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This paper presents a multi-coefficient correlation method based on quadratic configuration interaction with
single and double excitations (MC-QCISD) and basis sets using segmented contraction and having the same
exponential parameters in thes and p spaces. The results are comparable to a previous multi-coefficient
correlation method based on coupled cluster theory with less efficient correlation-consistent basis sets, and
they are better than a previous multi-coefficient correlation method based on Møller-Plesset fourth order
perturbation theory with single, double, and quadruple excitations with correlation-consistent basis functions.
The mean unsigned error per bond of the MC-QCISD method is 0.72 kcal/mol. The new method should be
very efficient for computing geometries of open-shell transition states.

1. Introduction

Multilevel techniques based on scaling (e.g., SEC,1-3 SAC,3-12

MCSAC11,12), extrapolation (e.g., CBS,13-16 exponential and
power law extrapolation,17-22 IB,25,26 and EIB11,12), additive
energy corrections (e.g., G2,27,28 G3,29 and their many vari-
ants30), and multi-coefficient correlation methods (e.g., MC-
CM,11,12 MCG2,31 MCG3,32 and G3S33) have proved to be
powerful methods for calculating high-accuracy thermochem-
istry and potential energy surfaces (or potential energy surface
features such as saddle point energies) with less expense than
brute force methods. For example, a brute force method of
attaining the accuracy of Møller-Plesset perturbation theory
of fourth order34 (MP4) with a polarized triple-ú (pTZ) basis
set would actually carry out an MP4/pTZ calculation, whereas
a multilevel calculation might base this on separate MP2/pTZ
and MP4/pDZ calculations (where 2 denotes second order and
D double-ú). In empirical methods such as SAC, G2, MCCM,
etc., the calculations contain semiempirical parameters so that
the result should actually be more accurate than the brute force
result (MP4/pTZ in our example). In effect, one is extrapolating
toward infinite-order electron correlation (full configuration
interaction, for short FCI) with an infinite one-electron basis
(for short, infinite basis or IB); this combination is called
complete configuration interaction.

We have recently shown that multilevel methods of the linear
combination type may also be used to extrapolate energy
gradients and thereby to calculate more accurate molecular
geometries.35 In practice, molecular geometries of stable species
can typically be calculated accurately with lower orders of
electron correlation and smaller one-electron basis sets than are
required for accurate energies. However, the calculation of
saddle point geometries is much more difficult. Saddle point
geometries tend to be sensitive to having a balanced treatment
of the multiconfigurational character of the wave function and
(because of Hammond’s principle36) to having a balanced
treatment of the energetics of the breaking and making bonds.
Furthermore, saddle point wave functions for radical reactions
are very susceptible to contamination by components represent-
ing incorrect spin states. Durant and Rohlfing30a,37 and our

group38 have both recommended the QCISD method (quadratic
configuration interaction with single and double excitations39)
for the calculation of saddle point geometries of radical
reactions. In fact, of all of the methods for analytical energy
gradients that are available in the popular and versatileGaussian
electronic structure package,40 QCISD would be expected to
yield the most accurate saddle point geometries.

Therefore, it would be desirable to have a multi-coefficient
correlation method based on QCISD and on one-electron basis
functions that are handled efficiently byGaussian. (We note
that Gaussian is designed to be particularly efficient for
Gaussian basis sets in which the same exponential parameters
are used fors and p functions41 and in which each primitive
Gaussian function occurs in only one contracted function, which
is called segmented contraction.) The goal of the present paper
is to parameterize such a method. It will utilize the 6-31G(d),34

6-31G(2df,p),33 and MG3 basis sets,29,32 and the resulting
method will be called MC-QCISD (multi-coefficient QCISD).
We note that the MG3 basis set is also called G3MP2large30b

basis set, and it is essentially an improved29 version of the
6-311++G(3d2f,2df,2p) basis set.

