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We investigated qualitative features of an electron-transfer reaction in the case where the viscosity of a solvent
is high and the activation barrier for the reaction is low so that decay of the reactant population is
nonexponential. Using the reaction-diffusion equation for the SiMarcus model and dividing a slow nuclear
coordinate into diffusion-dominated and reaction-dominated regions, we derived expressions for the powers
of dependence of the generalized mean lifetimes on the viscosity. We also derived an expression for the
survival probability at short times. These expressions show fractional (not integer) powers and an algebraic
decay at short times under certain conditions, which were found previously by numerical calculations. Moreover,
from these expressions we found that the time dependence of the survival probability at short times is intimately
related to the viscosity dependence of the mean lifetime. The expressions are in reasonable agreement with

exact numerical calculations for large viscosity.

I. Introduction nuclear coordinate fluctuates about its equilibrium value and
the ET reaction occurs at a rate depending on its value. The

Recently, extensive studies have been carried out on the - .
y fractional power dependence ©f) on» was found by solving

dynamic effects of a solvent (environment) on an electron ) ) e !
transfer (ET) reactioh,and the fractional (not integer) power ~numerically the reaction-diffusion for the Susidarcus model
dependence of the mean lifetir® on viscosityy of the solvent with the assumption thatis proportional to the relaxation time
was predictetl and observed experimentally in many ET scalets of the slow nuclear mod&® Moreover, it was found
system$. In the present work, our main interest is in an thatthe survival probability decays algebraically at short tifnes.
analytical expression of this fractional power dependence. The Sumi-Marcus model was applied to several ET systems
Let us give a brief survey of theoretical and experimental to explain a nonexponential feature of the dynamics and a
results on the dynamic effects. After static theories for the ET reaction rate faster than solvatiéh® and the fractional power
rate were developetiZusman calculated the ET rate with the dependence was observed in many ET systeWsalker et al.
dynamic effects incorporated using a one-dimensional reaction-extended this model to include the effect of high-frequency
diffusion equatior?. As a result, the ET rate is inversely quantum mode® and this extended model was used to analyze
proportional to the relaxation time scale of the solvent when experimental results:23.24
this time scale is large. This work triggered extensive theoretical
activities26-14 Kosower and Huppert found that the ET rate is Let us now review theories using one-dimensional reaction-
inversely proportional to the longitudinal relaxation time of the diffusion equations that have been used not only in electron
solvent in the excited-state intramolecular ET of arylaminon- transfer reactions but also in different areas of chemical physics,
aphthalene sulfonates in alcohol solutiéhdhe longitudinal for example, diffusion-controlled bimolecular reactiéhgoly-
relaxation time is equal to the relaxation time scale of the solvent mer reactiong? protein reactiond’~2° and electronic transition
for a Debye-type solvent with a single dielectric relaxation reactions® Because exact solutions can be obtained in only a
time'® The correlation between the solvent relaxation times and few cases;2%3!perturbation theories (or their equivalent) were
the int_ramolecular ET rates has been investigated experimentallydeve|oped in the case where the reaction effect is small
by various author&’=22 It has been shown that nuclear dynamics compared to the diffusion effedt; 2731 and in the opposite

coupled to ET is characterized by a broad range of time scales.;5qe7:32 Theoretical development beyond perturbation theory
However, Zusman's model includes only one time scale of is as follows. Agmon and Rabinovich developed analytic

solvent relaxation. Thus, Sumi and Marcus developed the model L . o .
which includes the broad range of time sc@@hey divided approximations for the survival probability by assuming a delta-
function or a Gaussian-function form of the population distribu-

nuclear modes into fast ones (the intramolecular or atomic ' 08 . AN ) , .
vibrations) and slow ones (the conformational fluctuation of ton-** Basilevsky and Davidovitch obtained a semianalytical

solvent molecules) and eliminated the former. As a result, they €xpression for the survival probability for slow diffusion using
obtained the one-dimensional reaction-diffusion equation in the quasiclassical theo.Pechukas and Ankerhold simplified the

slow nuclear coordinate. In the Surtlarcus model the slow  reaction-diffusion equation by applying an asymptotic ap-
proximation analogous to the WKB approximati&rBerezh-

* E-mail: aokada@ims.tsukuba.ac.jp. Fax:81-298-61-4771. kovskii and Zitserman calculated the reaction rate by dividing
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the space into two domains, separated at the point where the 1 du(q)

