1

k- ) κ2 (27)

κ ) κ′

k+ ) κ2

k- ) κ1 (28)

κ ) κ′ - π

kD ) n-1∑
l,l′

cσ(l)ncσ(l′)nalal′ cos[2πk(Fl′ - Fl)/n]/[E(ψk) -

E(ψn)] (29)

tan(κ/2) ) -∑
l

cσ(l)nal sin(2πkFl/n)/

∑
l

cσ(l)nal cos(2πkFl/n), if kD > 0 (30)

tan[(κ + π)/2] ) -∑
l

cσ(l)nal sin(2πkFl/n)/

∑
l

cσ(l)nal cos(2πkFl/n), if kD < 0

kD ) cσn
2 aFσ

2 /n[E(ψk) - E(ψn)] (31)

κ ) -(2π/n)2Fk, if kD > 0 (donor) (32)

κ ) -(2π/n)[2Fk + n/2], if kD < 0 (acceptor)

kD ) 4aFσ
2 cσm

2 cos2[πk(F1 - F2)/n]/n[E(ψk) - E(ψn)] (33)

κ ) -(2π/n)(F1 + F2)k, if kD > 0 (34)

κ ) -(2π/n)[(F1 + F2)k + n/2], if kD < 0

kD ) 4aFσ
2 cσn

2 sin2[πk(F1 - F2)/n]/n[E(ψk) - E(ψn)] (35)

κ ) -(2π/n)[(F1 + F2)k + n/2], if kD > 0 (36)

κ ) -(2π/n)(F1 + F2)k, if kD < 0

kD ) ∑
j

cσj
2 aσF

2 /n[E(ψk) - E(ψj)] (37)
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Intruder Orbitals and Intruder States. When the perturbing
orbitalsψj of the substituent or bridge are empty and lie well
above or are occupied and lie well below the orbital pairψk,
ψ-k in energy, size-expanding elementary perturbations can be
adequately handled by the above procedure. In the case of very
strong mesomeric perturbations by substituents and, particularly,
by bridges, this condition need not be satisfied and two
difficulties arise.

First, the second-order approximation tokD and to ∆K
diverges asE(ψj) approachesE(ψk). This can be handled as
usual in PMO theory:8 Whenever one of the energiesE(ψj) is
approximately or exactly equal to the energyE(ψk), one sets
them exactly equal, describes the effect ofψj by first-order
theory, and ignores the other orbitals of the perturber. The orbital
energy splitting that results from the perturbation is then
approximated by 2〈κ1|â|ψj〉, and the two new orbitals are (κ1 (
ψj)/x2.

The nature of the second difficulty is thus brought into focus.
Which one of the two new orbitals is to be taken for “perturbed
perimeter MO” and which one is to be ignored is determined
by orbital occupancies in the ground state. IfE(ψj) lies between
E(κ1) andE(κ2), one needs to interchange the role ofE(ψk) and
E(ψj) in the expression 21 forE(κ1), [E(ψj) - E(ψk)]/2 needs
to be added to the expression 25 forkD, and the sum overj in
both expressions becomes a single term.

In the size-expanded system, it is clearly not always possible
to ignore the existence of the other orbital or orbitals that result
from the perturbing interaction. As long as the mesomeric
perturbation was weak, the existence of those energetically
distant new orbitals that contained only a small admixture of
κ1 did not cause the appearance of any configurations with
energies close to those considered in the perimeter model.
However, if the initial energiesE(ψk) andE(ψj) are close, both
resulting orbitals may have energies comparable with those of
the three orbital pairs treated by the perimeter model. They then
give rise to low-energy configurations that are likely to
contribute to low-energy states of the perturbed system. We
speak of “intruder” orbitals and intruder configurations. The
resulting states that are in excess of those expected from the
simple perimeter model are called intruder states.

This situation usually reduces the number of spectroscopic
transitions whose MCD can be interpreted using the perimeter
model, and each case requires a separate analysis, as illustrated
below on the examples of acenaphthylene (9) and pleiadiene
(10). It may appear surprising that the simple model can be
used at all; it is very helpful that in the evaluation of the matrix
elements of the electric (m̂) and magnetic (µ̂) dipole operators
between a mixed perturber-perimeter orbitalc1κ1 + c2ψj and
a pure perimeter orbitalψk′, only the perimeter part of the former
contributes,c1〈κ1|ô|ψk′〉, whereô ) m̂ or µ̂. The contribution
is reduced by the factorc1 relative to an otherwise analogous
contribution of a pure perimeter orbital, but for qualitative
interpretations this can often be ignored.

