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In this paper an extension of the generalized two-dimensional (2D) correlation spectroscopy, sample-sample
correlation spectroscopy, is proposed to obtain the information about the species’ perturbation-dependent
dynamics. This is the first report of monitoring perturbation dynamics in the samples by generalized 2D
approach. After the rows and columns of the experimental matrix are exchanged in a way that the spectral
data set is arranged in rows, unlike the common case, the correlation between the concentrations of species
is calculated. The method has been applied to a model system consisting of two bands with different degrees
of overlapping. The concentration-dependent dynamics of the components that give rise to the two bands has
been successfully analyzed. Similarities, differences, and correspondences between wavenumber-wavenumber
correlation spectroscopy (existing generalized 2D correlation spectroscopy) and sample-sample correlation
spectroscopy have been discussed. The pretreatments of mean normalization and mean centering seem to
yield the best results. The application of the presently proposed sample-sample correlation spectroscopy
gives correct results probably irrespective of the ratio of the band intensities, as is revealed in the analysis of
highly overlapped infrared (IR) spectra in the region of 3200-2700 cm-1 artificially synthesized from two
polymer spectra.

Introduction

Generalized two-dimensional (2D) correlation spectroscopy
was proposed by Noda1 in 1993 as an extension of original 2D
infrared (IR) correlation spectroscopy developed by himself.2,3

As in the case of 2D NMR, spectral peaks are spread over the
second dimension, thereby simplifying the visualization of the
complex spectra consisting of many overlapped bands and
enhancing the spectral resolution. However, the original 2D IR
method suffered from one serious limitation.2,3 The waveform
of dynamic spectral intensity variations had to be a simple
sinusoid with a fixed frequency to employ the data analysis
formalism. Therefore, Noda1 introduced the generalized 2D
correlation method that removes the constraint of the excitation
waveform. By using the newly introduced formalism, one can
monitor spectral intensity fluctuation as a function of any
physical variables such as temperature, pressure, or even
concentration.1,4,5Additional improvement in the calculation of
the generalized 2D correlation spectra is to use the Hilbert
transformation instead of Fourier transformation, which is a
cumbersome and time-consuming process.4 In the generalized
2D correlation spectroscopy the cross-correlated dynamic
spectral variations in a given spectral system give a so-called
synchronous spectrum and the correlation between original
spectral variations and those in orthogonalized system yields a
so-called asynchronous spectrum. The synchronous spectrum
shows simultaneous spectral changes at any pair of spectral
coordinatesν1 and ν2, while the asynchronous spectrum
represents sequential or unsynchronized variations. Generalized
2D correlation spectroscopy has proven to be successful for
various kinds of spectroscopies such as IR, Raman, near-infrared

(NIR), and fluorescence spectroscopies and for a variety of
samples such as proteins, polymers, and alcohols.6-19 However,
the theory of 2D correlation spectroscopy is still under develop-
ment.

We have been investigating new development of the theory
of the 2D correlation spectroscopy.20,21We showed that the main
conceptions of generalized 2D correlation spectroscopy, syn-
chronous and asynchronous spectra, can be viewed as cross-
product matrices.20 It was also found that generalized 2D
spectroscopy shares some common features with principal
component analysis (PCA).20 By analyzing a two-component
spectral model, we found that the synchronous spectrum gives
a 2D map that is very close to that yielded by the outer product
of the first principal component (PC), if the spectra are mean
normalized and centered. No analogy was recognized between
an asynchronous spectrum and any of the conceptions of PCA.22

The asynchronicity was found to be essentially connected with
the nonproportionality in the spectral variations. In the synthetic
spectral system consisting of two components we showed that
completely regular spectral changes in the component bands
do not give any asynchronous spectrum.20 In our last study we
investigated the influence of the mean normalization as a
pretreatment on generalized 2D correlation spectroscopy.21 The
mean normalization is very popular in chemometrics but is rarely
used in 2D spectroscopy.22