; at . S O S e R C) )
escape time equals the solvent relaxation time depending on G aq/ ~ 21, 0q ke aq dq @)
the environment state, in the case wheyé not too large so
that the decay kinetics is single-exponentfakada calculated A “u2 (—2J/29 + AG + 2)?
the power of the dependence df) on 75 for a largers by K(a) =1, 7 - A kT
dividing space into reaction-dominated and diffusion-dominated f

regions® wherets andz; are the time scale of the relaxation of the slow
In the present work, we consider the case where the viscositynuclear mode and that of the local reaction, respectivglyT,
of the solvent is large and the activation barrier for the reaction U(d), andAG are the Boltzmann constant, the temperature, the
is low. In this case, the time evolution of the reactant survival free energy as a function gf and the free energy of the product
probability is nonexponential, and so no single number can Minus that of the reactant, respectively, ad4r, and/ are
characterize the kinetics completely. Thus, we calculate not (€ reorganization energy of the slow nuclear mode, that of the
only 7 but also the generalized mean lifetime® (n = fast nuclear modes, and the sum of these two, respectively. Here
0,1,2,. . .) and derive expressions for the powers of the W€ @SSUme thall(@) = o The time scaler is given byz™

dependence of™ on 7 by extending the theory developed in = (J?/h)/7l(2kgT) when the local ET reaction is nonadiabatic,
ref 36. Here we define®™ (n=0,1,2,. . )sothatasetofall and byz = v(k /22 when it is adiabatic. Herd is the
of their values can characterize the time evolution of the reactanteIeCtronIC coupling between the reactant and the product states,

. . . h is Plank’s constant, andis the average frequency of the fast
survival probability completely. Moreover, we derive the 7 : h
spression for the d f th rvival orobability at short nuclear mode$” From now on, for convenience, we will use
expression for the decay of the survival probabllity at ShOT - 4,0 gjonless parameters and variables, a, v, t, andx, and

times, which shows clearly the algebraic dependence on time.,o population distributiop(xt) normalized ag'dxo(x, 0) = 1,
We find that this algebraic dependence is intimately related to \ynere

the fractional power dependencew® on 7. We confirm that

for a largen (or ts) the expressions are in reasonable agreement T A AG+ 1 A (=t
i i 1 ilibri Kk=—,Tr=-,a=——, =, =17,
with exact numerical calculations under a ngpnghbnqm initial 7, A AT 2 s
condition as well as under an equilibrium initial condition.
This article is organized as follows. In Section II, we review X= q/\/ keT —a (4)

the reaction-diffusion equation for ET and introduce the division We refer tor as the width of the reaction window. The wide

of t.he slow nuc[ear .coordlngte into the reactlon-QOm|nated reaction window and the narrow reaction window correspond
region and the diffusion-dominated region. In Section Ill, we /.~ 1 andr < 1, respectively. Throughout the present work,

investigate the powers of the dependence of the generalizedy e consider the case where a thermal activation process is not
mean lifetimes on the viscosity of the solvent. In Section IV, 5 rate-determining step and assume taat< 1 or |a ~ 1.

we consider the survival probability at short times. Finally, the yUsing the dimensionless variables and parameters, we recast
discussion and summary appear in Section V. eqlas

Il. Theory w = L(x, aix),o(x,t) (5)

In this section, we review the reaction-diffusion equation for
ET and define values characterizing the kinetics (Section IL.A.).
To calculate these values, we divide the slow nuclear coordinate 9 19[a  dux
into the reaction-dominated and diffusion-dominated regfons S(X’ &) = 29x | ax + “dx (6)
(Section 11.B.). Using this division, we show how the kinetics
at short times is related to that at long times (Section I1.C.). k() =« f(x) ()
Moreover, we prove that the value of the power of the i
dependence of© on 75 decreases (or does not change) with
increasing width of the reaction window. f(x) = y—l/Ze—r’lx2 (8)

wherelL denotesS — k, and

A. Reaction-Diffusion Equation. Let us now describe the — (x4 a) 9
reaction-diffusion equation for ET. We consider that ET is U = (x+a) ©)

