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The performance of locally generated driving fields in the case of strong mode competition in two-dimensional
models of the title reaction is investigated. The simulations are based on an all-Cartesian reaction surface
Hamiltonian derived from ab initio quantum chemistry data. Here the one-dimensional reaction coordinate is
defined by the Co-CO distance and motions of the HCo(CO)3 fragment are described in the harmonic
approximation. The influence of two substrate normal modes is investigated in detail. First, we consider the
high-frequency H-Co stretching vibration, whose presence is shown to give no problem for driving the
reaction coordinate. Second, we focus on a low-frequency umbrella-type mode involving the equatorial
carbonyls. This mode provides a challenge to the method because of resonance and dipole gradient effects.

I. Introduction

Selective excitation and dissociation of chemical bonds by
means of tailored ultrafast laser pulses is an active area of current
research (for recent reviews see, for instance, refs 1 and 2). At
the time being it is not the desire for controlling chemical
reactions on a large scale in the laboratory that provides the
driving force in this respect. Instead, the challenge is given by
the problems that need to be solved along the road toward this
goal. At the very heart is the proper description of the molecular
system at hand. Although there has been quite some success in
controlling one-dimensional model systems (in experiment and
theory), real-life applications are more likely to have a
multidimensional character with respect to electronic and nuclear
degrees of freedom. Fortunately, chemical reactions quite often
involve large-amplitude motions of a few nuclear coordinates
(active coordinates) only, whereas the majority of nuclear
degrees of freedom can be described within the harmonic
approximation. This sets the stage for the so-called system-
bath approaches to multidimensional nuclear dynamics.3 This
concept can be implemented either by defining an active
coordinate along the minimum energy path4 or along some
Cartesian reaction path.5 The two approaches essentially differ
in the way the coupling between active and substrate degrees
of freedom is accounted for: In the first case it is contained in
the kinetic energy operator, whereas in the second case it is in
the potential energy operator. In refs 6-9 it was shown that
the idea of an all-Cartesian reaction surface Hamiltonian can
be implemented for polyatomics on an ab initio level of quantum
chemistry. Given a careful choice of the active coordinates, this
allows one to simulate laser-driven nuclear dynamics in the
adequate dimensionality. In particular we have studied the
photodissociation reaction8,9

in the electronic ground state. The loss of the axial carbonyl
group (frozen at its equilibrium geometry) has been modeled
along a one-dimensional Cartesian reaction coordinate, that is,
the Co-CO distance, coupled to the motions of the HCo(CO)3

fragment. We note in passing that even though the alternative
concept of following the minimum energy path4 enjoys great
popularity in the field of reaction dynamics (see, e.g., ref 10
and references cited therein), there has been only one application
to reaction control.11 This study, however, revealed that the
complications arising from the nonadiabatic couplings neces-
sitate further approximations.

In ref 12 a straightforward scheme for photodissociation of
a bond by means of IR laser light was proposed. Here a single
laser pulse of the form

is used to accomplish the driving of the nuclear wave packet
towards dissociation. In this scheme the expectation value of
the reaction coordinate resembles the behavior of a driven
classical Morse oscillator. However, in contrast to the classical
case, which had been studied in quite some detail already in
the 1970s and 1980s,13,14 the actual wave packet dynamics is
not necessarily close to classical. For example, studying selective
breaking of the H-Co bond as an alternative to eq 1 in refs 12
and 15, it was shown that for the stiff H-Co bond, wave packet
dispersion is substantial, but also for the softer Co-CO bond it
cannot be neglected.8,9,12,15The most appealing feature of this
approach is the simple form of the laser pulse. Starting with
the contributions of Bandrauk and co-workers,16 chirped-pulse
excitation has been favored as an efficient route to dissociation
(see also ref 17). In fact, chirped-pulse vibrational ladder
climbing has already been demonstrated experimentally, for
example, for NO in ref 18. Chirped-pulse excitation of
vibrational manifolds can also be achieved within an off-
resonant Raman adiabatic passage scheme.19,20Alternatively to
the use of chirped pulses, multipulse vibrational excitation and
bond dissociation has been successfully demonstrated (see, e.g.,
refs 15 and 21).

