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In this paper an extension of the generalized two-dimensional (2D) correlation spectroscopy;-samke
correlation spectroscopy, is proposed to obtain the information about the species’ perturbation-dependent
dynamics. This is the first report of monitoring perturbation dynamics in the samples by generalized 2D
approach. After the rows and columns of the experimental matrix are exchanged in a way that the spectral
data set is arranged in rows, unlike the common case, the correlation between the concentrations of species
is calculated. The method has been applied to a model system consisting of two bands with different degrees
of overlapping. The concentration-dependent dynamics of the components that give rise to the two bands has
been successfully analyzed. Similarities, differences, and correspondences between wavenavgember
correlation spectroscopy (existing generalized 2D correlation spectroscopy) and-saampfge correlation
spectroscopy have been discussed. The pretreatments of mean normalization and mean centering seem to
yield the best results. The application of the presently proposed saisguieple correlation spectroscopy

gives correct results probably irrespective of the ratio of the band intensities, as is revealed in the analysis of
highly overlapped infrared (IR) spectra in the region of 322000 cm* artificially synthesized from two

polymer spectra.

Introduction (NIR), and fluorescence spectroscopies and for a variety of
samples such as proteins, polymers, and alcdhétddowever,

the theory of 2D correlation spectroscopy is still under develop-
ment.

We have been investigating new development of the theory
of the 2D correlation spectroscof}!We showed that the main
conceptions of generalized 2D correlation spectroscopy, syn-
chronous and asynchronous spectra, can be viewed as cross-
product matrices?® It was also found that generalized 2D
spectroscopy shares some common features with principal
component analysis (PCA).By analyzing a two-component
spectral model, we found that the synchronous spectrum gives
a 2D map that is very close to that yielded by the outer product
of the first principal component (PC), if the spectra are mean
normalized and centered. No analogy was recognized between

n asynchronous spectrum and any of the conceptions of?PCA.

he asynchronicity was found to be essentially connected with
the nonproportionality in the spectral variations. In the synthetic
spectral system consisting of two components we showed that
completely regular spectral changes in the component bands
do not give any asynchronous spectréfhin our last study we
investigated the influence of the mean normalization as a
pretreatment on generalized 2D correlation spectroséoplye
mean normalization is very popular in chemometrics but is rarely

Generalized two-dimensional (2D) correlation spectroscopy
was proposed by Nodan 1993 as an extension of original 2D
infrared (IR) correlation spectroscopy developed by hin&elf.
As in the case of 2D NMR, spectral peaks are spread over the
second dimension, thereby simplifying the visualization of the
complex spectra consisting of many overlapped bands and
enhancing the spectral resolution. However, the original 2D IR
method suffered from one serious limitatidnThe waveform
of dynamic spectral intensity variations had to be a simple
sinusoid with a fixed frequency to employ the data analysis
formalism. Therefore, Nodaintroduced the generalized 2D
correlation method that removes the constraint of the excitation
waveform. By using the newly introduced formalism, one can
monitor spectral intensity fluctuation as a function of any
physical variables such as temperature, pressure, or eve
concentratiort:*® Additional improvement in the calculation of
the generalized 2D correlation spectra is to use the Hilbert
transformation instead of Fourier transformation, which is a
cumbersome and time-consuming procebsthe generalized
2D correlation spectroscopy the cross-correlated dynamic
spectral variations in a given spectral system give a so-called
synchronous spectrum and the correlation between original
spectral variations and those in orthogonalized system yields a .
so-called asynchronous spectrum. The synchronous spectrurﬁJsed in 2D spectros_cqﬁ%. .
shows simultaneous spectral changes at any pair of spectral Becalﬂse of the “m'te.d development in thg theory of the
coordinatesv; and v», while the asynchronous spectrum generalized 2D correlation spectroscopy, until now only the

represents sequential or unsynchronized variations. Generalizetfo”eI"j‘t'onb"’malysesI C(_)ncernlr}g spec';]ral fe?)tures (wav ednumber
2D correlation spectroscopy has proven to be successful for Wavenumber correlation analyses) have een carried out. To
i Jhe best of our knowledge the only exception is the study by