affected by nuclear motions of solvents and solutes. For Note that a |argq Corresponds toa |ar%under the assumption
simplicity, we neglect a backward reaction from a product state thaty O 7s. A schematic representationkik) andu(x) is shown
to a reactant state by assuming a highly exothermic reaction.in Figure 1.
Eliminating the fast nuclear modes, we obtain the reaction- Let us describe the initial condition f@(x,t). For a largec,
diffusion equation in the slow nuclear coordingtes generally we should not assume that the initial population
distribution is equilibrated. In the present work, we consider
5 mainly a photoinduced ET and assume that the free energy
= [S(q, 8_) — k’(q)]p'(q,t') ) curves for the ground and excited states of the reactant are
q guadratic inq with the same curvature and different centers.
That is, the former and the latter free energy curves are
wherep'(q,t') is the population distribution in the reactant state expressed adlg(q) = (@ — Ag? + AGy and U(q) = ¢,
at the timet', normalized ag" dgp'(q,0) = 1. The operatorS respectively, wherd G is the free energy of the ground-state
and k' represent the diffusion and the local reaction rate, minus that of the excited state. The initial distribution in the
respectively, excited states is the same as the equilibrium distribution in the

ap'(qt)
'
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Figure 1. Figure 1. A schematic representation of the sk, the
potentialu(x), and the initial population distributiop(x,0).

ground state, therefore we have the initial condition

p(x,0) =7 " exp[-(x + a+ Aa)’ (10)
with Aa = —Aq/\/gl'. We refer to eq 10 wittha = 0 as the
nonequilibrium initial condition and that witha = 0 as the
equilibrium initial condition. A schematic representation of the
initial condition is shown in Figure 1.

Let us now define the values characterizing the kinetics. Using
p(x,t) governed by eq 5, we define the reactant survival
probability P(t) as

P(t) = [ dxo(x.t) (11)
The survival probabilityP(t) decays exponentially at long times,
P(t) = Pa exp(—et) because the eigenvalues-ek are positive
and discrete, wher@, is the amplitude of the exponential tail,
ande is the lowest eigenvalue ofL. In the smallc limit (« —
0) and in the wide reaction window limit (— ), it is well-
known that the decay is exponentiB(f) = exp(—Teq 'zd), with
the ratereq * calculated by transition state theoryg * = 72
J dxk(x)p9(x). Herets appears because of the normalization
of t andp®9(x) is the equilibrium distribution. The rate is given
by teq * = 7L exp[~AG*/(ksT)], where the thermal activation
energyAG* is (AG + 1)4(4) (=(ksTAJA)a?).* Using P(t), we
define thenth momentP®™ as

1 o

PO (k) = =l S dtt"P(t) (12)

Using PM, we define thenth mean lifetimer™ (>0) as

(n)]1/n
i) = 14P, 1) = 7 5| fornz1 (13
P
Using 7, we define thenth powera™(x) as
dlogz™ d log 7(zJz

a(n)(K) — gT (K) _ g ( 5/ t) (14)

dlogk dlogr,

Finally, we define the powena(x) for the amplitudePa as

dlogP()  dlogPx(tdz)
dlogk ~  dlogr,

(k) = (15)

Note thatr(® is the mean lifetime, and that a set of all the values

of PM (or zV) is sufficient to reproduce the time evolution of

P(t) for the following reason. Le(s) be the Laplace transfor-

mation of P(t) (P(s) = fodte™sP(t)). Using lim—. P(t) = 0,

we then obtainP(s) = s (—9)"PM. Therefore, using this
n=0

equation, we can calculat(t) from a set of all of the values

Okada

of PM (or 7). The powera®(k) was proved to satisfy two
inequalities’®

(k) < 1 under an arbitrary initial condition ~ (16)

a9(x) = 0 under the equilibrium initial conditiop(x, 0) =
P (17)

Note thata@(k) can be negative for a certain initial condition.

B. Reaction-Dominated Region and Diffusion-Dominated
Region.In this subsection, we divide thecoordinate into the
reaction-dominated and diffusion-dominated regions. Using this
division, we develop an approximation fd®(t), which is
expected to be only qualitatively correct. In the case of the
Gaussian sink (eq 8), the reaction predominates over the
diffusion around the origirx = O for a largex, and the latter
predominates over the former in the region far from the origin.
We assume that if the local reaction rate is larger than the
relaxation rate of the slow nuclear mode, then the reaction
predominates over the diffusion, and if it is not, then the latter
predominates over the former. Accordingly, we divide the
x-coordinate into the reaction-dominated regi@a and the
diffusion-dominated regiof24 as

|

Using this division, we expred¥t) as a sum of the contribution
Pi(t) from Q; and thatPq4(t) from Qg,

Q = {xkx) > 1}

Q, = {xkX) < 1} (18)

P(t) = P()+Py() (19)
Because the reaction is considered to predominate over the
diffusion in Q,, neglecting the effect of the diffusion, we obtain