2. Theory and Parameterization

The MC-QCISD energy is defined by

where

and

The motivation for this kind of form was explained previously:
11c0 andc2 are motivated by extrapolating to an IB;c1 andc3

E(MC-QCISD)) c0E(HF/6-31G(d))+
c1∆E(MP2|HF/6-31G(d))+ c2∆E(MP2/MG3|6-31G(d))+

c3∆E(QCISD|MP2/6-31G(d)) (1)

∆E(L2|L1/B) t E(L2/B) - E(L1/B) (2)

∆E(L/B2|B1) t E(L/B2) - E(L/B1) (3)
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are motivated by extrapolating to FCI. The four parameters are
determined by the linear least-squares methods to minimize the
root-mean-square error in the predicted zero-point-exclusive
atomization energies of an 82-molecule training set. These 82
data are tabulated (with references) in a previous paper.12

All MP2 and QCISD calculations in the present paper have
a frozen core. We do not include core correlation, spin-orbit,
or scalar relativistic contributions explicitly in the present model,
and thus they are implicit in the model. This approach is called
a “minimal” model in previous work.12,31,32

The atomization energies were calculated for all the compo-
nent methods of eq 1 using geometries optimized by the MP2-
(full)/6-31G(d) method.42 The parameters,c0 throughc3, were
optimized, and the resulting values are 1.0038, 1.0940, 1.2047,
and 1.0441, respectively. The parameters are all positive
numbers, which is physical, and they are all less than 1.5 (in
fact considerably so), which should make for stable calculations.
Thus we accept the fit as physical.

To place the present method in perspective, we optimized
the parameters for 16 other minimal methods, using the 82
experimental atomization energies. Six of these multilevel
methods are the ones that we previously recommended (out of
a total of 42 multilevel methods examined),11,12 on the basis
of performance/cost ratios, as the most promising general
parameterizations for molecules containing first- and second-
row elements. These methods have all been presented else-
where,10-12,29although the “minimal”-type parameterization is
new. The other 11 methods are various ways to combine subsets
of the components available from the calculations used in the
MC-QCISD method plus (in one case) the 6-31+G(d) basis set.
The notation for these methods is based on our standard
nomenclature11,12for multilevel methods and requires no further
explanation. In addition, we will compare our results to the G329

and G3S33 methods, for which we accept the parameters of
Curtiss et al.29,33

In optimizing the 17 sets of new coefficients, we used MP2/
cc-pVDZ43 (for short pDZ) geometries for the five methods
based on correlation consistent basis sets43 (these methods are
identified in Table 1), and MP2(full)/6-31G(d) geometries for
all other methods. In this respect we note a philosophical
difference between our approach and that used in the G2, G3,
and G3S methods. In G2, G3, and G3S, the geometry choice is
considered part of the method. In our work, although of course
we must choose a geometry for obtaining parameters and
calculating mean errors, we consider it perfectly acceptable to

use our methods with other geometries, provided the geometry
choice is stated. (A second difference is that we focus on zero-
point-exclusive atomization energies, which are a difference
between two points on the potential energy surface, whereas
the G2, G3, and G3S methods focus more directly on heats of
formation.)

For the six previously recommended12 methods, the new
parameters presented here, based on our now “standard” 82-
molecule training set, are denoted version 2m (second minimal-
type parameterization) coefficients to distinguish them from
versions 1, 1m, 1sc, 2s, and 2sc presented previously.10-12 The
differences between version 1 and version 2 are very important
since version 2 is based on a larger, better training set. The
differences between m, s, and sc versions are small and simply
distinguish between explicit or implicit core correlation and
spin-orbit contributions; nevertheless, for consistency this paper
uses only the minimal-type parameterizations.

Note that there is only one version of MC-QCISD coefficients
at this time; it is called version 2m. The “2” denotes that it was
parameterized with the version-2 training set (not that it is a
second set of coefficients).

3. Results

The mean errors for all 18 methods over the 82-molecule
data set are given in Table 2. For consistency, the errors were
calculated using MP2(full)/6-31G(d) geometries for methods
based on segmented, equalized-exponent basis sets (the G3 and
G3S methods and methods based on 6-31G(d), 6-31+G(d),
6-31G(2df,p), and MG3 basis sets) and were calculated using
MP2/cc-pVDZ geometries for the other methods, since these
other methods may be used with any reasonable geometries,
but they all involve MP2/cc-pVDZ as one of their components
or as a stage of one of their components.