Multiple Elementary Perturbations. The Effect of Sym-
metry. The effects of the elementary perturbations, summarized
in Table 1, are additive at our level of approximation. SincekD

is real, simple scalar addition is required. In contrast, forκ,
vector addition in the complex plane is necessary, in a manner
known from the classical investigations of the effect of inductive
substituents on the intensity of the Lb band of benzene10 and

from the original development of the perimeter model for
aromatics.9,11 Simplifications occur in our case because the
composite perturbation is assumed to possess symmetry.

MCD Spectra of Acenaphthylene (9) and Pleiadiene (10).
We shall use these hydrocarbons as examples to illustrate the
use of the general results and to test them. The MCD spectra
of both 912 and 10,13 and of a series of their simple deriva-
tives,7,13 have already been reported and analyzed.7 The MCD
signs were found to agree with expectations based on the
aromatic (4N + 2)-electron perimeter, but certain transitions,
in particular the weak first band, had to be treated as intruder
transitions not related simply to those of the parent perimeter,
and their existence and MCD signs could not be predicted by
inspection (the correct signs were computed12,13 in the PPP
approximation). It has also been pointed out that the MCD
spectra of9 and10 exhibit an approximate mirror symmetry,
and the reasons for this were analyzed in simple terms.7,14

We now take an alternative look at the MCD spectra of these
ambiaromatic hydrocarbons, using the 4N-electron perimeter as
the starting point. This will result in an alternative set of labels
for the electronic states, an alternative view of the origin of the
approximate mirror symmetry of their MCD spectra, and an
alternative derivation of the absolute signs in these spectra.

MCD Spectrum of Acenaphthylene12 (9). Theπ system of
9 is viewed formally as a union of the antiaromatic 12-electron
[11]annulenide anion with the methyl cation. The resultant MO
ordering is dominated by the interactions of the symmetric
orbitals of the perimeter with the empty 2pz orbital at the central
carbon atom, which shall be labeledφ (Figure 1). The
antibonding combination of the symmetric orbital of the SO
level withφ is strongly shifted to higher energies. The bonding
combination is strongly stabilized and forms the HOMO (s-)
of 9. The interaction ofφ with the symmetric orbitals of the
HO and LO levels is much weaker since the energy gaps are
larger. These interactions causeh- andl+ to be symmetric. The
antisymmetric orbitals of the perimeters are not perturbed in
the first approximation, and the antisymmetric member of the
SO level of the perimeter represents the LUMO (s+) of 9. Since
h- and l- have different symmetry, the perturbation of the
perimeter is of the S type (F- ) π/2) in the nomenclature of
part 3.1

It is clear from Figure 1 that these interactions yield a∆LS
value larger than the∆HSvalue. Since∆HSL is then negative,
the HO f SO excitations are expected to lie at considerably
lower energies than the SOf LO excitations. Moreover, the
splittings∆H and∆L are small, sinceφ is far in energy from
HO and LO, and∑HL is much smaller than∆HSL. The
chromophore should be “negative hard”, and according to Figure
4 of part 31 a -+ B term sign sequence is expected for the
low-energy pair of transitions to the N states in the order of
increasing energy, which should be NR below Nâ (Figure 2 of
part 31). The higher lying transitions to the P states should show
a +- pattern.

The first three transitions in9 are indeed known12 to
correspond to single-electron excitations of thes- f s+, h+ f
s+, andh- f s+ types in the order of increasing energy, and
correspond to the Gf S, Gf NR and Gf Nâ transitions in
the present nomenclature, respectively. Sinceσ ) η, transitions
into the R states should be polarized along thex axis, which
passes through a perimeter atom.1 This is the axis that lies in
the symmetry plane, vertical in formula9. Transitions into the
â states should be polarized in the perpendicular direction. Both
results agree with the observed12 polarization directions. In terms

κ ) -(2π/n)2Fk, if kD > 0 (38)

κ ) -(2π/n)[2Fk + n/2], if kD < 0
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of the spectroscopic labels proposed in part 3,1 we have NR )
Na and Nâ ) Nb, and the state order is S, Na, Nb.