Whereas the approaches mentioned so far are based on a
parametrized pulse form providing enough flexibility to reach
a predetermined target, optimal control theory has been devel-
oped to find those laser fields that give a maximum reaction

HCo(CO)4 + hν f HCo(CO)3 + CO (1)

ε(t) ) ε0 sin2(πt/τ) cos(Ωt) (2)
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yield under certain physical constraints.22 Here one defines a
cost functionalJ ) |〈O〉(T) - Otarget(T)|2 + Jpenalty, where〈O〉(T)
) 〈Ψ(T)|O|Ψ(T)〉 is the expectation value of some operatorO
taken at timet ) T with respect to the state vector|Ψ(T)〉. This
expectation value is supposed to assume the target value
Otarget(T). By solving the set of equations resulting from the
condition δJ ) 0, with additional constraints added by the
penalty termJpenalty, one obtains the required fieldε(t). Via the
method of Lagrangian multipliers the penalty term ensures, for
example, that the field fluence is minimized and that the state
vector obeys the Schro¨dinger equation

Here H0 describes the field-free evolution of the system, and
the interaction with the external fieldε(t) is considered within
the semiclassical dipole approximation with the dipole operator
given byµ. In practical terms the solution of the control problem
has to be obtained by numerical iteration. Several efficient
procedures have been suggested in this respect.23,24 There are
also comparative studies25 showing that different numerical
methods might provide different answers. This is not surprising,
for the solution to the optimal control problem is not unique.

Despite these efforts, noniterative approaches might be more
adequate when treating multidimensional systems. However,
here the feedback for the field from the objective trajectory is
accounted for only approximately, if included at all (for a
discussion see ref 26). The simplest approximation, requiring
the operatorO to commute with the total Hamiltonian, gives
the so-called local control method26,27(see also ref 28). Viewed
as resulting from an expansion ofδJ with respect toδε(t), local
control corresponds to the zero-order approximation.26 Although
this does not necessarily give the optimal field, a first-order
approximation for the determination of the field has been shown
to provide a significant improvement, if built on a reasonable
zero-order field.26 Local control has quite some similarities to
tracking or inverse control.29-31 The main difference between
both methods is that in the tracking approach the expectation
value of some observable is specified from the very beginning.
By construction, tracking control provides us with a unique field
for following a predefined objective. However, the price to pay
is that the field may become rather unrealistic and even
singularities can occur. The latter aspect and the conditions for
removing such singularities have been discussed in ref 32. Local
control, on the other hand, can be viewed as a sequence of
optimal control steps, with the final wave function at the end
point of each time step being the initial wave function for the
next interval. Thus the expectation value of some objective
operator is generated “on the fly”.32

In this paper we will apply the methods of inverse and local
control to study eq 1 on the basis of the Cartesian reaction
surface Hamiltonian presented in ref 9. Our motivation derives
from the observation that the presence of substrate normal modes
renders the dissociation scheme based on the simple pulse (eq
2) inapplicable in certain cases. Besides, vibrational ladder
climbing and dissociation in multidimensional systems has not
yet been addressed in great detail. An early account was given
by Billing and Henriksen,33 who developed a semiclassical
approach to the photofragmentation of polyatomics. More recent
examples include the study of excitation of the C-C stretching
vibration in planar acetylene,34 focusing on the influence of
Fermi resonances and the vibrational Stark effect. This five-
dimensional treatment was made possible by exploring the idea
of essential states.35 In ref 36, bond-selective dissociation in a

three-dimensional model of HONO2 was investigated. The
general effect of nonreactive modes on laser control in a double
minimum potential has been discussed in ref 37. Control of a
two-dimensional model of a hydrogen atom transfer reaction
was simulated in ref 38. Here the methods of condensed-phase
dynamics3 were used to incorporate a heat bath. In fact, there
are a number of studies combining the quantum master equation
approach with laser control (for an account on approaches
involving also excited electronic states see ref 2).39-44

The remaining text is organized as follows: In section II we
first introduce the model Hamiltonian and then briefly review
the formalism of inverse and local control. Numerical results
are presented in section III and the paper is summarized in
section IV.