Windig et al?® that strongly relies on self-modeling curve
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correlation of bands is provided. After the band correlations n
are established, the additional knowledge about species’ con- M; = ZV\/ikSq- )
centration dynamics is extracted. However, the concentration k=
dynamics can be explored directly also by the generalized 2D ] o
correlation approach. Wherg Wi represents.the absorption coefficient of tkid
The purpose of the present study is to demonstrate a newchemical species at theh Wavenumber_anﬁq- represents the
possibility of the generalized 2D correlation spectroscopy. concentration of théth substance of thgh sample. Thusi
Instead of generating 2D maps with the wavenumber axes andca@n be viewed as a product
discussing correlations between bands, we create totally new
generalized 2D correlation maps having sample axes, which we M =WS (4)
name the samptesample correlation. By use of this novel
correlation method, one can follow the concentration profiles
directly. The analysis proposed here is completely complemen-
tary to the existing 2D correlation analysis. By analogy to the
existing generalized 2D correlation analyses, which allows one
to set spectral variables of any kind of spectroscopy in
wavenumber axes, the newly proposed sampimple cor- component spectrum
relation can set any kind of perturbation variables (such as In all the cases kndwn t0 us. the axes of the generalized 2D
temperatures, concentration, pressure, and time). In this paper . ’ 9
we describe theoretical explanation of the samgample correlation spectra denote wavenumb_ers. However, as one can
correlation spectroscopy and its examples based on simple model oo from egs 3 and 4, the experlmental matrix contains
systems. In the following paper we compare the samgianple |nformat|on about the concentrations. Thus, the covariance
correlation spectroscopy with the wavenumbwavenumber matrix z shows_ correlayon between concentrations by the
correlation spectroscopy and demonstrate the potential Offlsg\%vrllzgr]nbeeqru::rcr)glaﬁcs)nm the case of the wavenumber
sample-sample correlation spectroscopy by use of temperature-

dependent NIR spectral variations of oleic acid in the pure liquid
oot P pureliq Z=1w-1M™ )

whereW (w x n) is a matrix of then pure spectrav points)
andS (n x ) is a matrix of then concentration profiless(
points). The synchronous spectrum represents relations between
columns ofW, i.e., between pure component spectra. The points
with the same sign in the rows cross-product matrix of the
normalized two-component system usually come from the one-

If we again refer to PCA, we shall see that two types of the
covariance matrices can be formed. The matrix obtained by eq

In our previous papét we have shown that a synchronous 1 is the spectral cross-product matrix, and by its decomposition
correlation spectrum can be represented as a simple rows crossone can obtain information about the spectral features of

Theory

product of the experimental matrix components (loadings) while the cross-product matrix obtained
T by (5) offers information about concentration dynamics of
Z=1/(s— 1)MM (1) components (scores). Essentially, both matrices are of equal

importance. They depict the different aspects of the species,
spectra, and concentrations examined.

Thus, we propose here quite a simple procedure that im-
mediately gives information about the concentration dynamics
column ofM corresponds to one spectrum. The synchronous from the viewpoint of the generalized 2D approach. The cross-

spectrum consists O.f a series of _the sca_lar perUCtS of theproduct matrix formed by eq 5 provides a 2D pattern having
dynamic vectors, which can be defined as intensity changes atihe samples (mixtures) on both axes, and each point in the 2D

all the wavenumber points with the samples (the dynamic spectramap represents a correlation between the concentrations of a

z;re rows (?]ﬂ\/l). The resul(t)mgzhsh dO.WS thel overalll co(rjrelatlon given pair of samples; ands. The orthogonal cross-correlation,
| e_twegn t esr(]e_ \%ecyors. nt ek |agﬁna are place T?]uto_correbr asynchronous samptsample correlation spectrum can also
ation data, which give autopeaks with positive sign. The sSigns o ¢3jcyated after the orthogonalization rowsMf. In this

of .cross.-peak.s are positive at any wavenu.mbe.r pain @ind . paper the cross-product matrix and synchronous spectrum and
va if the Intensity changes arein the same d|r_ect|on, or negative i, o orthogonalized cross-product matrix and asynchronous
if the intensity changes are in different directions. The intensity spectrum, respectively, have the same meaning

of the correlation depends on the magnitude of the dynamic
vectors. An asynchronous correlation spectrum can be obtainedspectra| Models
if M is orthogonalized, and then the rows cross-product between

whereZ denotes the resulting square matrixwok w (w is the
number of the wavenumber points) akldis the experimental
matrix of w x s (s is the number of samples (spectra)). Each

the original and orthogonal matrix is formed: In Figure 1 is shown a model that consists of two bands
located at 140 and 160 crhwith the initial intensities of 90

Z=1(s—1)MHM " (2) and 75 (arbitrary units), respectively. Every spectrum is
composed of the 100 data point&)( The choice of the

The appearance of any nonzero point at the coordinafe’) wavenumber axis is quite arbitrary, and thus it can be settled
in an asynchronous spectrum means that the spectral dynamicgor any other spectral variables. The band at 140%im set to

at the positiong’; andv, are not in linear relationships. lose 5% of its existing intensity in each step, while the band at

