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The first part of this paper uses only fractal geometry mathematics to study the variations in column efficiency
(h) with its geometrical characteristics (both column and particle diameter,...) and constant column length. In
this case the fractal dimensionD of h was 2. Conventional results in chromatography were found with this
theory independent of the others. For example, a decrease in the particle diameter filling the column must
theoretically increase column efficiency. In a second part, geometry was linked to hydrodynamic considerations
to study the effect of the microcolumn structure and its organization in a multimicrocolumn chromatographic
system. It demonstrated that to minimize the pressure drop, the geometric structure must obey a power law.
This system uses columns with a low diameter and a low pressure drop to perform efficient separation.

Introduction

Fractal geometry has provided a mathematical formalism for
describing complex and dynamical structures.1 It has been
applied successfully in a variety of areas such as astronomy,2

economics,3,4 or biology.5,6 Because of its success in this variety
of areas, it is natural to develop fractal applications in chro-
matography. The fractal concept was used to study the effect
of surface irregularity on the accessibility to silylating reactions.7

Grafting of surfaces is indeed a key process in the preparation
of chromatographic materials,8-11 given the ability to fine-tune
the type of surface absorbate interactions by a suitable choice
of the derivatizing agent.12 In recent years, to study the surface
properties of chromatographic materials in general and reversed-
phase materials in particular, photophysical probes have been
successfully used. The structure of the derivatizing layer has
been an issue of much debate regarding the questions of whether
silanols are evenly distributed on the surface of silica13 or
whether they are heterogeneously clustered.14 Lochmuller et al.
have used the intermolecular complexation process between
ground-state and exited-state pyrene to investigate this prob-
lem.15,16 The effect of surface irregularity on parameters such
as surface concentration was studied by Farin and Avnir.17

Another application in chromatography was proposed to study
the solute retention on immobilized human serum albumin
(HSA). This study proposes a mathematical model to provide
a more realistic understanding of the molecular processes that
take place in the sucrose dependence of dansylamino acid
binding on the HSA site II cavity.18 In a first section, using
only fractal considerations, the variation in efficiency in relation
to geometrical characteristics was studied. It is rare for a novel
theory, independent of others and addressing a basic problem,
to yield results that are virtually identical. This is the case
reported here. The aim of the second section was to make an
analysis of a multimicrocolumn systems (MCS) in terms of not
only its geometry but also in terms of hydrodynamics.

Demonstration of Fractal Nature of Column Efficiency.
A novel theory using the fractal concept was proposed to study
the effect of the variation of some current geometrical charac-
teristics of a chromatographic column on its efficiency. Usually
for the same solute, the plate height that characterized the
column efficiency depends on some geometrical characteristics
of the column, that is, (a) its lengthL and its diameterd1, (b)
the column packing, which is usually treated as a three-
dimensional network of pores with an average diameterd2 that
is linked to the average particle diameterd3 by the equation19

where n is the interparticle porosity, and (c) some other
geometrical characteristicsdi and the other “extra column”
physical parameters (nature of the mobile phase, its flow rate...)
remaining constant as set out below. In the plate theory,h was
usually considered to have a length dimension.h is some
complicated functions of the various length scalesL, d1, d2, d3,
...di that paramatrize the size and shape:

On purely dimensional grounds this can be expressed as:

where¥ is a dimensionless function of the dimensionless ratio
L/d1, and so on. Consider now a modification of the geometrical
characteristic of the column by making a uniform scale
transformation on all lengthsdi:

whereδ is some positive arbitrary numberL remaining constant.
By this transformationh responds in the following manner:
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As L is fixed, the right-hand side is no longer simply
proportional to δ. Although the δ dependence of¥ was
unknown, it can be parametrized as a power law reflecting the
hierarchical fractal-like organization:

whereê is an “arbitrary” exponent thus:

It is very important to note here that becauseL is fixed, h
does not scale simply asδ. The exponentD ) ê + 1 can be
interpreted as the fractal dimension ofh.1,20As such, it satisfies
0 e ê e 1. The lower limit,ê ) 0, is the conventional Euclidian
case; the upper limitê ) 1 represents the “maximum fractality”
of a surface-filling structure in which the lengthh scales like a
conventional surface. It is well known thath is calculated by

whereσ2 is the peak dispersion.σ has a length dimension and
is dependent ondi valuesσ (d1, d2, ....,di,....). During aδ scale
transformation

Combining eqs 7 and 9 givesD ) 2 andê ) 1. In conclusion,
the fractal dimension ofh is maximal ()2) rather than the
canonical Euclidian value of 1. This result implies that (a) all
the distances associated with the network are themselves fractal;
(b) to decreaseh, that is, to increase column efficiency,δ must
be less than 1. This result is consistent with the well-known
fact that to increase column efficiency the column and particle
diameter must be decreased; (c) for a givenδ the maximal fractal
dimension ofh gives the minimal value ofh, that is, the best
efficiency.