An estimation of the cost for each of the methods is also
given in Table 2. This estimation is the time for one single-
point gradient calculation on furan (C4H4O) divided by the time
for an HF/6-31G(d) gradient calculation. This time is provided
to given an example of the differing computational costs of the
various calculations; the timings would be similar but not
identical for other first-row atoms of comparable size. We are
of course aware that the “costs” would be different if we choose
a different molecule as a standard or if we emphasized energies
or Hessians rather than gradients. Nevertheless, gradients were
selected because they are a central component of geometry

TABLE 1: Coefficients for the Minimal Methods Optimized in This Work over the 82-Molecule Data Seta

method version c0 c1 c2 c3 c4 c5 c6 c7

MC-QCISD v2m 1.0038 1.0940 1.2047 1.0441
SAC-MP2/6-31G(d) v2m 1.0000 1.2207
SAC-MP2/6-31+G(d) v2m 1.0000 1.2290
SAC-QCISD/6-31G(d) v2m 1.0000 1.4457
SAC-QCISD/6-31G(2df,p) v2m 1.0000 1.1913
MCSAC-QCISD/6-31G(d) v2m 1.0000 1.6024 2.5063
MCSAC-QCISD/6-31G(2df,p) v2m 1.0000 1.1955 1.2199
MCCM-CO-MP2;6-31G(2df,p);6-31G(d) v2m 0.9869 1.8358 0.8175 2.0673
MCCM-CO-QCISD;6-31G(2df,p);6-31G(d) v2m 0.9782 1.1504 1.1190 1.7517 1.1121 0.7136
MCCM-UT-QCISD;6-31G(2df,p);6-31G(d) v2m 0.9804 1.0091 1.1449 1.6604 1.3032
MCCM-CO-MP2;MG3;6-31+G(d) v2m 0.9724 1.2936 0.8577 2.0067
SAC-MP2/pDZ v2m 1.0000 1.2318
SAC-MP4SDQ/pDZ v2m 1.0000 1.4370
MCCM-CO-MP2 v2m 0.9918 1.0276 0.7833 2.6875
MCCM-UT-MP4SDQ v2m 0.9934 1.2606 1.0363 1.6307 0.8541
MCCM-UT-CCSD v2m 0.9969 1.2625 1.0610 1.4813 0.8312
MCG3 v2m 1.0121 1.2047 1.0646 1.0975 1.1859 0.8139 1.4470 1.414

a The notation for MC-QCISD is defined by eq 1; the definitions of the coefficients for the other methods are explained in ref 12.
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optimizations, classical trajectory calculations, and reaction path
calculations as well as some methods for fitting potential energy
surfaces. Additionally, furan was chosen as a reasonably
representative medium-sized molecule. To give an idea of the
scaling for larger systems, we note that all methods scale as
the size of the system to the powern, and Table 2 gives the
values ofn.

Finally, Table 2 also gives the numberN of empirical
parameters for each method.

Table 3 has the same columns of information as Table 2, but
it is for single-level methods. Any level that forms a component
of any of the multilevel methods in Table 2 is included in Table
3.

4. Discussion

In choosing the basis sets to be used here, we were
particularly concerned that the basis sets for second row atoms
would include tight d functions, since this seems to be a
prerequisite for consistent accuracy on that row.44 The MG3
basis satisfies this criterion. Consider, for example, the subrow
of the periodic table from Si to Cl. In all basis sets used in this
paper, the tightestd function increases monotonically in
proceding from Si to Cl. Table 4 gives the exponent of the
tightestd function for Si, P, S, and Cl for all of these basis
sets. The tightestd exponent in the 6-31G(2df,p) basis for Si is
a factor of 1.4 to 1.9 tighter than that in the pTZ basis. The
MG3 d functions are larger yet, by another factor of 2. We
believe that thesed functions are key elements in a consistent
treatment of the two rows.

Before discussing the numerical results, we should say a few
words about the philosophy of our approach in order to avoid
misconceptions. We recognize that correlated electronic structure
calculations have many uses. In some cases they are used with
geometries obtained by less expensive methods to predict
accurate electronic energies; in other cases they are combined
with vibrational-rotational energies or vibrational-rotational
energies and entropies to estimate thermochemical quantities
such as enthalpies and free energies, and in yet other cases they
are used to optimize geometries of stable species or saddle points
or to scan potential energy surfaces. We want to design methods
that can be used for all of these purposes and that can be used
with a variety of lower-level geometries when the application
involves single-point energy calculations at lower-level or

TABLE 2: Mean Errors (kcal/mol) over the 82-Molecule Data Set

method n N MSE MUE RMSE costa HRb

SAC-MP2/6-31G(d) 5 1 -6.62 17.76 21.76 3
SAC-MP2/6-31+G(d) 5 1 -6.04 16.95 20.53 3
SAC-MP2/pDZ 5 1 -3.64 10.69 12.73 4 yesc

SAC-QCISD/6-31G(d) 6 1 -3.35 11.57 14.41 12
SAC-MP4SDQ/pDZ 6 1 -1.53 7.06 10.77 13 yesc