II. Theory

A. Model System.The construction of ab initio multidimen-
sional potential energy surfaces presents a serious challenge if
more than about three degrees of freedom are involved in a
reaction. In many cases, however, the reaction dynamics will
not cover all the available configuration space and a partitioning
into active and substrate coordinates becomes possible. Whereas
the former are allowed to perform motions of arbitrary large
amplitude, the latter are treated within the harmonic approxima-
tion. Here we will use the all-Cartesian formulation of this
concept which had been given in ref 5 (for details of the
implementation see also ref 6). Introducing (mass-weighted)
normal modes{Qn} for the substrate coordinates and denoting
the one-dimensional reaction coordinate byx, one arrives at the
following (system-bath) Hamiltonian

In the present case of eq 1,V(x) is the one-dimensional reference
potential for the motion of the reaction coordinate, which is
given by the Co-CO bond length (the internal bond of the CO
fragment is kept fixed at its equilibrium distance). The coupling
between the reaction coordinate and the normal mode oscillators
is contained in the functionfj(x).

For the interaction with the external laser field we use the
semiclassical Hamiltonian

For the dipole momentµ(x, {Qj}) a low-order expansion with
respect to the substrate coordinates is performed, that is,

The derivatives of the dipole moment function along the
substrate normal mode coordinates can be calculated numeri-
cally, for example, by using a finite difference approximation.9

In ref 9 it was shown that there are two substrate normal
modes that couple appreciably to the one-dimensional reaction
coordinate. The potential energy and dipole moment surfaces
along the reaction coordinate and the two important substrate
normal modes are shown in Figure 1. ModeQ1 can be
characterized as a H-Co stretching vibration, whereas mode
Q2 is of umbrella type with respect to the equatorial carbonyls.
For the following analysis it is of importance that both modes
have quite different frequenciesΩj (Ω1 ≈ 2000 cm-1 andΩ2

ip
∂

∂t
|Ψ(t)〉 ) [H0 - µε(t)]|Ψ(t)〉 (3)

H0 )
p2

2m
+ V(x) +

1

2
∑

j

[Pj
2 + Ωj

2 Qj
2 - 2fj(x)Qj] (4)

HF(t) ) -ε(t)∑
j

µ(x, {Qj}) (5)

µ(x, {Qj}) ) µ(x, {Qj ) 0}) + ∑
j

∂µ(x,{Qj})

∂Qj

|Qj)0Qj (6)
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≈ 500 cm-1). Because the harmonic frequency along the
reaction coordinateΩsysis about 350 cm-1, unwanted resonance
effects can be expected when driving the reaction coordinate
with a spectrally broad laser pulse. This effect will be of
particular importance because of the dipole gradient, which
points basically along the umbrella-type normal mode in the
vicinity of the equilibrium geometry [cf. Figure 1 panel (D)].

The quite different characteristics of the two normal modes
allows us to study their influence on the dynamics of the reaction
coordinate separately in section III.

B. Laser Control. One of the main results of ref 9 was the
observation that the inclusion of the umbrella-type mode renders
the dissociation control with a simple laser pulse of the form
of eq 2 impossible because of resonance and dipole effects. An
appreciable part of the available laser energy is consumed for
heating the substrate normal mode. This is not the case for the
high-frequency H-Co mode; because of the large frequency
mismatch the presence of this mode is no problem for the laser-
driven dissociation with the pulse (eq 2).