The methodology described for the synchronous spectra is 160 cnt! is set to gain 2% of its initial intensity in each step.
very close to that for the first step of PCA that is a very popular There are a total of 30 such steps.
chemometric technique for determining the linearly independent We use the above to construct the spectral model because
components in the systems obeying Beer’s {aWhe internal we consider it a more realistic way than some previous
linear relation is very important for 2D correlation spectroscopy. simulations utilizing the exponential factors superposed on the
Namely, every experimental poilt; can be represented as the essentially linear spectral changeé8.The simulation we have
product chosen is more understandable; it mimics a simple chemical
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reaction A— B where the absorption coefficients of bands are 100
not the same or a reaction 2A B because the band at 140 w
cm~! decreases faster than that at 160 ¢increases. We have
also kept nonlinearity because the intensity changes at the peak ;
positions proceed always with equal percents.

Figure 2 depicts the second model, which differs from the
first model by peak positions. Now, the bands are placed at
155 and 145 cmt. All other spectral parameters are kept the {
same; the rates of the changes are again set te3% and
+2%, respectively, and a total of 30 spectra are synthesized.
The second model is developed because the first one may be
considered rather simple. It is interesting to see what influence Figure 3. (A) Columns ofMT (the “spectra”): the intensity change
the heavier overlapping will give on the results of 2D correlation of each wavenumber point with the samples. (B) “Spectra” after mean
analysis. For the applications of the sampéample correlation ~ centering. (C) Spectral responses after mean centering.
it is important to perceive possible problems due to the strong
band overlapping.

ty (a.u.)

40

arbitrary intens

20

wavenumbers {cm™)

numberwavenumber correlation to the sampkample cor-
relation is nothing else but changing the direction of the
. . observing variables.

Results and Discussion As in the case of the wavenumberavenumber correlation

Cross-Product Matrix or the Synchronous Spectrum.Let where the first step in the calculation is to center the experi-
us construct the matrik from the spectra shown in Figure 1. mental data by subtracting the mean spectrum, the first step in

In the terminology of samplesample correlation, these spectra the new type of correlation is also centering the data by
correspond to the rows of tHd™ while the 100 columns of subtracting the mean concentration profile whose coordinates
MT are shown in Figure 3A. In Figure 3A the spectral changes () are calculated according to

at 160 and 140 cmt are highlighted because they are most w

indicative. Their intensities are, at first glance, most directly M Cent — E M. (6)
connected to the concentration of components. The spectra ' W; I

shown in Figure 1 are spectral responses of given samples at

particular wavenumbers. They are now the dynamic spectra.for each row of thévlT. The results of centering are represented
To keep in line with the common terminology, we must define in Figure 3B,C.

as “spectra” lines shown in Figure 3A that now represent Now we can apply eq 5. The obtained cross-product matrix
intensity changes at the particular wavenumbers with the is presented in Figure 4. It shows that we have a symmetric
samples. In view of eq 1 and from the starting point of all the pattern with 900 positive points whose values decrease slightly
reported generalized 2D correlation maps (let us call thesein the first few samples and increase after them. The highest
correlation spectra the wavenumbevavenumber maps) Fig-  value is found at the last sample coordinate at (30, 30), and
ures 1 and 3A show the original spectra and the dynamic spectracorner cross-coordinates at (1, 30) and (30, 1) have smaller
respectively. As one can see, the conversion from the wave-intensities than the first coordinate at (1, 1). The pattern is the
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S196

consequence of the spectral responses (Figures 1 and 3C). Since =190

the spectral response at sample 30 is the highest, after multiply- E

. . . . . . . E184
ing by itself, the highest intensity in the cross-product matrix =,
is found at the coordinate at (30, 30). The spectral response at = 8
sample 1 is smaller than that at sample 30 and that is the reason o E

)

the coordinate at (1, 1) has a smaller value than that at (30, ETE
30). One cannot say a lot from Figure 4 except that the overall £160 <
intensity in the spectral system decreases from sample 1 to 9 ETS4 8
or 10 and increases strongly after them. It is clear from the 148 £
spectral responses that no negative point appears in the cross- 142 §
product matrix, and thus the analogy with the wavenurmber =136 9

wavenumber maps does not emerge. It is impossible for this
model and this way of calculating to find a negative correlation
showing that the decrease in the concentration of one component
(the band at 140 cm) is followed by the increase in the
concentration of the second component (the band at 178)cm

Orthogonal Correlation or the AsynChI’OI’]OUS SpeCtrum_ TIPS T P ITS TT ry Frm T e 1 00
. O W AN 0 T O WAN BT O WN® YT O W
The orthogonal correlatioz®®, or asynchronous spectrum, ez 22
calculated according to wavenumber (cm™)

