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The theory of atoms in molecules (AIM) defines bounded atomic fragments in real space that generate
transferable atomic properties. As part of a program that investigates the topological partitioning of
electromagnetic properties based on the electron density, we have calculated the exact atomic electrostatic
potential (AEP) of an AIM atom in a molecule. Second we expand this atomic electrostatic potential in terms
of AIM electrostatic multipole moments based on spherical tensors. We prove that the convergence of this
expansion is faster than previously assumed, even for complicated atomic shapes.

1. Introduction

Progress in the field of molecular electrostatics1,2 accelerated
after the concept of the molecular electrostatic potential (MEP)
was introduced.3 The MEP is a physically observable quantity
and can be derived directly from the wave function. The
important role the MEP plays in computational chemistry is
indicated by its many applications1 in reactivity (electrostatic
catalysis4), zeolites5 (and more generally crystal surfaces and
cavities), solvation,6 complementarity and similarity (encom-
passing host-guest interactions7 and structure-activity relation-
ships8).

The electrostatic potential has also proved to be very useful
in rationalizing the interactions between molecules at large
separations and for molecular recognition processes.9 In par-
ticular the role of the electrostatic interaction in proteins cannot
be overestimated.10 The initial step in many biological processes
such as drug-receptor or enzyme-substrate interactions is
molecular recognition, in which the receptor recognizes key
features of the approaching drug. This recognition, which
precedes formation of covalent bonds, is believed to occur when
two molecules involved in the process are at a relatively large
separation. Loosely speaking two molecules first see each other
by means of the electrostatic potential.11

In this contribution we focus on the atomic partitioning of
the MEP within the context of the theory of atoms in molecules
(AIM). 12,13 This theory provides a rigorous scheme to cut a
molecule into atoms in real space, rather than in the Hilbert
space of the basis functions. AIM multipole moments have been
used before in the representation of the electrostatic potential14-16

and of the electrostatic interaction between simple molecules.17,18

We introduce the exact AIMatomic electrostatic potential
(AEP) and the convergence behavior of the AIM electrostatic
moments to this AEP. It will be shown that this convergence is
attained at lower order than previously assumed.19,20We hereby
extend the list of useful atomic properties that distribute
important molecular quantities over atoms. This list includes a
bond order,21 an atomic valence index,21 atomic frequency-
independent22 and frequency-dependent23 polarizabilities, and
an atomic dispersion coefficients.24 All these properties benefit
from being independent of the underlying computational scheme
that yields the wave function. More precisely, they can be used

with Gaussian, Slater, or plane wave functions, are stable with
respect to basis set variation,21,22and exist within the framework
of classic correlation methods, including DFT approaches.

In Section 2 we define the AEP after a concise outline of the
construction of an atomic basinΩ. In Section 3 the AEP is
expanded in a basis of spherical harmonics introducing elec-
trostatic AIM moments. We rigorously discuss the condition
of formal convergence of the AEP in terms of the AIM
moments. In Section 4 computational details are given on both
the method and the convergence assessment of the AEP. Finally
we apply the new AIM concept in Section 5 to a set of molecules
including molecular nitrogen, water, ammonia, imidazole,
alanine, and valine.

2. Atomic Partitioning of the Exact Molecular
Electrostatic Potential

The molecular electrostatic potential (MEP), denoted byV(r ),
can be computed exactly from the molecular electron density
Felec(r ′) ) -F(r ′) and the nuclear charge densityFnuc(r ′), by