To take up the challenge provided by the very competitive
umbrella-type mode we will apply the methods of tracking and
local control in the following.29-31 Tracking or inverse control
is based on an intuitive guess for an optimal trajectoryOtrack.
The Heisenberg equations of motion for the quantum mechanical
expectation value of the operatorO associated toOtrack are then
inverted to give the field necessary for following this track.
Because the calculation of the expectation value requires
knowledge about the state vector, the equation for the field is
coupled to the Schro¨dinger (eq 3) (for a detailed discussion see
ref 29). If the considered operator commutes with the field-
dependent part of the Hamiltonian, that is, with the dipole
operator, one encounters a so-called trivial singularity in the
field, which can be removed by stepping to the higher-order
derivatives ofO.32 To be specific, let us consider the case of

position tracking, that is,O corresponds to the reaction
coordinate operatorx. Because [x, µ(x)] ) 0 we have to use the
equation of motion for the respective momentump, which is
given by

In the second line we made use of the condition that the
evolution of the momentum expectation value should follow
the predefined trackptrack. Equation 7 is easily inverted to give
the field as

We note that this expression does not include any restriction
on the field as far as it concerns its fluence. In practice the use
of this method therefore requires a careful choice for the tracking
variableptrack. This holds in particular if the concept is extended
to more dimensions as proposed in ref 29.

An alternative is provided by local competitive tracking
suggested in ref 31. Here the desired track is not specified a
priori but determined from the instantaneous expectation values
entering the right-hand side of the equations of motion for the
momentum. To drive the reaction coordinate toward dissociation
it is reasonable to assume that the objective trajectory is specified
by

whereγx is a constant playing the role of a damping parameter.
Equating eq 9 with eq 7 one obtains the field asε(t) ) γx〈p〉/
〈dµ/dx〉. As shown in ref 31, this expression does not perform
well in practical calculations, particularly in situations where
the wave packet is rather delocalized. Instead it has been
suggested31 to formulate a related variational problem on the
basis of the cost functional

Minimizing this functional gives the field as

As has been pointed out in ref 31, the fact that the field is
proportional to the momentum ensures very efficient energy
deposition into the reaction coordinate. Note that we have
included a factor 1/xEx(t) whereEx(t) is the expectation value
of the system energy. This factor prevents an exponential
increase of the momentum and thus of the energy.31 As we will
show below, this factor also leads to fields of more moderate
strengths. Equations 10 and 11 are easily extended to the
multidimensional case. One obtains the locally optimized field
as

Figure 1. Potential energy surface (A, C) and dipole moment surface
(B, D) for a two-dimensional model of eq 1 including a high-frequency
H-Co stretching mode (A, B) and a low-frequency umbrella-type mode
(C, D) (reaction coordinate in atomic units, normal mode in mass-
weighted atomic units). The contour lines are plotted at: (A, C) 0.01,
0.02, ..., 0.1 hartree, (B)-3, -2.5, ... 1 Debye, (D)-4, -3.5, ... 1.5
Debye. In the numerical calculations the coordinate grid has been chosen
as 128× 256 forx andQ, respectively, with the grid boundaries given
by x ) -0.94...6.00a0, Q1 ) -3.0...3.0a0, andQ2 ) -6.0...5.5a0. The
gobbler function starts atx ) 4a0, which also defines the boundary of
the interaction region in eq 13.

d
dt

〈p〉 ) 1
ip

〈[p, H0]〉 - 1
ip

〈[p, µε(t)]〉

) d
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ptrack (7)

ε(t) )
m

d
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dx〉

〈dµ
dx〉

(8)

d
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dx 〉 + γx

d
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〈p〉 (9)

J ) 〈[γxp - ε(t)
dµ
dx]2〉 (10)

ε(t) )
γx

xEx(t)