Because of the limited development in the theory of the
generalized 2D correlation spectroscopy, until now only the
correlation analyses concerning spectral features (wavenumber-
wavenumber correlation analyses) have been carried out. To
the best of our knowledge the only exception is the study by
Windig et al.23 that strongly relies on self-modeling curve
resolution methods. In all the other 2D maps reported,7-19

spectral features are compared and information about the
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correlation of bands is provided. After the band correlations
are established, the additional knowledge about species’ con-
centration dynamics is extracted. However, the concentration
dynamics can be explored directly also by the generalized 2D
correlation approach.

The purpose of the present study is to demonstrate a new
possibility of the generalized 2D correlation spectroscopy.
Instead of generating 2D maps with the wavenumber axes and
discussing correlations between bands, we create totally new
generalized 2D correlation maps having sample axes, which we
name the sample-sample correlation. By use of this novel
correlation method, one can follow the concentration profiles
directly. The analysis proposed here is completely complemen-
tary to the existing 2D correlation analysis. By analogy to the
existing generalized 2D correlation analyses, which allows one
to set spectral variables of any kind of spectroscopy in
wavenumber axes, the newly proposed sample-sample cor-
relation can set any kind of perturbation variables (such as
temperatures, concentration, pressure, and time). In this paper
we describe theoretical explanation of the sample-sample
correlation spectroscopy and its examples based on simple model
systems. In the following paper we compare the sample-sample
correlation spectroscopy with the wavenumber-wavenumber
correlation spectroscopy and demonstrate the potential of
sample-sample correlation spectroscopy by use of temperature-
dependent NIR spectral variations of oleic acid in the pure liquid
state.24

Theory

In our previous paper21 we have shown that a synchronous
correlation spectrum can be represented as a simple rows cross-
product of the experimental matrix

whereZ denotes the resulting square matrix ofw × w (w is the
number of the wavenumber points) andM is the experimental
matrix of w × s (s is the number of samples (spectra)). Each
column of M corresponds to one spectrum. The synchronous
spectrum consists of a series of the scalar products of the
dynamic vectors, which can be defined as intensity changes at
all the wavenumber points with the samples (the dynamic spectra
are rows ofM ). The resultingZ shows the overall correlation
between these vectors. On the diagonal are placed autocorre-
lation data, which give autopeaks with positive sign. The signs
of cross-peaks are positive at any wavenumber pair ofν1 and
ν2 if the intensity changes are in the same direction, or negative
if the intensity changes are in different directions. The intensity
of the correlation depends on the magnitude of the dynamic
vectors. An asynchronous correlation spectrum can be obtained
if M is orthogonalized, and then the rows cross-product between
the original and orthogonal matrix is formed:

The appearance of any nonzero point at the coordinate (ν1, ν2)
in an asynchronous spectrum means that the spectral dynamics
at the positionsν1 andν2 are not in linear relationships.

The methodology described for the synchronous spectra is
very close to that for the first step of PCA that is a very popular
chemometric technique for determining the linearly independent
components in the systems obeying Beer’s law.22 The internal
linear relation is very important for 2D correlation spectroscopy.
Namely, every experimental pointMij can be represented as the
product

where Wik represents the absorption coefficient of thekth
chemical species at theith wavenumber andSkj represents the
concentration of thekth substance of thejth sample. Thus,M
can be viewed as a product

whereW (w × n) is a matrix of then pure spectra (w points)
and S (n × s) is a matrix of then concentration profiles (s
points). The synchronous spectrum represents relations between
columns ofW, i.e., between pure component spectra. The points
with the same sign in the rows cross-product matrix of the
normalized two-component system usually come from the one-
component spectrum.