whereZA is the charge of nucleusA located at positionRA, r ′
are the three coordinates describing the molecular charge density
andr are the three coordinates describing the MEP. The right-
hand side of eq 1 follows fromFnuc(r ′) ) ∑AZAδ(r ′ - RA) since
in this work the nuclear charge density is represented by
monopoles only. It should be noted that the volume integral
extends over all space. The MEP has a clear physical meaning
because, when multiplied by a unit charge, it is simply the work
done of bringing a proton from infinity to the pointr . Although
V(r ) is actually a potential it is often expressed in units of
energy, such as kJ/mol, a convention we adopt in this article.
An alternative interpretation of MEP is to regard it as the
electrostatic interaction energy of a molecule with a proton
situated at the pointr . In reality this proton induces polarization
of the molecular electron density, but this effect is not taken
into account here sinceF(r ) corresponds to the unperturbed
molecular ground state.
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Atomic properties are defined as volume integrals over the
atomic basinΩ of a property density. As a consequence of the
AIM partitioning a molecule is divided in nonoverlapping atoms,
hence a molecular property is simply the sum of the values of
the corresponding atomic property. The AEP caused by the
electron density of an atomA is given by:

where ΩA is the atomic basin housing nucleusA and the
remaining symbols have the same meaning as in eq 1. The total
MEP is then merely a sum of all the AEPs, or:

We emphasize that the proposed partitioning occurs in real space
consistent with successful and practically useful AIM concepts
such as AIM distributed polarizabilities, dispersion coefficients,
and bond orders.

There are alternative partitioning schemes for the MEP in
Hilbert space, such as distributed multipole analysis (DMA)25

or a quantum chemical model for electrostatic effects by Jug.26

These Hilbert space partitioning models have in common that
molecular properties are distributed over atoms purely on the
basis of the proximity of the centers of the basis functions to
the nuclei. As a result, an atomic property is entirely dictated
by the positioning of the basis functions contributing to the
corresponding molecular property. The AIM partitioning method
does not depend on where the basis functions are centered, their
mathematical shape, or even whether they exist in the first place,
such as in the case of grid determined properties. It assigns in
a nontrivial way which portions of real space contribute to a
given atom, based on the shape of the interatomic surfaces,
which are in turn determined by thetotal electron density.

However, a numerical evaluation of the exact AEP in eq 2
requires an atomic integration for every given point (coordinates
r ) for which the potential needs to be evaluated. By introducing
a Taylor expansion of the integrand|r - r ′|-1 one can separate
the electronic coordinatesr ′ from those describing the electro-
static potential,r . The atomic integration then leads to atomic
multipoles, which can subsequently be used to compute the
electrostatic potential via the developed series expansion. The
advantage of the coordinate separation is clear: the integration
does not need to be performed for every given pointr for which
one wants to know the potential. The only price paid for this
series expansion is possible convergence problems, a matter that
is discussed in the next section.

3. Multipole Expansion for Atomic Fragments

It is known that an expansion of the electrostatic potential in
terms of Cartesian tensors leads to unwieldy expressions and
redundant moments.27 Hence we follow the route of the spherical
tensor formalism. The expression|r - r ′|-1 is conveniently
expanded in terms of spherical harmonics,28 as is shown in eq
4.

In this expression,r< is the smaller andr> is the larger value
of r ) |r | or r′ ) |r ′|, where both vectorsr andr ′ are referred

to the same origin. The functionClm(θ,æ) is the renormalized
spherical harmonic, denoted byYlm(θ,æ):

Below we use this series expansion to expand the AEP rather
than the MEP, hence the origin of this series expansion will be
taken as the nuclear origin of atomA, not the molecular origin.

Since we compute the electrostatic potentialoutside an
electron distribution the radiusr′ of the electronic coordinate
r ′ is in principle smaller than the radiusr of the potential
coordinater . Thus for our application we will replacer< by r′
and r> by r in subsequent formulas. For computational con-
venience we introduce the real functionsClmc(θ,æ) andClms(θ,æ)
by the following unitary transformation:19

The multipole expansion (eq 4) can be rewritten in terms of
real renormalized spherical harmonics:

Note that each term of this expansion is real. Substituting eq 7
into the definition of the AEP (eq 2) we arrive at an exact
expansion of the AEP in terms of AIM multipole moments in
eq 8.

where Ql0(ΩA),Qlmc(ΩA) and Qlms(ΩA) represent the AIM
multipole moments13obtained via integration over the atomic
basinΩA:

If the nuclear charge density just consists of monopoles the
function Ftot(r ′) can be replaced by-F(r ′) for all multipole
moments exceptQ00, which can be written as
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The main advantage of the multipole expansion is its compu-
tational efficiency. As explained in the previous section, the
atomic integration is completedbeforethe pointr is given at
which the AEP needs to be known. Equation 8 makes clear
that VA(r ) can be computed at any point using the atomic
moments.