Re〈dµ
dx

p〉
〈(dµ

dx)2〉
(11)
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Here we introduced damping parameters for the different degrees
of freedom asγx and γj.31 This will allow us to trigger the
motion along one coordinate while damping competing degrees
of freedom (see below). The relative weight of this desired
motion of the different coordinates is specified by the functions
Wx(t) and Wj(t). Note that in ref 31 these weights have been
taken as constants. However, for one of the applications
presented below it was essential to allow for a time dependence
at this point (cf. section III). Finally, we included the factors
1/xEx(t) and 1/xEj(t), with Ex(t) andEj(t) being the instanta-
neous expectation value of the energy for the different (un-
coupled) degrees of freedom (see above).

In the following we will present results for the different
methods using the dissociation probability

as a measure for successful driving. In eq 13Vint denotes that
part of the potential energy surface where the gradient along
the exit channel is appreciably different from zero.

III. Results

A. One-Dimensional Case.To provide a reference case, we
first study the laser-driven dynamics along the one-dimensional
reaction coordinate only. Throughout we will use the fast Fourier
transform method, together with a symmetrically split time
evolution operator for propagation of the wave functions on a
grid (grid parameters in caption of Figure 1).45,46 To prevent
reflection from the grid boundaries along the reaction coordinate
we used a sin-type gobbler function.47

We start with the position tracking according to eqs 7 and 8.
The objective trajectory is given by an antidamped classical
motion in the potentialV(x) (see middle panel of Figure 2,
dashed line). Tracking this trajectory presents no problem at
all, as can be seen in the middle panel of Figure 2. The
dissociation yield is close to 100 % (see inset) at the expense
of a very strong field, which is shown in the upper panel of
Figure 2. In the initial part of the dynamics the field is very
similar to the simple analytical form (2). This is in accord with
the fact that the pulse (eq 2) drives the Morse-type oscillator in
a way that the behavior of〈x〉(t) basically corresponds to that
of a classical antidamped oscillator. Whereas the driving via
the field of eq 2 gives appreciable dissociation even after the
wave packet becomes delocalized,8 in the present case the field
strength strongly increases when the variance of the coordinate
expectation value increases, as shown in Figure 2. This implies
that it is very demanding for the field to ensure that the system
follows a classical trajectory.

Next we consider the same problem using local control theory.
Here the field is given by eq 11. Neglecting for the moment
the factor 1/xEx(t), we find the dynamics shown in Figure 3.
Obviously, the local control approach is better suited to deal
with situations where the wave packet becomes delocalized. The
maximum field strength is a factor of two lower than in the
position tracking case, without deterioration of the reaction yield.

Comparing the field (upper panel) and the expectation value of
the momentum operator (lower panel) shows that the dipole
gradient plays an important role for the determination of the
field (cf. eq 11), that is, the field does not follow directly the
momentum of the system.

Including the energy denominator in eq 11 reduces the
maximum field strength by a factor of 10. The results of the
numerical simulation are plotted in Figure 4. The dissociation
yield is about 65% and, in contradistinction to Figure 3, the
coordinate expectation value more closely resembles the dynam-
ics of the classical antidamped Morse-type oscillator. The power
spectrum of the field is shown in the inset of the upper panel in
Figure 4. It is dominated by a peak at 330 cm-1, a frequency
that is close to the 0f 1 vibrational transition frequency along
the reaction coordinate (Ωsys≈ 350 cm-1). Thus the mechanism

ε(t) )

Wx(t)
γx

xEx(t)

Re〈 ∂

∂x
µ(x,{Qn})p〉 + ∑

j

Wj(t)
γj

xEj(t)

Re〈 ∂

∂Qj

µ(x,{Qn})Pj〉
Wx(t)〈[ ∂

∂x
µ(x,{Qn})]2〉 + ∑

j

Wj(t)〈[ ∂

∂Qj

µ(x,{Qn})]2〉
(12)

Pdiss(t) ) 1 - ∫Vint
dx dQ|Ψ(x,Q;t)|2 (13)

Figure 2. Position tracking control of one-dimensional reaction
coordinate. The objective trajectoryxtrack(t) is generated from the
antidamped classical equation of motion d2x/dt2 ) -dV(x)/dx + γdx/
dt with γ ) 20. Field, position, and variance of the position are given
in atomic units.