In all the cases known to us, the axes of the generalized 2D
correlation spectra denote wavenumbers. However, as one can
see from eqs 3 and 4, the experimental matrix contains
information about the concentrations. Thus, the covariance
matrix Z shows correlation between concentrations by the
following equation as in the case of the wavenumber-
wavenumber correlation

If we again refer to PCA, we shall see that two types of the
covariance matrices can be formed. The matrix obtained by eq
1 is the spectral cross-product matrix, and by its decomposition
one can obtain information about the spectral features of
components (loadings) while the cross-product matrix obtained
by (5) offers information about concentration dynamics of
components (scores). Essentially, both matrices are of equal
importance. They depict the different aspects of the species,
spectra, and concentrations examined.

Thus, we propose here quite a simple procedure that im-
mediately gives information about the concentration dynamics
from the viewpoint of the generalized 2D approach. The cross-
product matrix formed by eq 5 provides a 2D pattern having
the samples (mixtures) on both axes, and each point in the 2D
map represents a correlation between the concentrations of a
given pair of samples,si andsj. The orthogonal cross-correlation,
or asynchronous sample-sample correlation spectrum can also
be calculated after the orthogonalization rows ofMT. In this
paper the cross-product matrix and synchronous spectrum and
the orthogonalized cross-product matrix and asynchronous
spectrum, respectively, have the same meaning.

Spectral Models

In Figure 1 is shown a model that consists of two bands
located at 140 and 160 cm-1 with the initial intensities of 90
and 75 (arbitrary units), respectively. Every spectrum is
composed of the 100 data points (w). The choice of the
wavenumber axis is quite arbitrary, and thus it can be settled
for any other spectral variables. The band at 140 cm-1 is set to
lose 5% of its existing intensity in each step, while the band at
160 cm-1 is set to gain 2% of its initial intensity in each step.
There are a total of 30 such steps.

We use the above to construct the spectral model because
we consider it a more realistic way than some previous
simulations utilizing the exponential factors superposed on the
essentially linear spectral changes.1,25 The simulation we have
chosen is more understandable; it mimics a simple chemical

Z ) 1/(s - 1)MM T (1)

Z ) 1/(s - 1)MHM T (2)

Mij ) ∑
k)1

n

WikSkj (3)

M ) WS (4)

Z ) 1/(w - 1)MTM (5)
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reaction Af B where the absorption coefficients of bands are
not the same or a reaction 2Af B because the band at 140
cm-1 decreases faster than that at 160 cm-1 increases. We have
also kept nonlinearity because the intensity changes at the peak
positions proceed always with equal percents.

Figure 2 depicts the second model, which differs from the
first model by peak positions. Now, the bands are placed at
155 and 145 cm-1. All other spectral parameters are kept the
same; the rates of the changes are again set to be-5% and
+2%, respectively, and a total of 30 spectra are synthesized.
The second model is developed because the first one may be
considered rather simple. It is interesting to see what influence
the heavier overlapping will give on the results of 2D correlation
analysis. For the applications of the sample-sample correlation
it is important to perceive possible problems due to the strong
band overlapping.

Results and Discussion

Cross-Product Matrix or the Synchronous Spectrum.Let
us construct the matrixM from the spectra shown in Figure 1.
In the terminology of sample-sample correlation, these spectra
correspond to the rows of theMT while the 100 columns of
MT are shown in Figure 3A. In Figure 3A the spectral changes
at 160 and 140 cm-1 are highlighted because they are most
indicative. Their intensities are, at first glance, most directly
connected to the concentration of components. The spectra
shown in Figure 1 are spectral responses of given samples at
particular wavenumbers. They are now the dynamic spectra.
To keep in line with the common terminology, we must define
as “spectra” lines shown in Figure 3A that now represent
intensity changes at the particular wavenumbers with the
samples. In view of eq 1 and from the starting point of all the
reported generalized 2D correlation maps (let us call these
correlation spectra the wavenumber-wavenumber maps) Fig-
ures 1 and 3A show the original spectra and the dynamic spectra,
respectively. As one can see, the conversion from the wave-

number-wavenumber correlation to the sample-sample cor-
relation is nothing else but changing the direction of the
observing variables.