We now discuss the issue of the convergence of the multipole
expansion of our AEP. Figure 1 shows a schematic representa-
tion of an atomic basin containing the electron densityF(r ′)
that generates the AEP denoted byV(r ). Both vectorsr ′ andr
are centered on the nuclear originA. To ensure formal
convergence of the multipole expansion we demand that|r | >
|r ′| for all points. This means that a pointr must lie outside a
sphere with radius|r ′|, where |r ′| is the maximum value
encountered within the atomic basin. The atomic basin is
bounded, both within the molecule, by the interatomic surfaces,
as well as at its open side by a constant electron density
envelope. A typical choice is the so-called van der Waals
envelope, practically represented by theF ) 0.001 or 0.002 au
surface.29 The AEP will formally diverge for any pointr within
the sphere with radius|r ′|max and therefore definitely for any
point inside the atomic basinΩA. In our calculations we ensured
that the potential was evaluated outside the divergence sphere.

This property of formal convergence of the AEP can be
considered as an advantage over methods that define multipoles
as integrations over whole space. It is well-known that if the
whole electron density is included, then the convergence sphere
has an infinite radius and the multipole expansion is formally
divergent everywhere. Despite this flaw multipole expansion
schemes such as DMA25 are practically useful, presumably
because the electron density decays exponentially to zero in
the outer regions. Of course, an integration over a finite volume,
such as in the computation of the AIM moments, means that

some electron density is excluded from the moment. In
summary, the practical use of electrostatic moments introduces
a tradeoff between exact formal convergence and completeness
of the moment. Because of the finiteness of the atomic basins
we are able to control convergence, and make it formally exact
if necessary.

4. Computational Methods

In all our calculations the electron densityF(r ) was obtained
from the solution of the Kohn-Sham equation. This method is
computationally less demanding than the Hartree-Fock/MP2
method but yields comparable results for molecular proper-

Figure 1. A schematic representation of an atomic basin containing
the fragment of the electron densityF(r ′) that generates the corre-
sponding atomic electrostatic potentialV(r ). Note thatr ′ andr have a
common origin, i.e., the nucleus of the atom. The circle represents the
convergence sphere outside whichV(r ) formally converges.

TABLE 1: Magnitude a of the Rank-l Multipole Moment, Qh l

(au), of Cr in Alanine and Upper Limits for Terms, Qh l/Rconv
l+1

(kJ/mol), Contributing to the Expansion of the Atomic
Electrostatic Potential in eq 8

l Qh l (au) Qh l/Rconv
l+1 (kJ/mol)

0 0.334 143.585
1 0.359 25.320
2 0.426 4.923
3 2.276 4.316
4 2.353 0.731
5 4.227 0.215
6 20.573 0.172
7 51.979 0.071
8 243.368 0.055

a The magni tude is computed as Qh l )

x(Ql0)
2+∑m)1

l (Qlmc)
2+∑m)1

l (Qlms)
2 where the moments are defined in

eq 9 of the main text.

TABLE 2: Comparisona Between the Exact AEP
(Calculated by Direct Integration over the Atomic Basin)
and the AEP Generated by AIM Moments for a Nitrogen
Atom in N2 and for the Whole Molecule (Sum of AEPs)b

N Rconv ) 5.7 N2

lc rms ∆max rms ∆max

0 27.359 42.572 6.348 10.757
1 4.102 7.974 8.006 12.332
2 0.724 2.154 1.020 2.004
3 0.260 0.638 0.477 0.913
4 0.096 0.337 0.147 0.312
5 0.033 0.086 0.053 0.108
6 0.024 0.092 0.040 0.112
7 0.010 0.024 0.016 0.042
8 0.011 0.039 0.016 0.040

a Computed for grid points on the water-accessible surface (see text).
b The root mean square (rms) and absolute value of the maximum
deviation (∆max) are given in kJ/mol, and the convergence radiusRconv

is given in au.c The rank of the multipole, see eq 9.