Figure 3. Local control of the one-dimensional motion along the
reaction coordinate according to eq 11 without using the energy
prefactor. For a choice ofγx ) 0.0307 the wave packet remains quite
localized (not shown) while moving into the exit channel. Field,
position, and momentum are given in atomic units.
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of local driving can be considered as being similar to the case
of the simple field of eq 2 that was studied in refs 8 and 9.

B. High-Frequency Q1 Mode. As a first example for a
substrate mode that presents a competition to the laser driving
of the reaction coordinate, we consider the high-frequency
H-Co stretching mode. In Figure 5 we show the expectation
value of the coordinates together with the driving field and the
time-dependent dissociation probability. The time-dependent
energy factors in eq 12 have been omitted because reaction
control could be achieved using moderate field strength already
in this case. Further, it was not necessary to use time-dependent
weight functions in eq 12, and we have takenWx ) 0.8 andW1

) 0.2 for simplicity.
The power spectrum of the driving field has a major peak at

280 cm-1, that is, close to the frequency reaction coordinate
Ωsys. Because the normal mode frequencyΩ1 is much higher,
this mode is basically not excited during dissociation. This can
be seen from the coordinate expectation values in Figure 5 but
also from the snapshots of the wave packet dynamics shown in
Figure 6. From Figure 6 we further see that the moving wave
packet remains compact up to the dissociation. The overall
behavior is in accord with the results of the simulations that
used the simple pulse form eq 2.9

C. Low-Frequency Q2 Mode.Next we focus on the influence
of the umbrella-type substrate normal mode. Because a simple
pulse of the form in eq 2 failed to trigger dissociation in this
case, we expect the two-dimensional (x,Q2) system to provide
a more stringent test for the local control approach.

For the weighting functions we used (cf. also ref 29)

and

It turned out that the resulting dynamics are very sensitive to
the actual value chosen for the parameterR. The general
dependence is in accord with the idea of a stroboscopic
weighting provided by eqs 14 and 15. IfR is of the order of the
0 f 1 transition frequency along the reaction coordinate,
dissociation could be achieved with a certain flexibility in the
damping parametersγx andγ2. For a much largerR > Ωsys, no
control was possible. On the other hand, forR < Ωsys we
observed dissociation, but with a yield that was very sensitive
to the choice of the damping parameters. No control on a time
scale of about 1 ps was possible for constant weight functions.

First we present the results for the case where the energy
denominator in eq 12 had been neglected. The results of the
numerical simulation are summarized in Figures 7 and 8.
Inspecting Figure 7, we first notice that the dissociation yield
is close to 100%. When contrasting this success with the zero
yield obtained for the simple-pulse driving case, one has to
consider that the driving field has a rather exotic shape and it
becomes very strong as well [cf. panel (A) in Figure 7]. Thus
it is very likely that the Born-Oppenheimer approximation
breaks down, and processes like ionization would have to be
considered in a more realistic model (cf. ref 48). Because this
is beyond the scope of the present investigations, we will view
the results shown in Figure 7 as a reference case that provides
useful information about the mechanism leading to the dis-
sociation within the adopted model. In panel (C) of Figure 7
we have plotted the time-dependent coordinate expectation
values. Apparently, the initial part of the dynamics can be
characterized as leading mostly to an excitation of the substrate
normal mode. In view of the dipole surface shown in Figure
1(D), this does not come as a surprise. However, with increasing
energy the moving wave packet covers a region where the
potential coupling f2(x) becomes important as well. The

Figure 4. Same as in Figure 3 but including the energy prefactor in
eq 11. Field, position, and momentum are given in atomic units.