The observed signs of the MCDB terms are S, negative and
very weak, Na, strongly negative, and Nb, strongly positive. The
-+ sign sequence for the Na and Nb B terms is just that expected
from ∆HSL < 0. In the previous derivation from an aromatic
perimeter,7 these were the L1 and L2 bands, and their signs
followed from∆HOMO < ∆LUMO. According to the nomen-
clature proposed in part 3,1 they are the La and Lb bands,
respectively.

The S band is weak both in absorption and in MCD. The
present treatment predicts its existence but yields zero intensities
for both and thus makes no claims concerning the MCD sign.
The observed very weak negativeB term therefore presently
has no simple interpretation, but at least the presence of a weak
transition is anticipated. The previous derivation from an
aromatic perimeter7 could not relate this first weak transition
to the states of the perimeter at all and did not provide a Platt
label.

Beyond the first three excited states, the presence of intruder
states makes it difficult to assign the states of9 to the states of
either the 4N-electron or the (4N + 2)-electron perimeter and
to make simple predictions of MCD signs.

MCD Spectrum of Pleiadiene13 (10). The π system of10
is constructed formally as a union of the antiaromatic 12-electron
[13]annulenyl cation with the methyl anion. Arguments similar
to those given for9 lead to the orbital scheme shown in Figure
1. The HOMO (s-) is the antisymmetric member of the SO
pair of the perimeter, and the LUMO (s+) is the antibonding
combination of the symmetric member of this pair with the
central orbitalφ.

According to Figure 1,10 has an∆LSvalue smaller than the
∆HS value, and∆HSL is positive and again much larger than
∑HL. The SOf LO excitations should lie at much lower
energies than the HOf SO excitations, and the chromophore
should be “positive hard”. Sinceh- and l- have opposite
symmetries, the perimeter perturbation is again of the S type
(F- ) π/2) and the state order should be Nâ below NR (Figure
2 of part 31). Sinces- is antisymmetric,σ ) 0, while h- is
symmetric,η ) π, and theâ transitions should be polarized
along the symmetry axisx. This again agrees with observa-
tions.13 According to the proposal made in part 3,1 Nâ ) Na

and NR ) Nb, and the state order is S, Na, Nb.
The +- B term sign sequence is expected (Figure 4 of part

31) for the low-energy transitions into the Na and Nb states. The
higher lying transitions to P states should show a-+ pattern.
The first three transitions are known13 to be well represented
as the single-electron excitations of thes- f s+, s- f l-, and
s- f l+ types and correspond to Gf S, Gf Na, and Gf Nb.

The observed signs of theB terms of the S, Nâ, and NR states
are++-. Once again, the+- sign sequence for theB terms
of the Na and Nb transitions agrees with that expected from∆HS
> ∆LS. When derived from an aromatic perimeter,7 these were
the L1 and L2 bands (now we would call them La and Lb,
respectively), and their signs followed from∆HOMO >
∆LUMO.

The S band is weak both in absorption and in MCD, as
expected. Thus, while its presence follows from the 4N-electron
perimeter model, the sign of itsB term does not. The (4N +
2)-electron perimeter viewpoint7 did not relate this excited state
to the states of the perimeter at all.

Higher excited states are not simply related to perimeter states.
Acenaphthylene (9), Pleiadiene (10), Their Double Ions,

and Phenalenyl (12) Ions. A Comparison.In summary, the
perimeter labels of the lower states of the ambiaromatic systems
9 and 10 are G, S, Na ) La, and Nb ) Lb. Either perimeter
choice correctly accounts for the absolute signs of theB terms
of the second and third transitions, but only the 4N-electron
perimeter has a transition that is simply related to the weak
lowest energy transition. We believe that the present results
represent a deeper level of insight and provide a theoretically
better justified nomenclature than the K, L, M transition labels
that we proposed for these and related hydrocarbons some time
ago.15

The mirror image symmetry in the signs of theB terms of
the system is due to the approximate mirror image symmetry
between the orbital energies of9 and10 (approximate alternant
pairing14), which yields∆HSL values with opposite signs in9
and in10, and to the dominance of the∆HSL contribution in
dictating the MCD behavior.