TABLE 3: Comparisona Between the Exact AEP and the
AEP Generated by AIM Moments for the Oxygen Atom and
the Hydrogen Atom in Water, and for the Whole Molecule
(Sum of AEPs)

O
Rconv) 5.08

H
Rconv) 4.15 H2O

l rms ∆max rms ∆max rms ∆max

0 9.657 14.485 8.033 21.276 19.387 27.483
1 3.998 9.845 0.242 1.125 4.079 10.143
2 0.967 2.376 0.211 1.270 1.224 3.695
3 0.440 1.219 0.055 0.313 0.482 1.296
4 0.078 0.195 0.014 0.094 0.086 0.215
5 0.036 0.097 0.014 0.107 0.047 0.194
6 0.032 0.124 0.009 0.037 0.037 0.137
7 0.021 0.059 0.008 0.031 0.027 0.073
8 0.018 0.041 0.008 0.035 0.025 0.066

a Specifications identical to those in Table 2.

TABLE 4: Comparisona Between the Exact AEP and the
AEP Generated by AIM Moments for the Nitrogen Atom
and the Hydrogen Atom in Ammonia, and for the Whole
Molecule (Sum of AEPs)

N
Rconv) 5.4

H
Rconv) 4.22 NH3

l rms ∆max rms ∆max rms ∆max

0 10.965 21.204 6.967 19.330 5.289 9.590
1 6.959 12.127 0.618 3.878 7.735 14.032
2 1.745 4.924 0.252 1.568 2.130 5.431
3 0.440 1.317 0.029 0.143 0.472 1.438
4 0.089 0.274 0.026 0.252 0.119 0.528
5 0.074 0.245 0.013 0.092 0.084 0.304
6 0.038 0.186 0.008 0.051 0.042 0.225
7 0.013 0.055 0.008 0.050 0.020 0.089
8 0.011 0.042 0.008 0.024 0.018 0.068

a Specifications identical to those in Table 2.
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ties.30,31 Of the available exchange-correlation functionals, the
gradient-corrected hybrid functionals provide the best overall
coherence with MP2 theory and experimental data. The B3LYP
parametrization, i.e., Becke’s three-parameter formulation of the
exchange functional32 and a gradient-corrected correlation
functional of Lee, Yang, and Parr33 have proven to be of reliable
quality. The geometry optimizations, wave functions, and MEPs
were generated by the program GAUSSIAN9434 at the B3LYP/
6-311+G(2d,p)//HF/6-31G(d,p) level. Although we generated
the electrostatic potentials using a fairly high level of theory it
has been stated before9 that varying the level does not greatly
affect the overall pattern of the potential for a given molecule.
The AIM moments were implemented in MORPHY0135 up to
an arbitrary rank l, high enough to assess the multipole
convergence rate thoroughly, as shown in the tables below. The
program MORPHY01 also computes the AEP for a given atom
directly via eq 2. Since the AEP needs to be known in thousands
of points it was implemented efficiently, each pointr appearing
as a parameter inside the inner integration quadrature loop.

The accuracy of the AEP was checked against the MEP,
independently computed by GAUSSIAN94 via eq 3. Indeed,
the MEP should equal the sum of the AEPs of all atoms in the
molecules. For that purpose the root-mean-square (rms) devia-
tion between the MEP and the sum of the AEPs was computed

for the order of 10 thousand points lying on the molecular
surface, defined by theF ) 0.002 au envelope. The rms
deviation amounts to 0.1-0.5 kJ/mol for several test molecules
such as water and N2. This good agreement demonstrates the
computational accuracy of the numerical algorithm implemented
in MORPHY.36,37 Furthermore these calculations provide an
independent assessment of the error inherent in AIM multipole
moments via a physical and measurable quantity, namely the
electrostatic potential.