As in the case of the wavenumber-wavenumber correlation
where the first step in the calculation is to center the experi-
mental data by subtracting the mean spectrum, the first step in
the new type of correlation is also centering the data by
subtracting the mean concentration profile whose coordinates
(s) are calculated according to

for each row of theMT. The results of centering are represented
in Figure 3B,C.

Now we can apply eq 5. The obtained cross-product matrix
is presented in Figure 4. It shows that we have a symmetric
pattern with 900 positive points whose values decrease slightly
in the first few samples and increase after them. The highest
value is found at the last sample coordinate at (30, 30), and
corner cross-coordinates at (1, 30) and (30, 1) have smaller
intensities than the first coordinate at (1, 1). The pattern is the

Figure 1. First spectral model.

Figure 2. Second spectral model.

Figure 3. (A) Columns ofMT (the “spectra”): the intensity change
of each wavenumber point with the samples. (B) “Spectra” after mean
centering. (C) Spectral responses after mean centering.

Mi
cent)

1

w
∑
j)1

w

Mij (6)
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consequence of the spectral responses (Figures 1 and 3C). Since
the spectral response at sample 30 is the highest, after multiply-
ing by itself, the highest intensity in the cross-product matrix
is found at the coordinate at (30, 30). The spectral response at
sample 1 is smaller than that at sample 30 and that is the reason
the coordinate at (1, 1) has a smaller value than that at (30,
30). One cannot say a lot from Figure 4 except that the overall
intensity in the spectral system decreases from sample 1 to 9
or 10 and increases strongly after them. It is clear from the
spectral responses that no negative point appears in the cross-
product matrix, and thus the analogy with the wavenumber-
wavenumber maps does not emerge. It is impossible for this
model and this way of calculating to find a negative correlation
showing that the decrease in the concentration of one component
(the band at 140 cm-1) is followed by the increase in the
concentration of the second component (the band at 170 cm-1).

Orthogonal Correlation or the Asynchronous Spectrum.
The orthogonal correlationZort, or asynchronous spectrum,
calculated according to

whereH is the Hilbert transform matrix of dimensionsw × w,
can be connected with the wavenumber-wavenumber asyn-
chronous map. Figure 5 depicts the orthogonal correlation matrix
Zort calculated by eq 7. The pattern is antisymmetric with respect
to the diagonal line. Note that there is a very strong negative
correlation between samples 1 and 30. The correlation keeps
the same sign but its amplitude becomes smaller as it approaches
the main diagonal. The result in Figure 5 can be interpreted
similarly to the result in the corresponding wavenumber-
wavenumber asynchronous map shown in Figure 6. Probably,
only the negative correlations between two groups of samples,
from 1 to 15 and from 16 to 30 can be extracted, which have
the highest value at the samples with the highest concentration
of the species; i.e., samples 1 and 30 give the highest points at
the coordinates at (1, 30) and (30, 1). This asynchronous
correlation appears as a consequence of the different rates of
intensity changes.

The orthogonal cross-product matrix gives the very reasonable
result. It is easy to understand that the simple two-component
system with nonequal uniform concentration changes shows the

monotonic correlation function whose maximum points are
located at the positions of the highest concentration. However,
the cross-product matrix does not provide the optimal result.
The pattern does not tell us much and does not resemble the
wavenumber-wavenumber synchronous spectrum. Since it
would be very useful to find a direct relation to the wavenum-
ber-wavenumber correlation, we have attempted the mean
normalization of the columns ofMT before centering and
calculating the covariance matrix.

Figure 7A represents 100 columns ofMT after the mean
normalization according to

for the jth column of MT. Of note in Figure 7A is a clear
appearance of a point that may be called as an isosbestic point,
near sample 15. By analogy to a spectral isosbestic point, one
can suppose that in samples 1-14 the concentration of the
decreasing component is higher than the middle value and that

Figure 4. Cross-product matrix or the synchronous spectrum of
sample-sample correlation for the first model.