PO = [ o dxe KtH(x,0) (20)
If the particle representing the ET system is initially@y, it
needs to migrate te, for the reaction to occur. This migration
is considered to be a rate-determining process in this case. It
takes roughly the relaxation time of the slow nuclear mode,
because we are considering the case of a low activation barrier.
Thus, we approximat@q(t) by roughly
Py=¢e" [ 0, I¥0(x,0) (21)
Note eq 21 is not about the population distribution as a function
of x but about the amount of population. That is, we cannot
discuss the time evolution of the population distribution using
eq 21. In the limit of larger, eq 20 leads to the exact result for
P(t) at short times. On the other hand, eq 21 leads to at least
qualitatively correct behavior of the tail &{t) at long times as
follows. As mentioned in Section Il.AP(t) decays exponen-
tially, P(t) O exp(—et), for long times, where is the lowest
eigenvalue of-L. Equations 19-21 also lead to the exponential
tail, but somewhat differentlyR(t) 0 exp(t). However, the
effect of this difference on the values of the powers defined in
Section Il.A. are expected to be small for a largeWe will
describe the reason and discuss this effect in Section V. Let us
now approximateP™ andz in a similar way as foiP(t),

PO = P (k) + Py™(k) (22)

1) = 7,%0) + 7%0) (23)
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where
1 oo
P = 5o AP 24
pd(n)(K) =p d(t =0) (25)
%) =1 P® fori=rord (26)

Using 7i9(k) (i = r or d) that is the contribution fronf; to
7O(k), we define the powew;O(x) as

dlog ;(zJ,)
dlogr,

d log 7, %(x
o) = dgloé; K( ) _ fori=rord (27)
Note that using eqs &1, we obtain
P,=P4t=0) (28)

C. The Relationship between the Kinetics at Short Times

and at Long Times. In this subsection, we derive an equation

describing the relationship betwe®(t) at short times and the

J. Phys. Chem. A, Vol. 104, No. 33, 2000747

The subscript indicates values, variables, functions, or operators
of systemi in this subsection. Statement 2 simply means that
the larger the sink, the smaller the population distribution. Note
that from pa(xt) < p1(x,t) we can immediately obtaiR," <
P1™. Let us prove statement 1 using statement 2. Suppose that
the only difference between system 1 and system 2 is in the
sink operators. Let us assume that< r, and fix these two
values. We varyc; andk, by keeping the ratiay/k; fixed to
(y2ly1)Y2 so thatky(0) = ki(0). We then obtairky(X) > ky( g
Thus, from statement 2 we obta®@(k2) < P1O(k1). If a©
() converges to a finite value(%(c), we obtainP;© /c.) A
k%)=L fori =1 and 2, and so we obtai?yO(k,) & x1%"(*)~1,
Here we have used the relationship betwegandx,. Thus, if
019(0) < 0x(0(e0), then we obtaiP,O(k;) > P1O)(k;) at some
value ofky. This contradicts statement 2. Therefore, we obtain
(xl(o)(oo) > az(o)(oo)_

[ll. Power Laws for Large Viscosity

In this section, we derive expressions for the power$)-
(k), ag@(k), andaa(k) under the initial condition eq 10. We
show that the present results are in reasonable agreement with
those found by the numerical calculations for a lakge

amplitudePa(x) as a function ok. Suppose that there are two Let us first calculaté®(M(«x) andP4"(x) for a largex. Using
systems (system 1 and system 2) and the only differenceeq 18, we obtain the dividing poinis= +x,4 betweenQ, and
between them is in the values ofx < k». Here the subscript Qg4 as

2 indicates values, variables, functions, or operators of system

2. We do not use such subscripts for system 1 in this subsection. _ \/li—l/Z) 32
First, we consider the amplitud®(x) of system 1. Using eqs Xg(ic) = VT log(cy (32)
21 and 28, we obtain
Substituting eq 32 into eqs 20 and 21, we obtain
Pa() = [, dXp(x,0) (29)

” P = [0 ik px0)  (33)
where Qq = {xk(X) = 1}. Next, we consider the survival
probability Py(t) of system 2 at short times. At short times (n)( )= f X’d(K)pr(x 0)+ f pr(x,O) (34)

(before the diffusion starts: < 1), we can approximatBs(t)
asPy(t) = f dx exp[—k(X)t] p(x, 0). To proceed further, we
consider the case where the slop&gk)t is large, that isdks-
(t/dxd> 1. Here[F, (X)0is the average dxFa(X)p2(x.t)/ S
dxpa(x,t). We approximateko(X)t by roughly «st, thus this
inequality is recast ak,"! < 1. Under this condition, we can
approximateP,(t) by roughly