To estimate the convergence rate of the AIM moments we
calculated the AEP on the so-called water-accessible surface.
This is an important surface from a practical point of view
because it indicates the closest approach of a water molecule.
Hence in molecular dynamics simulations the electrostatic
potential is typically sampled on this surface.38 We represented
the water-accessible surface by 104 to 3 × 104 grid points on
an envelope lying 1.4-1.5 Å outside the molecular surface. The
water-accessible surface was represented by a single envelope
of constant electron density, in line with the representation of
the molecular surface. This surface is also determined by a single
isodensity envelope, usually ofF ) 0.002 au. The value ofF to
represent the water-accessible surface was first guessed and then
adjusted such that the average distance between the molecular
surface and the water-accessible surface was about 1.4 Å. The

Figure 2. A 1D profile of atomic electrostatic potentials (AEP) along theC3 symmetry axis in ammonia. Given a test charge of+1 au the potential
is expressed in kJ/mol, and the distancer is measured from the nitrogen nucleus. The AEP due to nitrogen (dotted) is added to the AEP of three
times the AEP of a single hydrogen (dashed) to yield the MEP (solid). The minimum in the MEP (-272.9 kJ/mol) occurs at 2.7 au, just below a
van der Waals surface determined by a typical hard sphere radius of 1.5 Å (or 2.85 au).

TABLE 5: Comparisona Between the Exact AEP and the AEP Generated by AIM Moments for All the Atoms in Imidazole and
for the Whole Molecule (C3N2H4) (Sum of AEPs)

0 2 4 6

l rms ∆max rms ∆max rms ∆max rms ∆max

C1 (Rconv) 5.49) 16.294 38.059 0.696 2.980 0.051 0.214 0.010 0.045
C2 (Rconv) 5.46) 12.286 28.410 0.594 2.711 0.049 0.208 0.010 0.042
N3 (Rconv) 5.44) 4.323 10.310 0.476 1.692 0.043 0.200 0.008 0.030
C4 (Rconv) 5.47) 16.524 35.881 0.567 2.392 0.033 0.147 0.009 0.040
N5 (Rconv) 5.46) 4.949 15.452 0.385 1.770 0.053 0.235 0.011 0.045
H6 (Rconv) 4.52) 3.826 10.936 0.174 1.033 0.030 0.292 0.011 0.105
H7 (Rconv) 4.15) 3.790 11.323 0.179 1.032 0.030 0.286 0.011 0.103
H8 (Rconv) 3.70) 5.079 20.215 0.197 1.708 0.022 0.283 0.008 0.040
H9 (Rconv) 4.18) 3.815 10.949 0.189 1.172 0.033 0.331 0.011 0.123
C3N2H4 19.993 56.090 1.465 4.647 0.171 0.924 0.033 0.162

a Specifications identical to those in Table 2.
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water-accessible electron density envelope is typically of the
order of F ) 10-5-10-4 au. The AIM electrostatic moments
were computed via integration (see eq 9) where the atomic basin
was capped by the isodensity envelope ofF ) 5 × 10-5-10-3

au depending on the convergence radius.
It is convenient to visualize the comparison between the exact

and multipole generated AEP via the program RasMol.39 Such
visualization contains detailed information complementary to
the tables listing the values of the rms and magnitude of the
maximum deviations (∆max). The program RasMol was also used
to show a color-coded map of the AEP.

5. Applications and Discussion

We have performed calculations on molecular nitrogen, water,
ammonia, imidazole, alanine, and valine, which we will now
discuss in turn. Table 1 provides a qualitative assessment of
the convergence of the multipole expansion for theCR in alanine.
The magnitudes of the terms in eq 8 can be estimated from the
(coordinate-invariant) magnitudesQh l of the multipole moments
divided by the appropriate power of the convergence radius
Rconv. Since |Clm(θ,æ)| e 1 the termQh l/Rconv

l+1 is an upper limit
for the actual contribution to the AEP.