The MO level schemes for9 and10 are very similar, with
three MO levels located between the weakly split HO and LO
pairs. As far as the content of perimeter contributions is
concerned, the bottom and the top among these three orbitals
are similar. Either one could be used as a member of the SO

TABLE 1: Characteristics of the Elementary Perturbations of an [n]Annulene Perimeter

perturbation type kD ∆K/2 κ

Size-Conserving
bond interaction of AOsF, τ reduced (2/n)|aτF| cos[2πk(F - τ)/n] (2/n)|aFτ| -2kπ(τ + F)/n

increased -(2/n)|aτF| cos[2πk(F - τ)/n] (2/n)|aFτ| π - 2kπ(τ + F)/n
inductive effect atF -I |aFF|/n |aFF|/n -4kπF/n

+I -|aFF|/n |aFF|/n π - 4kπF/n

Size-Expanding
mesomeric -E (aFσ

2 /n)|∑j cσj
2 /[E(ψk) - E(ψj)]| (aFσ

2 /n)|∑j cσj
2 /[E(ψk) - E(ψj)]| -4πkF/n

effect atF +E (aFσ
2 /n)|∑j cσj

2 /[E(ψk) - E(ψj)]| (aFσ
2 /n)|∑j cσj

2 /[E(ψk) - E(ψj)]| π - 4πkF/n

Figure 1. Derivation of the MO energy diagrams of acenaphthylene
(left, 9) and pleiadiene (right,10) by perimeter perturbation. The HO,
SO, and LO orbital levels of the perimeter are indicated by H, L, and
S, respectively.
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pair, and the other one would remain unlabeled as an intruder
orbital. Which one needs to be used is determined by the
occupancy of these three central levels, which determines the
sign of ∆HSL and thus the MCD sign pattern. In9, only the
lowest of the three MOs is occupied, and therefore the bottom
two represent the perturbed SO pair. In10, only the highest of
the three MOs is empty, and therefore the top two represent
the SO pair.

Therefore, the sign pattern in the MCD spectrum of the
dianion of9 should be the same as that in the spectrum of neutral
10, and the MCD sign sequence for the dication of10 should
be identical with that for neutral9. The spectra of these doubly
charged ions have not been measured.

There is a clear relation to other peri-condensed systems as
well. For instance, the union of the uncharged antiaromatic
[12]annulene perimeter with a methyl anion or cation can lead
to the highly symmetrical phenalenyl ions12. Similar MO
schemes are expected for all of these, except that the HO and
LU degeneracy is not removed at all. The MCD signs should
again be dictated by the occupancy of the central three MOs.
In this respect, the anion12a should be positive-hard like10
or the dianion of9, and the cation12b negative-hard like9 or
the dication of10.

Substituent and Heteroatom Effects on Soft Unaromatic
Chromophores. The best candidates for soft MCD chro-
mophores are those derived from uncharged perimeters. In the
Hückel and PPP approximations, alternant pairing guarantees
∆HSL ) 0 and∆H ) ∆L and thus “double softness” if the
perturbation of the perimeter is of odd parity and only even-
membered rings are present. There is reason to believe that the
alternant pairing property does not hold well in the presence of
four-membered rings,16 but it might hold somewhat better inπ
systems with eight-membered rings. For alternant hydrocarbons
of this type, simple predictions of substituent and heteroatom
effects on MCD signs,5 based on PMO theory,8 are possible.
Such predictions have been very successful for aromatic
alternant hydrocarbons derived from (4N + 2)-electron perim-
eters. They were used, e.g., for analytical purposes,17 for
separation of inductive and mesomeric effects of substituents,18

and for study of transannular interaction.19

We shall now outline the application of the same principles
to unaromatic alternant hydrocarbons. In these, the orbitalsh-
and l+, h+ and l-, and s- and s+ are paired in the sense of
alternant symmetry, such thatcµh(-)

2 ) cµl(+)
2 , cµh(+)

2 ) cµl(-)
2 ,

andcµs
2 ) cµs(+)

2 .
Inductive Effects of Heteroatoms and Substituents.When

the effect of the position of replacement or attachment is
characterized by the change in the effective electronegativity
aFF (∆R in Hückel theory), first-order perturbation theory yields

Thus, for an electronegative heteroatom such as an aza
nitrogen,aFF < 0, and in a C-type system∆HSL- ∆HL ought
to increase in replacement positions at whichh+ (andl-) has a
particularly large amplitude ands+ (ands-) a particularly small
one (note that the coefficients of the orbitalsh- and l+ do not
matter). In an S-type system one needs to use the average of
the coefficients inh+ andh- instead of the coefficient inh+.
Such substitution should make theB term of the lower N

transition more positive or less negative, and it should have the
reverse effect on theB term of the upper N transition.

The opposite effect is expected for replacement positions at
which h+ has a particularly small ands+ a particularly large
amplitude. For electropositive heteroatoms (aFF > 0), the rules
are reversed.