So far the model was structured around the geometry of
hierarchical networks. In the second section, the proposed model
was not only based on the geometry of a fractal network of
branching microcolumns but also on hydrodynamic consider-
ations.

Fractal Chromatographic System

Most authors21,22seem to be adhering to the general conven-
tion that restricts the term “microcolumn” to open tubular or
packed capillary columns with internal diameters less than 0.5
mm, whereas “microbore” refers to columns with an internal
diameter between 0.5 and 2.0 mm. For a steady laminar flow
F, the viscous resistance z of a microcolumn with a uniform
structure (lengthL and circular cross-section a) filled with
particles is given by the well-known Darcy law:

where η is the viscosity of the mobile phase andKo the
microcolumn permeability constant that depends on the particle
diameter filling it.

The corresponding pressure drop∆p is:

whereF is the flow rate in the column.
Combining eqs 10 and 11 gives:

The corresponding dissipation energy was

and yields

Minimizing the dissipated energy obviously leads to a
decrease in the flow rate and column length or an increase in
the circular cross-section radius. Consider now the case of a
MCS. This system is composed of branching from the column
with the highest cross-section (level o) to the lowest cross-
section (levelω) (Figure 1). Each microcolumn ramifies into
pl smaller ones. At levell the microcolumn has a circular cross-
section of radiusal. The microcolumn length isLl. The
parameters

and

characterize the ramifications of the MCS. Consider now the
case of a uniform geometric structure, that is,Rl ) 1 andâl )
1. If N is the total number of microcolumns with az resistance,
the resistanceZ of the MCS is
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Figure 1. Representation of the fractal multimicrocolumn system
(FCS). Herel is the order of the level, beginning with the microcolumns
with the largest cross-section (l ) 0) and ending with those with the
smallest cross-section (l ) ω).
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and using eqs 10, 11, 13, and 17 yields

This last equation shows that to minimize the dissipated
energyE, n should not be too high. In the case of a MCS with
self-similar fractal nature (FCS system), this implies thatRl,
âl, andpl must be independent ofl: Rl ) R ) constant,âl )
â ) constant, andpl ) p ) constant. Thus at levell, the total
number of microcolumns can be expressed as:

The volume of an empty microcolumn at levell is:

Thus, the total volumeVt of an empty FCS system is

Combining eqs 19, 20, and 21 gives

which yields

whereVω denoted the volume in the smallest capillaries. This
latter equation reflects the fractal nature of the system. For a
steady laminar flow, the viscous resistanceZl using eq 10 is:

It was assumed that the small turbulence and nonlinearities
at junctions of the microcolumns would be negligible. Therefore,
the resistanceZ of the FCS (ZFCS) is:

Combining eqs 19, 24, and 26 gives

and yields:

whereZω denotes the resistance in levelω.
As the mobile phase is maintained as it flows through the

FCS,

and

whereFl andFω are the flow rates at levell and in the smallest
microcolumn (levelω) and∆p the corresponding pressure drop.

By using eqs 13, 28, and 30 the corresponding dissipation
energy was

Equation 31 leads to the important conclusion thatE depends
on the geometrical characteristics of the FCS, that is, onal, Ll,
andp: E(al, Ll, p). Minimizing the dissipated energy inside the
FCS using the standard method of Lagrange multipliers leads
to the equation:

This equation is independent of the microcolumn cross-
section. This equation predicts that energy-carrying waves are
not reflected back up the microcolumns at branch points and
that the branching is area preserving. Assuming that the sum
of the cross-sectional areas of the daughter branches equals those
of the parent (Figure 1), then

yields

To minimize the dissipated energy in the FCS, the area must
be maintained to respect the largest microcolumn. In conclusion,
in the first part, by using fractal geometry defined by Mandel-
brot, the fractal nature of the height to a theoretical plate (h)
was demonstrated. The determination of its fractal dimension
demonstrated that for a given column length,h scales like a
conventional surface. Therefore, minimizingh is obtained by
minimizing some geometrical characteristics of the column such
as column and particle diameter. This novel theory, which is
completely independent of the others, provided confirmation
of these classical results. In the second part, a theoretical study
combining energetics with fractal design demonstrated the need
to organize the microcolumns into a multimicrocolumn chro-
matographic system. It was shown that a fractal distribution of
the microcolumns associated with the power law minimizes the
dissipated energy and, thus, the corresponding pressure drop.
Practically, the pressure drop is the inevitable result of filled
column with a very low diameter. The FCS can use microcol-
umns with a small pressure drop to perform efficient separation.
To the best of our knowledge, there are no measurements of
these effects under the conditions specified here to confirm the
predicted trends, but it is anticipated that systematic experimental
studies aimed at addressing these issues will appear soon.
Therefore, this model could be a useful starting point for a more
refined analysis of multimicrocolumn chromatographic phe-
nomena.
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