The first test of the usefulness of AIM moments is the
generation of AEP for a nitrogen atom in N2. It is clear from
Table 2 that rms deviations of less than 0.1 kJ/mol occur for a
nitrogen AEP generated by AIM moments up to rankl ) 4
(hexadecapole). The multipole-generated MEP computed from
the sum of the two nitrogen AEPs yields deviations of less than
0.1 kJ/mol from rankl ) 5 onward. An early study by Stone
and Alderton40 expected that a nonspherical slice cut off would
give rise to a poorly converging multipole series expansion for
the total molecule’s electrostatic potential. This conjecture, based
only on inspection of the magnitude of AIM moments, proves
to be wrong. Based on this simple experiment and on further
results discussed below we confirm41 that our form of distributed
multipole analysis, which rests on a physical division of space
into disjoint regions, is useful. A reduction of the rank invariably
leads to additional sites at which multipoles with lower rank
are centered, that are obtained via a fitting procedure. We believe
that an expansion that only involves nuclear centers is a good

Figure 3. Labeling scheme of imidazole used in Table 5.

Figure 4. The atomic electrostatic potential (AEP) of CR on the water-accessible surface around alanine. The part of the picture before the plotting
plane has been deleted (slab mode) in order to show the interior of the object. The CR atom contributes everywhere positively to the molecular
electrostatic potential. The most positive region develops near the hydrogen attached to the CR and protrudes toward to the NH2 terminus. Color
code (in kJ/mol): 81< white < 91 < gray < 101 < blue < 112 < green< 122 < yellow < 132 < red < 142.
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compromise between the completely inadequate one-center
multipole expansion and a practical scheme with fitted low rank
multipoles.

Similarly, Table 3 shows that a multipole expansion with
multipoles of rankl > 3 yields a rms value of less than 0.1
kJ/mol. This limit is reached sooner for hydrogen, namely when
l > 2. The right columns in Table 3 show the discrepancy for
the whole molecule, where the AEPs have been summed over
all atoms in the molecule. The hydrogen in ammonia shows

similar rapid convergence behavior (Table 4) although the
nitrogen atom is slightly slower than the oxygen in water. The
nitrogen atom has an rms value of 0.13 kJ/mol when the
expansion is truncated at rank four.

We consider the case of ammonia to speculate on an
interesting issue that has arisen in connection with a rigorous
study on the electrostatic potentialV(r) of free atoms. By means
of a rigorous derivation starting with Poisson’s equation Sen
and Politzer proved41 that V(r) of neutral free spherical atoms
is always positive. For negatively charged ionsV(r) is initially
positive, then it goes through a negative minimum and ap-
proaches zero through negative values asr f ∞. The conse-
quence of this statement for atoms in molecules is intriguing,
although it is not known whether it can be generalized to
nonspherical atoms.

Figure 2 shows the AEP of nitrogen and the hydrogens in
ammonia along theC3 symmetry axis, as well as their sum
resulting in ammonia’s MEP. A minimum occurs in the MEP
at a distance of 2.7 au from the nitrogen nucleus, just below a
typical van der Waals radius of 2.8 au. It is clear that, using the
AIM partitioning, this minimum is entirely due to the AEP of
the nitrogen atom. It is tempting to relate the existence of this
minimum to the negative sign of the nitrogen charge (q(N) )
-0.989 au) via a possible generalization of Sen and Politzer’s
findings.41

TABLE 6: Comparisona Between the Exact AEP and the
AEP Generated by AIM Moments for the Cr Atoms in
Alanine and Valine

CR in alanine
Rconv) 6.1

CR in valine
Rconv ) 6.2

l rms ∆max rms ∆max

0 7.791 19.790 7.706 15.534
1 1.459 5.902 0.957 3.043
2 0.827 2.906 0.676 2.052
3 0.121 0.448 0.110 0.372
4 0.025 0.148 0.020 0.104
5 0.020 0.110 0.014 0.083
6 0.010 0.048 0.009 0.042
7 0.008 0.027 0.008 0.026
8 0.008 0.019 0.008 0.017

a Specifications identical to those in Table 2.