Figure 5. Local control in for the two-dimensional including the
reaction coordinate and the high-frequency mode [cf. Figure 1 (A) and
(B)]. The energy prefactor in eq 12 has not been taken into account.
(A) Laser field, (B) dissociation probability, (C) trajectory (field and
coordinates in atomic units, time in femtoseconds). The weight functions
in eq 12 are taken to be constant,Wx ) 0.8 andW1 ) 0.2. The damping
parameters areγx ) 0.45 andγ1 ) -1.0.

Figure 6. Snapshots of the wave packet dynamics corresponding to
the situation in Figure 5 (absolute values scaled for visualization).

Wx(t) ) cos2(Rt) (14)

W2(t) ) sin2(Rt) (15)
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concerted action of both driving and coupling finally guides
the wave packet into the exit channel. Looking at the wave
packet snapshots in Figure 8, the most striking observation is
that there is only little delocalization. In other words, the motion
is to a good approximation that of a classical particle. On the
basis of our experience with the one-dimensional limit, we
expect that upon inclusion of the energy factors in eq 12, the
field will behave more moderately also in this two-dimensional
case. In fact, the numerical results shown in Figure 9 support
this supposition. The maximum field strength is reduced by a
factor of eight and the overall behavior ofε(t) is much smoother
than in Figure 7. However, this behavior comes along with a
lower dissociation yield of about 12%. As a consequence of
the reduced antidamping of the reaction coordinate dynamics
[∝γx/xEx(t)], it takes a much longer time to deposit enough
energy into this coordinate such that dissociation occurs. The
respective dynamics of the coordinate expectation values covers
large parts of the bound-state potential energy surface. This
behavior, however, can no longer be interpreted in terms of
classical dynamics. In fact, the snapshots of the wave packet
plotted in Figure 10 reveal that already after 500 fs, that is,
well before any dissociation takes place, the wave packet is
covering most of the available configuration space. The
circumstance that despite this almost complete delocalization
there is appreciable dissociation setting in at about 1.5 ps points
to the strength of the competitive local control method.

IV. Summary

Local competitive control of two-dimensional models of the
ground-state photodissociation reaction (eq 1) has been studied
on the basis of an ab initio all-Cartesian reaction surface
Hamiltonian. After the failure of the approach to drive the
reaction with the simple pulse (eq 2) in the presence of the low-
frequency umbrella-type substrate normal mode reported in refs
8 and 9, our initial intention was to use optimal control theory.26

This iterative procedure, however, turned out to be numerically
very demanding because of the present need for a large grid.
The noniterative local control approach, on the other hand,
performed well in producing reasonable reaction yields for
moderate laser pulse shapes. To accomplish this goal, the use
of a stroboscopic-type weight function for the different objec-
tives, that is, antidamping of the reaction coordinate and
damping of the substrate normal mode, proved to be crucial in
the case of strong mode competition. Further, it was shown that
the inclusion of a time-dependent energy factor that gives an
additional damping31 led to a considerable smoothening of the
pulse shape and a reduction of the maximum pulse strength
needed for efficient dissociation. Finally, we found the dynamics
upon inclusion of the high-frequency normal mode to be rather
classical, that is, the dissociation proceeds without substantial
wave packet dispersion. On the other hand, in the presence of

Figure 7. Local control in for the two-dimensional including the
reaction coordinate and the low-frequency mode [cf. Figure 1 (C) and
(D)]. The energy prefactor in eq 12 has not been taken into account.
(A) Laser field, (B) dissociation probability, (C) trajectory (field and
coordinates in atomic units, time in femtoseconds). The weight functions
are chosen according to eqs 14 and 15 with a stroboscopic frequency
of R ) 330 cm-1. The damping parameters areγx ) 0.85,γ2 ) -35.0.