Figure 6. Orthogonal cross-product matrix or the asynchronous
Z=1/(w—1)M THM ) spectrum of wavenumbervavenumber correlation for the first model.

monotonic correlation function whose maximum points are
located at the positions of the highest concentration. However,
the cross-product matrix does not provide the optimal result.
The pattern does not tell us much and does not resemble the

whereH is the Hilbert transform matrix of dimensiomsx w,

can be connected with the wavenumberavenumber asyn-

chronous map. Figure 5 depicts the orthogonal correlation matrix

Z°calculated by eq 7. The pattern is antisymmetric with respect . X
wavenumberwavenumber synchronous spectrum. Since it

to the diagonal line. Note that there is a very strong negative - ) .
correlation between samples 1 and 30. The correlation keepsWOUId be very useful to find a direct relation to the wavenum-

the same sign but its amplitude becomes smaller as it approacheger—wa_\venumber correlation, we Thave attempted_ the mean
the main diagonal. The result in Figure 5 can be interpreted normallgatlon of the. columns .OM before centering and
similarly to the result in the corresponding wavenumber calc_ulatmg the covariance matrix. T

wavenumber asynchronous map shown in Figure 6. Probably, F'gufe 7.A represe_nts 100 columns BA" after the mean
only the negative correlations between two groups of samples,normal'zat'on according to

from 1 to 15 and from 16 to 30 can be extracted, which have 1 s
the highest value at the samples with the highest concentration MM — M ST M- 8)
of the species; i.e., samples 1 and 30 give the highest points at ! 's4 !

the coordinates at (1, 30) and (30, 1). This asynchronous

correlation appears as a consequence of the different rates ofor the jth column of MT. Of note in Figure 7A is a clear

intensity changes. appearance of a point that may be called as an isosbestic point,
The orthogonal cross-product matrix gives the very reasonablenear sample 15. By analogy to a spectral isosbestic point, one

result. It is easy to understand that the simple two-componentcan suppose that in samples-14 the concentration of the

system with nonequal uniform concentration changes shows thedecreasing component is higher than the middle value and that
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Figure 7. (A) “Spectra”’ after mean normalization. (B) Spectral
responses after mean normalization.

after that point the concentration of the increasing component
starts to be higher than the middle value. The normalization

strongly influences the spectral responses. Figure 7B demon-
strates that, after this pretreatment, there no longer exists any
similarity to the common shape of the vibrational spectrum.

Figure 8A depicts the covariance matrix constructed from
the spectra after the centering. It offers very useful information.
The pattern is symmetric and characterized by four main
features. Strong positive peaks are found at the sample
coordinates at (1, 1) and (30, 30), while strong negative peaks
are seen in the opposite corners of the coordinates at (1, 30)
and (30, 1). Monitoring the main diagonal in Figure 8A reveals
that the concentration decreasing in the first component is faster
than the concentration increasing in the second component. The
strong negative points at (1, 30) and (30, 1) show that component
concentration changes are of opposite sign. One component is
increasing concomitant with the decrease in the second one.
The result is more understandable than that obtained before the
normalization. The 2D representation of Figure 8A is given in
Figure 8B. The corresponding asynchronous spectrum is shown
in Figure 8C. It looks like noise. After the normalization and
centering, the spectral responses have a linear relationship, and
after Hilbert transformation is applied, the almost completely
orthogonal spectral system is obtained. The scalar product of
these vectors is very close to zero, so that only very small
asynchrononicity exists. It is expected because the deviation
from the linear concentration changes is settled to be small and
after equalizing the spectral responses the orthogonal correlation
should be zero. In our previous sti#dyt was shown that the
same effect is achieved for wavenumberavenumber maps
after the normalization and centering.

There is no doubt that the normalization improves greatly
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Figure 9. Synchronous spectrum of the sampgample correlation
for the second model shown in Figure 2.

orthogonalized cross-product matrix reveals the inherent pro-
portionality in the concentration profile of the components.
Correlation Analysis of the Second Spectral ModelThe
cross-product matrix shown in Figure 9 again does not offer a
lot. In this case the spectral variations are smaller than the
variations in the previous one and for that reason the pattern
looks like the bottom part of the sphere with almost equal
intensities at the coordinates (1, 1) and (30, 30). The minimum
point is located between samples 13 and 14. The asynchronous
correlation gives a very similar result to that shown in Figure