Figure 5. The deviations in the exact AEP and the AEP obtained from the multipole moments up to the octupole (l ) 3) for the CR atoms in
alanine. The part of the picture in front of the plotting plane is deleted in order to show the interior of the object. The largest deviations occur near
the cusplike edges of the atom and the region of closest proximity. Color code (in kJ/mol): white< 0.1 < gray < 0.2 < blue < 0.3 < green<
0.4< yellow < 0.5. The deviations in the exact AEP and the AEP obtained from the multipole moments up to the octupole (l ) 3) for the CR atoms
in alanine. The part of the picture in front of the plotting plane is deleted in order to show the interior of the object. The largest deviations occur
near the cusplike edges of the atom and the region of closest proximity. Color code (in kJ/mol): white< 0.1 < gray< 0.2 < blue< 0.3 < green
< 0.4 < yellow < 0.5.
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We have shown the convergence for a simpleπ system (N2)
and two lone-pair systems (H2O and NH3). A further conver-
gence test is provided by an aromatic system, i.e., imidazole.
Table 5 (labeling scheme in Figure 3) shows how each atom is
converging with increasing multipole rank l. Again most non-
hydrogen atoms have reached a rms value of less than 0.1 kJ/
mol whenl ) 4, and the hydrogen atoms already have reached
it after l ) 2. We observe that the rms does not always decrease
monotonically with increasingl.

With an eye on future applications in the chemistry of
peptides we looked at the AEP of the alpha carbon (CR) atom
in alanine and valine. We have visualized the AEP of CR in
alanine in Figure 4. The AEP of the alpha carbon provides only
positive contributions to the MEP, with the most positive region
(>140 kJ/mol) near the hydrogen atom attached to it, and
spreading out toward the NH2 terminus.

Table 6 again reveals excellent convergence behavior for both
CR atoms where a rms discrepancy of just above 0.1 kJ/mol is
seen already for the octupole (l ) 3). Figure 5 displays the
convergence information in more detail than can be seen from
a list of rms and∆max values. For each grid point on the water-
accessible surface a color is assigned that marks the deviation
between the exact AEP and the AEP generated by the monopole,
dipole, quadrupole, and octupole moment.

Figure 5 shows that the atomic electrostatic potential obtained
from the multipole expansion differs in the cusp regions, i.e.,
where the atom extends via long narrow tails. The largest
deviations (order 0.5 kJ/mol) occur near the cusplike edges of
the atom and the region of closest proximity.

Finally we should comment on the meaning of the atomic
population, hence the atomic charge. It is clear from Table 2
that the AEP of a nitrogen atom is poorly represented by the
monopole only. Indeed, by symmetry the nitrogen in N2 must
have a vanishing net charge, hence the poor convergence.
Instead of shifting the position of this monopole or changing
its value in order to fit the potential, we accept that higher
multipoles are required to improve the convergence.

6. Conclusions

In this work we have computed for the first time the exact
electrostatic potential generated by an AIM atomic fragment,
called the AEP. An early study14 showed plots of a low-order
Cartesian multipole expansion, but the current study supersedes
this work with a higher-order spherical tensor multipole
expansion. The assumption19,20,40that the multipole expansion
associated with bounded fragments in real space, such as AIM
atoms, has poor convergence proves to be wrong. In summary,
this study demonstrates that we do not need an excessively large
number of multipoles to reproduce the exact ab initio molecular
electrostatic potentials within the AIM theory. We can therefore
safely add the AEP to the list of practically useful topologically
partitioned electromagnetic properties, such as the polarizability
and dispersion coefficients.

This work makes clear that the atomic population (or rank-
zero multipole moment) is just one term of the expansion of a
physically observable quantity, namely the electrostatic potential.
Hence the AIM populations (and thus charges) cannot be judged
on their reproduction of the electrostatic potential. Instead, they
must be seen in the context of a multipole expansion of the
AEP.
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