Figure 8. Snapshots of the wave packet dynamics corresponding to
the situation in Figure 7 (absolute values scaled for visualization).

Figure 9. Local control in according to eq 12 for the two-dimensional
including the reaction coordinate and the low-frequency mode [cf.
Figure 1 (C) and (D)]. (A) Laser field, (B) dissociation probability,
(C) trajectory (field and coordinates in atomic units, time in femto-
seconds). The weight functions are chosen according to eqs 14 and 15
with a stroboscopic frequency ofR ) 220 cm-1. The damping
parameters areγx ) 0.09,γ2 ) -3.0.

Figure 10. Snapshots of the wave packet dynamics corresponding to
the situation in Figure 9 (absolute values scaled for visualization).
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the low-frequency mode and for a reasonable pulse form, the
wave packet becomes delocalized over the available configu-
ration space already well before dissociation. However, even
in this case, the local control method is able to guide a good
fraction of the wave packet toward dissociation.
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(15) Kühn, O.; Manz, J.; Zhao, Y.Phys. Chem. Chem. Phys.1999, 1,

3103.
(16) Chelkowski, S.; Bandrauk, A. D.; Corkum, P. B.Phys. ReV. Lett.

1990, 65, 2355.
(17) Chelkowski, S.; Bandrauk, A. D.J. Chem. Phys.1993, 99, 4279.
(18) Maas, D. J.; Duncan, D. I.; Vrijen, R. B.; van der Zande, W. J.;

Noordam, L. D.Chem. Phys. Lett.1998, 290, 75.

(19) Chelkowski, S.; Gibson, G. N.Phys. ReV. A 1995, 52, R3417.
(20) Davis, J. C.; Warren, W. S.J. Chem. Phys.199, 110, 4229.
(21) Paramonov, G. K. InFemtosecond Chemistry; Manz, J., Wo¨ste,

L., Eds.; Weinheim: Verlag Chemie, 1995; Vol. 2, p 671.
(22) Peirce, A.; Dahleh, M.; Rabitz, H.Phys. ReV. A 1988, 37, 4950.
(23) Zhu, W.; Botina, J.; Rabitz, H.J. Chem. Phys.1998, 108, 1953.
(24) Zhu, W.; Rabitz, H.J. Chem. Phys.1998, 109, 385.
(25) Sola, I. R.; Santamaria, J.; Tannor, D. J.J. Phys. Chem. A1998,

102, 4301.
(26) Zhu, W.; Rabitz, H.J. Chem. Phys.1999, 110, 7142.
(27) Ohtsuki, Y.; Kono, H.; Fujimura, Y.J. Chem. Phys.1998, 109,

9318.
(28) Kosloff, R.; Rice, S. A.; Gaspard, P.; Tersigni, S.; Tannor, D. J.

Chem. Phys.1989, 139, 201.
(29) Gross, P.; Singh, H.; Rabitz, H.; Mease, K.; Huang, G. M.Phys.

ReV. A 1993, 47, 4593.
(30) Lu, Z.-M.; Rabitz, H.J. Phys. Chem.1995, 99, 13731.
(31) Chen, Y.; Gross, P.; Ramakrishna, V.; Rabitz, H.J. Chem. Phys.

1995, 102, 8001.
(32) Zhu, W.; Rabitz, H.J. Chem. Phys.1999, 110, 1905.
(33) Billing, G. D.; Henriksen, N. E.Chem. Phys.1988, 119, 205.
(34) Liu, L.; Muckerman, J. T.J. Chem. Phys.1999, 110, 2446.
(35) Kaluza, M.; Muckerman, J. T.Chem. Phys. Lett.1995, 239, 161.
(36) Oppel, M.; Paramonov, G. K.Chem. Phys.1999, 250, 131.
(37) Karmacharya, R.; Gross, P.; Schwarz, S. D.J. Chem. Phys.1999,

111, 6864.
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