MCSAC-QCISD/6-31G(d) 6 2 -1.76 8.91 12.22 14 yesd

MCCM-CO-MP2;6-31G(2df,p);6-31G(d) 5 4 -0.65 6.47 8.67 31
MCCM-UT-QCISD;6-31G(2df,p);6-31G(d) 6 5 -0.08 3.64 5.11 42 yesd

SAC-QCISD/6-31G(2df,p) 6 1 -0.70 4.28 5.99 48
MC-QCISD 6 4 0.15 2.51 3.81 70 yesd

MCSAC-QCISD/6-31G(2df,p) 6 2 -0.66 4.24 5.98 70
MCCM-CO-MP2;MG3;6-31+G(d) 5 4 -0.48 4.64 6.36 84 yesd

MCCM-CO-QCISD;6-31G(2df,p);6-31G(d) 6 6 -0.08 3.44 4.92 84
MCCM-CO-MP2 5 4 -1.41 5.41 6.74 99 yesc

MCCM-UT-MP4SDQ 6 5 -0.32 2.92 4.32 111 yesc

G3(MP2) 7 4 -1.53 2.13 2.96 728
MCCM-UT-CCSD 6 5 -0.15 2.73 3.75 939 yesc

MCG3 7 8 0.15 1.24 1.63 1110 yesc

G3 7 4 -0.44 1.26 1.69 6374 yesc

G3S 7 6 -0.83 1.40 1.84 6515 yesd

a CPU time for one C4H4O gradient calculation on a single processor of an Origin 2000 with R12000 processors as calculated by Gaussian98
(Rev. A.7) and normalized to the time (83 s) for one HF/6-31G(d) gradient. All gradients were calculated with C2V symmetry.b HR denotes the
highly recommended methods.c highly recommended in ref 12.d highly recommended in this paper.

TABLE 3: Mean Errors (kcal/mol) over the 82-Molecule
Data Set for All of the Componentsa

method n MSE MUE RMSE cost

HF/6-31G(d) 4 -123.08 123.08 142.48 1
HF/6-31+G(d) 4 -123.93 123.93 143.81 1
HF/pDZ 4 -128.19 128.19 148.96 1
MP2/6-31G(d) 5 -27.67 27.91 33.49 2
MP2/6-31+G(d) 5 -28.00 28.00 33.54 2
MP2/pDZ 5 -27.08 27.08 30.70 2
MP3/6-31G(d) 6 -40.32 40.32 45.15 5
HF/6-31G(2df,p) 4 -115.87 115.87 135.40 6
MP4SDQ/6-31G(d) 6 -39.82 39.82 45.27 7
MP3/6-31+G(d) 6 -41.29 41.29 46.36 10
QCISD/6-31G(d) 6 -40.27 40.27 46.02 11
MP4SDQ/pDZ 6 -40.05 40.05 46.45 12
HF/pTZ 4 -119.30 119.30 139.37 21
MP2/6-31G(2df,p) 5 -3.86 10.34 12.82 22
HF/MG3 4 -117.23 117.23 137.25 23
HF/G3large 4 -116.65 116.65 136.58 29
QCISD/6-31G(2df,p) 6 -19.19 19.19 22.53 42
MP2/MG3 5 -1.85 8.48 10.51 57
MP2/pTZ 5 -3.17 6.97 8.79 74
MP3/6-31G(2df,p) 6 -17.68 17.68 20.21 97
MP2(full)/G3large 5 0.05 8.93 11.03 111
MP4SDQ/6-31G(2df,p) 6 -18.51 18.51 21.49 154
MP4/6-31G(d) 7 -33.47 33.47 38.32 329
QCISD(T)/6-31G(d) 7 -35.55 35.55 40.66 670
MP4/6-31+G(d) 7 -33.85 33.85 38.84 785
CCSD/pDZ 6 -41.53 41.53 48.46 840
MP4/6-31G(2df,p) 7 -9.88 10.34 12.26 4453

a Note thatN ) 0 for all rows of this table.