Mesomeric Effects of Substituents.Since unaromatic al-
ternant hydrocarbons derived by an odd perturbation of the
perimeter have nodes cutting bond midpoints as we have seen
above, mesomeric monosubstitution lowers symmetry and is
generally characterized byη and λ values different from
multiples of π/2 even when the parent hydrocarbon is sym-
metrical, and we do not have an algebraic solution for the
perturbed system. In multiply substituted systems, symmetry
may be restored. We shall assume in the following that we are
dealing with a monosubstituted hydrocarbon and that the
solution obtained by settingη andλ equal to multiples ofπ/2
is still approximately correct. In using second-order perturbation
theory, we assume in the first approximation [E(l+) - E(ψj)]-1

) [E(l-) - E(ψj)]-1 ) 0 and [E(s+) - E(ψj)]-1 ) [E(s-) -
E(ψj)]-1 ) [E(h+) - E(ψj)]-1 ) [E(h-) - E(ψj)]-1 ) ∆E-1 >
0 for a mesomeric -E substituent with a donor orbital at energy
E(ψj). For a+E substituent with an acceptor orbital of energy
Ej, we use [E(l+) - E(ψj)]-1 ) [E(l-) - E(ψj)]-1 ) [E(s+) -
E(ψj)]-1 ) [E(s-) - E(ψj)]-1 ) ∆E-1 < 0, [E(h+) - E(ψj)]-1

) [E(h-) - E(ψj)]-1 ) 0. With this extremely crude approach,
we obtain

In a more realistic description, the factor 2 atcFs(+)
2 would be

reduced, making the formulas even more similar to those given
in eq 25. Clearly, not much more than an expectation of a trend
can be derived at this level of approximation. We conclude that
weak mesomeric donors and acceptors should have qualitatively
similar effects on theB terms of the N transitions as inductive
donors and acceptors, respectively. If the mesomeric effect is
strong, i.e., when the energy of the substituent orbital lies closer
in energy to the SO perimeter pair than either the HO or the
LO orbitals, simple predictions become difficult.

With results given in eqs 39 and 40 in hand, it is now possible
to label positions in any unaromatic alternant hydrocarbon with
respect to expected donor and acceptor heteroatom and sub-
stituent effects on theB terms of the N transitions, using only
tables of Hu¨ckel orbital coefficients. The rules for theB term
signs are quite different from those derived earlier4,5 for aromatic
alternant hydrocarbons, and it remains to be seen if they work
anywhere near as well in practice. The first indications for aza
analogues of biphenylene20 are encouraging.

Conclusion

We have provided an explicit link of the orbital energy
difference and orbital phase angle parameters that dictate spectral
observables in the perimeter model for unaromatic and ambi-
aromatic molecules to the perturbations in molecular structure

∆(∆HSL- ∆HL) ) (2aFτ
2 ∆E-1)(2cFs(+)

2 - cFh(+)
2 )

∆[∆HSL- ∑HL‚(sgn∆HL)] )

(2aFτ
2 ∆E-1)(2cFs(+)

2 - cFh(+)
2 )

if -E, ∆HL > 0 or +E, ∆HL < 0 (40)

∆[∆HSL- ∑HL‚(sgn∆HL)] )

(2aFτ
2 ∆E-1)(2cFs(+)

2 - cFh(-)
2 )

if +E, ∆HL > 0 or -E, ∆HL < 0

∆(∆HSL- ∆HL) ) 4aFF(cFs(+)
2 - cFh(+)

2 ) (39)

∆[∆HSL- ∑HL(sgn∆HL)] )

4aFF[cFs(+)
2 - (cFh(+)

2 + cFh(-)
2 )/2]
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that produce these molecules from their parent 4N-electron
perimeters. Elementary perturbations can be of the size-
conserving type (bond torsion, extension, or compression, cross-
linking, and substituents or heteroatoms with an inductive effect)
or the size-expanding type (bridging and substituents with a
mesomeric effect). Simple expressions have been presented for
both, and general rules for substituent and heteroatom effects
in this class of compounds have been formulated. Although they
are reminiscent of the rules for aromatics, they are distinctly
different.

In the way of illustration, the spectra of acenaphthylene,
pleiadiene, their double ions, and the phenalenyl ions have been
interpreted. In future publications of this series, we plan to report
similar treatments for several classes of unaromatic molecules.
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