Pt = [ o, X0(x,0)

whereQ; = { xko(X)t <
klko, we obtain

(30)

1}. Finally, becaus& = Qq for t* =

Palk) = P,(t) (31)

under the conditiom; ! < t* < 1. We expect that eq 31 is at

least qualitatively correct for a large

D. The Smaller Powera(®)(e) for the Larger Width r of
the Reaction Window. In this subsection, we prove
Statement 1: Under an arbitrary initial condition, @©(«)
corverges to a finitevalue a©)(e) in the largex limit, o(9(co)
decreases (or does not change) with increasing r.

Statement 1 means that the less strongly the slow nuclear mode

couples to ET, the smaller the powef’)() becomes (or it

does not change). This agrees with the intuitive idea that the
larger value ofo®(e) indicates the greater importance of the
slow nuclear mode in the reaction. To prove Statement 1, we

use

Statement 2: If the only difference between system 1 and system u

2 is in the sink operators andx) = ki(x), then we obtain
p2(X,t) = pa(x,t) fort = 0.

Note thatP¢™ (), andP,"(x) depend on the initial distribution
but not on the potential in the present approximation. That is,
they are functions of the sum afandAa. We can now calculate
the values of the powers using egs 33 and 34. i so large
that we can use the asymptotic fodhsf the error function
and the complex error function appearing in eqs 33 and 34, we
obtain the expressions

Py () ~ ﬁt exp{ —[Xq(k) — [a+ Aal]} f(x) whenx >

u, (35)
Pr(n)(K) ~
L expl [y — la+ Aaj3H, )
o
(ﬂ_) E (n)(lc)
forr<n+1
whenk > u,, (36)
forr>n+1

where we define the parametersand u,, and the auxiliary
functions,fy(x), fM(k), andF"(k) as

=y exp[(1+ |a+ Aa))r]
=y expl[15, 7+ 12, W@+ Aa)]r}

37)
(38)
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W =5 1|a + Aal QXZE,?S' E:aAf lzg(f)] 9
0= s a+ Adl ezp;:fl;j éiﬁzzn'
(40)
p[ W
F ) = 1-

«/ﬂICn

(ﬂ) v explt, Yat Aay]
« 215

expl-2ja+ Aalx4()] = exp[2a+ Aajxx)]
= + = (41)
Xqk) — &, Tlat+ Aal  X4k)+E, lat Aal

with &, = (n + 1)r! — 1. Note that the strongest dependence
of P{"(x) and P («) on « is algebraic, namely exp{X.¢3(«)]

~ k" or k~(™1), The second strongest dependence comes from
the factor exp[fa + Aa|xq(x)]. The auxiliary functionsfy(x)
andf(«) are less dependent @pncompared with these factors.
However, the auxiliary functiof("(x) contains the factor exp-
[2]a + Aalxd(x)], and so its dependence is comparable to the
second strongest one. Equations 35 and 36 showP{t3(x)
andP"W(x) depend o in a similar way forr < n+ 1 and the
large k. Let us now calculate the values of the powers using
egs 35 and 36,

la+ Aa|
X;ql(k)

o, V) = ) =1 - r’l -

o) =1—- r[l - for k> andi > u, (42)

la+ Aaq|
Xa(K)

forr <1,«x>

u, ande > u, (43)

la+ Aa
Xeg(r<)

Here we have neglected the dependenci(ef andfM(k) on

k. The second term in the square bracket of the rhs of egs 42
44 converges very slowly to 0 in the limit of largePhysically,
this slow convergence is attributed to the fact that the reaction-
dominated and diffusion-dominated regions vary only very
slowly with increasing viscosity. This slow convergence explains
the limiting behavior ofa©(«x) observed by the numerical
calculation$ namely thata©(x) varies very slowly with
increasingk. Let us calculate the values of the powers in the
largex limit. Using eqgs 35 and 36 and taking the largBmit,

we obtain

oK) = —r’l fork>u (44)

o)y =1—r (45)
ooy = =[St
1 forr <1
o(e) = ML for1<r<n+1 whemnz1 (47)
0 forn+1=<r
Op(k) = — (48)

The expression fan©)(«) in eq 46 was obtained in the previous
work3¢ Note that this expression for(©)(w) contradict
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a™ (x) x=105, a=0.0, Aa=0.0
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Figure 2. The powersn©(x) and aW(k) as functions of with x =