TABLE 4: Exponent of Tightest d Functions for
Second-Row Atoms

basis set Si P S Cl

6-31G(d) 0.45 0.55 0.65 0.75
6-31+G(d) 0.45 0.55 0.65 0.75
6-31G(2df,p) 0.9 1.1 1.3 1.5
MG3 1.8 2.2 2.6 3.0
G3large 8.0 10.0 11.0 13.0
pDZa 0.275 0.373 0.479 0.6
pTZb 0.481 0.652 0.819 1.046

a cc-pVDZ. b cc-pVTZ.
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experimental geometries. Therefore, we focus on electronic
energies, and we made a database ofDe values (i.e., zero-point-
exclusive dissociation energies) for testing our electronic
energies. When we compare our results and timings to other
methods, we test those methods for electronic energies. The
reader should keep in mind that slightly different comparisons
would ensue if we followed other protocols. For example,
Gaussian-x methods are designed for use with specific geom-
etries and specific well-defined procedures for calculating
vibrational-rotational energies. It is beyond our scope here to
comment on the accuracy of those geometries or vibrational-
rotational energies, but we believe that our conclusions would
not be significantly different if we tested our methods on
enthalpies of formation instead of equilibrium dissociation
energies.

First compare the MC-QCISD results in Table 2 to those of
all the single-level methods in Table 3. The MC-QCISD method
yields a mean unsigned error (MUE) of 2.5 kcal/mol for a cost
of 70 reduced cost units. None of the single-component methods
in Table 4 has an error this small or even within a factor of 2
or 2.5 kcal/mol. (The best MUE in Table 3 is 6.8 kcal/mol.)
The mean signed error and RMS error of the MC-QCISD
method are also excellent. Although it is no longer surprising
in light of our previous work, it is still worth noting the high
overall accuracy of all multilevel methods in Table 2 compared
to the single-level ones in Table 3. For example, Table 2 shows
that one can attain an accuracy (MUE) of 10.7 kcal/mol at a
cost of 4 and an accuracy of 7.1 kcal/mol at a cost of 13, whereas
comparable accuracies with single-level methods require costs
of 57 and 74 reduced cost units, respectively. For costs of 42
and 70 reduced cost units, multilevel methods can reduce the
error to 3.6 and 2.5 kcal/mol, respectively.

It is particularly interesting to compare MC-QCISD to MP2/
MG3 and QCISD/6-31G(d), which are its two most expensive
components. The mean unsigned error is reduced by a factor
of 3.4 with respect to the former and a factor of 16.1 with respect
to the latter. (Note that, as stated above, all errors and timings
in Table 2 are based solely on electronics energies.) It is also
interesting to compare MC-QCISD to G3(MP2). The MC-
QCISD and G3(MP2) methods are similar in that they use the
same basis sets, and the larger basis set (MG3, also called
G3MP2large) is used only for MP2 calculations. The main
differences are the neglect of triple excitations in the QCISD
calculation of MC-QCISD and the use of four empirical
coefficients to scale energy components in MC-QCISD. In
contrast, G3(MP2) includes a QCISD(T)/6-31G(d) calculation
and has four empirical parameters in a “higher level correction,”
which, unlike the present method, leads to discontinuous
potential energy surfaces along dissociation coordinates leading
to atoms or atomic ions. The G3(MP2) method is parameterized
against a broad set of 299 data for neutral and charged species,
whereas MC-QCISD is parameterized against 82 atomization
energies of neutral molecules. The importance of triple excita-
tions for obtaining accurate energies of some molecules by
methods that do not scale the energy components is well known,
but the present method attempts to make up for neglecting triples
by the multi-coefficient scaling approach. The advantage of not
explicitly including triples is that MC-QCISD scales (in
computer time) asN6 (whereN is the number of atoms), whereas
G3(MP2) scales asN7. (We also draw the reader’s attention to
our own MCG312,32method for consideration in choosing among
methods that scale asN7.) In addition to its improved computer-
time scaling properties, MC-QCISD is much more affordable
for geometry optimization35 than is G3(MP2). We note that G3-

(MP2) uses MP2(full)/6-31G(d) geometries as an intrinsic aspect
of the method, but it would require expensive QCISD T
gradients if one wished to use the G3(MP2) energy expression
to optimize geometries. Our approach is to focus on electronic
energies rather than thermodynamic functions of equilibrium
states. Thus, although MC-QCISD is parameterized and tested
here with MP2(full)6-31G(d) geometries, we explicitly anticipate
the possibility that geometries could be optimized at the MC-
QCISD level or that the method could be used for scans of
potential energy surfaces. With all of these considerations in
mind, we turn our attention to the G3(MP2) results in Table 2
(note that, as stated above), all timings and errors in Table 2
are based solely on the electronic energies). Table 2 shows that
G3(MP2) has a slightly better mean unsigned error than MC-
QCISD, but it is about a factor of 10 more expensive.