J. Phys. Chem. A, Vol. 104, No. 27, 2008885
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5. Regardless of the different band positions, the constant and
uniform concentration changes produce the pattern where strong
negative correlations are seen only between the terminal
samples. This suggests that the two opposite concentration
changes take place and the strongest dissimilarity is found
between the first and the last of the sample set. _
The covariance matrix for this system after mean normaliza- sample number "ow
tion and centering is shown in Figure 10A and the orthogonal
correlation is given in Figure 10B. There is a very small Figure 10. (A) Synchronous spectrum of sampisample correlation
difference between these figures and Figure 8A,C. What was ‘E‘E’;)tx ”ggﬂférslgﬁ‘;"g ";;'fﬂeozf ?ﬁ:;geagg'}‘eag?:ggg‘: fc(:)?r::]eenng.
_dlsc_ussed for Flgure 8A.’C rema_lns valid for th_e ”_‘Ode' shown modelyshown in Figﬁre 2 after mean rr?cl?rmaligation and centering.
in Figure 2. Nowithstanding the higher overlapping in the bands,

the middle concentration is found to be between samples 14 presents IR spectra of two polymers, atactic polystyrene (PS)
and 15, as previously determined. Moreover, the inherent and poly(2,6-dimethyl-1,4-phenylene ether) (PPE) in the region
linearity causes almost a disappearance of asynchronous cor3170-2730 cmtl. The bands due to PS have much stronger
relation. It can be concluded that by considering the cross- intensities than those due to PPE so that the former strongly
product matrices, one can obtain information about the con- covers contributions from the latter. We have made up a spectral
centration dynamics from visually rather complicated spectra. model consisting of mixtures of these two spectra. The starting
However, it should be noted that we have considered only two- spectrum has been composed of 0.9 PPE and 0.1 PS, and the
component systems with the monotonic curves of the concentra-following spectra have been generated by subtracting 3% of
tion changes; i.e., there is no abrupt oscillation in simulated the intensities of the bands of PPE and adding 3% of those of
reaction or no change in the sign. Also, the systems are noiselessthe bands of PS in each step. After 30 steps the spectral model
There is no doubt that the noise will affect very smoothed curves displayed in Figure 11B is composed. One can recognize the
and three-dimensional representations of both covariance ma-component structure of the system by the isosbestic points at
trices. Nevertheless, the procedure proposed enables one to makeg50 and 2990 cni. Between these two points bands due to
quick and reliable analyses of the concentration profile for all PPE dominate. The cross-product matrices are shown in Figure
the systems meeting the above conditions, irrespective of the12A B. Note that the resulting matrices are quite similar to those
number of bands and their intensity ratio. To prove that, we for the simple model systems. The orthogonal correlation
have constructed one additional spectral system, which is practically does not exist, and the synchronous spectrum shows
composed of bands observed in real spectra. more symmetric distribution around the mean, or in other words,
Sample—Sample Correlation Analysis of a Model System points to the equal rate of intensity (concentration) changes.
Consisting of Mixtures of Two Polymer Spectra.Figure 11A The intensities at the sample coordinates of (1, 1) and (30, 30)

28
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are similar to each other, and the intensities of negative cross-
points at (1, 30) and (30, 1) are, of course, the same. Obviously, é
this intensity pattern is caused only by the rate of concentration & x,.
changes. ~ o
s &
Conclusion 5 &
— - o~ A 1
We have opened a totally new possibility of the generalized oond

sample numper
2D spectroscopy in the present study. Our idea came from the

fact that two basic conceptions of the methodology, synchronousF19ure 12. (A) Synchronous spectrum of the model shown in Figure
d h b d 11B after mean normalization and centering. (B) Asynchronous

and asynchronous spectra, can be expressed as a rows CroSgpectrym of the model from Figure 11B after mean normalizawtion

product of the experimental matrix and a product of the and centering.

experimental matrix and orthogonalized and transposed matrix,

respectively. Instead of ordering spectra in the columns, they method can be easily combined with those from the wavenum-
are settled in the rows. The obtained cross-product matrices havéer—wavenumber correlation analyses. These results make an
the dimensions of samples and represent correlations betweerntirety together because they depict two essential qualities of
concentration changes of the species in the samples. The resultgny spectral system: the amount of the species present and their
obtained from synthetic two band systems have shown thatOwn spectra.

three-dimensional correlation patterns calculated from mean

centered spectra are in good agreement with the wavenumber ~ Acknowledgment. The authors thank Dr. Y. Ren (Faculty
wavenumber correlation for the asynchronous but not for the of Engineering, Utsunomiya University) for measuring infrared
synchronous spectra, where no negative point appears. AftersPectra of PS and PPE. This study was supported by Program
mean normalization and centering, the covariance matrix for Promotion of Basic Research Activities for Innovative
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