Z ) 1/(w - 1)MTHM (7)

Figure 5. Orthogonal cross-product matrix or the asynchronous
spectrum of sample-sample correlation for the first model.

Figure 6. Orthogonal cross-product matrix or the asynchronous
spectrum of wavenumber-wavenumber correlation for the first model.

Mj
norm ) Mj

1

s
∑
i)1

s

Mij (8)
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after that point the concentration of the increasing component
starts to be higher than the middle value. The normalization
strongly influences the spectral responses. Figure 7B demon-
strates that, after this pretreatment, there no longer exists any
similarity to the common shape of the vibrational spectrum.

Figure 8A depicts the covariance matrix constructed from
the spectra after the centering. It offers very useful information.
The pattern is symmetric and characterized by four main
features. Strong positive peaks are found at the sample
coordinates at (1, 1) and (30, 30), while strong negative peaks
are seen in the opposite corners of the coordinates at (1, 30)
and (30, 1). Monitoring the main diagonal in Figure 8A reveals
that the concentration decreasing in the first component is faster
than the concentration increasing in the second component. The
strong negative points at (1, 30) and (30, 1) show that component
concentration changes are of opposite sign. One component is
increasing concomitant with the decrease in the second one.
The result is more understandable than that obtained before the
normalization. The 2D representation of Figure 8A is given in
Figure 8B. The corresponding asynchronous spectrum is shown
in Figure 8C. It looks like noise. After the normalization and
centering, the spectral responses have a linear relationship, and
after Hilbert transformation is applied, the almost completely
orthogonal spectral system is obtained. The scalar product of
these vectors is very close to zero, so that only very small
asynchrononicity exists. It is expected because the deviation
from the linear concentration changes is settled to be small and
after equalizing the spectral responses the orthogonal correlation
should be zero. In our previous study21 it was shown that the
same effect is achieved for wavenumber-wavenumber maps
after the normalization and centering.

There is no doubt that the normalization improves greatly
the results. The cross-product matrix contains all relevant
information about the concentration dynamics, i.e., about the
rates of changes and the middle concentration, while the

Figure 7. (A) “Spectra” after mean normalization. (B) Spectral
responses after mean normalization.

Figure 8. (A) Synchronous spectrum of sample-sample correlation
after mean normalization and centering. (B) 2D representation of Figure
8A. (C) Asynchronous spectrum of the sample-sample correlation after
mean normalization and centering.
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orthogonalized cross-product matrix reveals the inherent pro-
portionality in the concentration profile of the components.

Correlation Analysis of the Second Spectral Model.The
cross-product matrix shown in Figure 9 again does not offer a
lot. In this case the spectral variations are smaller than the
variations in the previous one and for that reason the pattern
looks like the bottom part of the sphere with almost equal
intensities at the coordinates (1, 1) and (30, 30). The minimum
point is located between samples 13 and 14. The asynchronous
correlation gives a very similar result to that shown in Figure
5. Regardless of the different band positions, the constant and
uniform concentration changes produce the pattern where strong
negative correlations are seen only between the terminal
samples. This suggests that the two opposite concentration
changes take place and the strongest dissimilarity is found
between the first and the last of the sample set.