Next we compare the MC-QCISD method to the other
multilevel methods in Table 2. As mentioned above, six of the
multilevel methods have already been pre-selected from over
forty multilevel combinations as the ones with the best
performance/price ratios, so they represent the state-of-the-art
for a range of cost categories, and indeed MC-QCISD is not
particularly better in accuracy for approximately the same sizes
of basis sets. The error is similar to the MCCM-UT-CCSD
method, which is encouraging because the physical effects and
basis set sizes of the two methods are similar, but we note that
the cost of MC-QCISD is a factor of 13.4 less, and in fact it
was the anticipation of such a savings that motivated this paper.
(We are aware that CCSD gradients can be done more efficiently
with other computer codes, but the present method should be
preferred by those who do not have access to such codes, and
it may even be preferred by those who do have access to
efficient CCSD codes because it has one less parameter and
the ratio of costs is such that it should be more efficient even
with analytic CCSD gradients.)

Only the two methods whose computer time scales as the
seventh power of the size of the system are unequivocally better
than MC-QCISD. These methods are already 16 and 91 times
more expensive than MC-QCISD for furan gradients, and with
their less favorable scaling these relative timing factors will be
even larger for bigger systems.

The 82-molecule training set has 3.48 bonds per molecule
(on average) so that the mean unsigned error per bond in MC-
QCISD is only 0.72 kcal/mol. This is quite acceptable for many
applications. The error in transition state barrier heights is
expected to be larger, though, because transition states are
notoriously difficult.

Next consider the other new methods developed here. Many
of the trends are transparently clear in the tables and require
little comment. For example, the additional coefficients in the
MCSAC-QCISD/6-31G(d) scheme, as compared to the SAC-
QCISD/6-31G(d) scheme, lower the mean unsigned error by
23%, a factor of 1.9. Adding an HF and MP2 calculation with
the 6-31G(2df,p) basis set, which yields the MCCM-UT-
QCISD;6-31G(2df,p);6-31G(d) method, then lowers the mean
unsigned error a further factor of 2.5 to 3.64 kcal/mol.

Considering all of the performance vs cost tradeoffs in Table
2, we single out the MCCM-UT-QCISD;6-31G(2df,p);6-31G-
(d) and MC-QCISD methods as particularly highly recom-
mended. We also add MCSAC-QCISD/6-31G(d) to the “honor
roll” of particularly highly recommended methods as a less
expensive alternative based on QCISD; it may be valuable for
large-molecule cases where QCISD is desired because of spin
contamination, multireference character, or balance, but where
the more expensive QCISD methods are unaffordable.
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MCCM-CO-MP2;MG3;6-31+G(d) has also been placed on
the honor roll (see last column of Table 2) because it uses only
basis sets with diffuse functions and is relatively inexpensive;
the diffuse character can be important when making and
breaking bonds involving polar radicals. The methods not placed
on the highly recommended list should also be useful, but one
of our goals has been to identify the most highly successful or
most highly recommended multilevel combinations, and the
twelve methods marked “yes” in the last column of Table 2 are
the recommended set selected from a total of over 50 combina-
tions examined in previous work and here.

5. Concluding Remarks

A multi-coefficient correlation method based on QCISD has
been parameterized against 82 zero-point-exclusive atomization
energies. The mean unsigned error per bond is only 0.72 kcal/
mol, yet the cost is quite reasonable. The MC-QCISD method
has been parameterized entirely on the basis of bond energies,
but we believe it will be especially useful for calculating
transition state geometries. There are two reasons for not using
transition state geometries and energies in the parameteriza-
tion: (1) because of Hammond’s postulate,36 the location and
energy of transition states is very sensitive to errors in the overall
exoergicity, a source of error that does not affect reactant and
product geometries; (2) accurate transition state geometries or
energies are available only for a very few simple reactions.
Nevertheless, based on previous favorable experience with
QCISD,30a,37,38we anticipate that the MC-QCISD method will
be especially useful for optimizing the geometries of transition
states, but it should also be useful for a wide variety of
thermochemical calculations when the MCG3, G3, and G3S
methods are too expensive. The present paper has also identified
two less expensive methods based on QCISD that are particu-
larly highly recommended for cases where the MC-QCISD
method is unaffordable, and we have parameterized a method
that uses diffuse functions for all components because that may
be more accurate for polar radicals.
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