The covariance matrix for this system after mean normaliza-
tion and centering is shown in Figure 10A and the orthogonal
correlation is given in Figure 10B. There is a very small
difference between these figures and Figure 8A,C. What was
discussed for Figure 8A,C remains valid for the model shown
in Figure 2. Nowithstanding the higher overlapping in the bands,
the middle concentration is found to be between samples 14
and 15, as previously determined. Moreover, the inherent
linearity causes almost a disappearance of asynchronous cor-
relation. It can be concluded that by considering the cross-
product matrices, one can obtain information about the con-
centration dynamics from visually rather complicated spectra.
However, it should be noted that we have considered only two-
component systems with the monotonic curves of the concentra-
tion changes; i.e., there is no abrupt oscillation in simulated
reaction or no change in the sign. Also, the systems are noiseless.
There is no doubt that the noise will affect very smoothed curves
and three-dimensional representations of both covariance ma-
trices. Nevertheless, the procedure proposed enables one to make
quick and reliable analyses of the concentration profile for all
the systems meeting the above conditions, irrespective of the
number of bands and their intensity ratio. To prove that, we
have constructed one additional spectral system, which is
composed of bands observed in real spectra.

Sample-Sample Correlation Analysis of a Model System
Consisting of Mixtures of Two Polymer Spectra.Figure 11A

presents IR spectra of two polymers, atactic polystyrene (PS)
and poly(2,6-dimethyl-1,4-phenylene ether) (PPE) in the region
3170-2730 cm-1. The bands due to PS have much stronger
intensities than those due to PPE so that the former strongly
covers contributions from the latter. We have made up a spectral
model consisting of mixtures of these two spectra. The starting
spectrum has been composed of 0.9 PPE and 0.1 PS, and the
following spectra have been generated by subtracting 3% of
the intensities of the bands of PPE and adding 3% of those of
the bands of PS in each step. After 30 steps the spectral model
displayed in Figure 11B is composed. One can recognize the
component structure of the system by the isosbestic points at
2950 and 2990 cm-1. Between these two points bands due to
PPE dominate. The cross-product matrices are shown in Figure
12A,B. Note that the resulting matrices are quite similar to those
for the simple model systems. The orthogonal correlation
practically does not exist, and the synchronous spectrum shows
more symmetric distribution around the mean, or in other words,
points to the equal rate of intensity (concentration) changes.
The intensities at the sample coordinates of (1, 1) and (30, 30)

Figure 9. Synchronous spectrum of the sample-sample correlation
for the second model shown in Figure 2.

Figure 10. (A) Synchronous spectrum of sample-sample correlation
for the model shown in Figure 2 after mean normalization and centering.
(B) Asynchronous spectrum of the sample-sample correlation for the
model shown in Figure 2 after mean normalization and centering.
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are similar to each other, and the intensities of negative cross-
points at (1, 30) and (30, 1) are, of course, the same. Obviously,
this intensity pattern is caused only by the rate of concentration
changes.

Conclusion

We have opened a totally new possibility of the generalized
2D spectroscopy in the present study. Our idea came from the
fact that two basic conceptions of the methodology, synchronous
and asynchronous spectra, can be expressed as a rows cross-
product of the experimental matrix and a product of the
experimental matrix and orthogonalized and transposed matrix,
respectively. Instead of ordering spectra in the columns, they
are settled in the rows. The obtained cross-product matrices have
the dimensions of samples and represent correlations between
concentration changes of the species in the samples. The results
obtained from synthetic two band systems have shown that
three-dimensional correlation patterns calculated from mean
centered spectra are in good agreement with the wavenumber-
wavenumber correlation for the asynchronous but not for the
synchronous spectra, where no negative point appears. After
mean normalization and centering, the covariance matrix
becomes much clearer and comparable to the wavenumber-
wavenumber counterpart. Because of high linearity, the asyn-
chronous correlation after the normalization and centering
becomes nearly zero. The sample-sample correlation generated
from the set of spectra synthesized from the two real polymer
spectra have revealed that for two-component systems one can
always obtain reliable results regardless of the number of bands
present and their intensity ratio. The newly proposed sample-
sample correlation offers the possibility of fast analysis of the
concentration changes of the species as a function of the
temperature, pressure, time, etc. The results obtained from this

method can be easily combined with those from the wavenum-
ber-wavenumber correlation analyses. These results make an
entirety together because they depict two essential qualities of
any spectral system: the amount of the species present and their
own spectra.
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