1%, a = 0, andAa = 0. The definitions of the parameters are given
by egs 4 and 10. (ay©(k) is plotted. Solid line: exact numerical
solution. Dashed line: present approximation, eqs 33 and 34. Dotted
line: the large viscosity limit{ — ) of the present approximation,
eqs 45-48. (b) Same as (a) but farV(x).

neither statement 1 in Section I.D. nor the exact results,
0O (e0) = 1 forr = 0 anda () = 0 for r = 0. Let us compare
the present results to those found by the exact numerical
calculations. We comment on these numerical calculations
briefly. If « is not extremely large, there is no difficulty in these
calculations. However, if it is, a difficulty lies with the previ-
ously used method®.1n the present work, we use time split-
ting®® in order to avoid a very small time step required for a
numerical time integration whenis very large. Computer time
and memory required then increase only very slowly as-
creases. We plai©(x) anda®(x) as functions of with x =

10 under the initial condition that = 0 andAa = 0 in Figure

2, and under the two initial conditions that= —1 andAa =

0 and thatn= 0 andAa = —1 in Figure 3. These figures show
that the present results are in reasonable agreement with those
found by the exact numerical calculations for a lakgelrhe
differences between the cases wkerr —1 andAa = 0 and
whena = 0 andAa = —1 are small for a large. This shows
that the values of the powers are similar for a laeges long as

the initial distributions are the same, even if the potentials are
different. The powersia(x), a;©(x) andog©@(«) were also cal-
culated (not shown), and the results support the same conclu-
sions. Here the powers,©(x) and a4©(x) are calculated as
follows. We obtainPg4(t) and P.(t) from P(t) found by the
numerical calculations aB4(t) = P(1/e) for t < 1/e and Py(t)

= P(t) for t > 1/e, andP(t) = P(t) — P(1/¢) for t < 1/e and
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(a)

(0)
a™ (x) x=10%, a+Aa=-1.0

I i I | I |
0.5 1 1.5 2 2.5 3

Figure 3. Same as Figure 2, but with= —1 andAa = 0, anda =
0 andAa = —1. Solid line: exact numerical solutions far= —1 and
Aa = 0. Dash-dotted line: exact numerical solutionsdor 0 andAa
= —1. The present approximations, eqs 33, 34, and 4L, are the
same for the two cases whar= —1 andAa = 0 and whera = 0 and
Aa = —1. The powers in the large viscosity limik (~ «) do not
depend ora and Aa (eqs 45-48).

P(t) = 0 fort > 1/e. FromPq(t) andPy(t) obtained in this way,
we calculateng®(x) and o, O(x).

IV. The Decay of the Reactant Population at Short
Times.

In this section, we derive an expression Rft) at short times
and find that the time dependence Bft) at short times is

intimately related to the viscosity dependence of the mean

lifetime (k). We confirm this relationship by the exact
numerical calculations. Let us derive the expressiorP{y at
short times. Using eq 30, we obtain

P(t) ~ %exp{ —[Xg(kt) — 2+ AP (k) for x u <

t<1 (49)

Note that we do not use egs 181 when we derive eq 49.
Equation 49 shows that when< « the algebraic decay, exp[
Xd?(kt)] ~ (kt)™", occurs duringelu < t < 1. Note that there

is a weaker, compared with this algebraic dependence, but

nonnegligible time dependence Bft), namely the factor exp-
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(@)
t(o) (K)

log,,

Te a=0.0, Aa=0.0

6

(b)
1 t(o) (K)
Od10

Te a=-1.0, Aa=0.0

1 2 3 4 5 6 7

Figure 4. Functions logy(z@(x)/7y) and logo(kat* Px(t*)) as functions

of logior under the condition that = «/«», with different values of.
Solid line and long dashed line: exact numerical solutions foggtog
(TO(k)/7y) and logo(iat* Po(t*)), respectively. Short dashed line: present
approximation, eq 49 witlig(xt) ~ 1. The values of log(t©(«)/;)
and logo(«at* Po(t*)) depend ork in a similar way, but their absolute
values can be different. Parameters are as follaws:1.0,Aa = 0.0,

k2 = 1CF, and (a)a = 0.0 and (b)a = —1.0.

2 indicates operators, functions, variables, or values for system
2 introduced in Section II.C. We do not use such subscripts for
system 1 in this subsection. Using eqs 35, 36, and 49 and
neglecting the dependence fgf) andf(M(x) on x, we obtain

R 0)

2

A i P,(tY) for 1 < 1andi, *u, k, “py <t <1
(50)

with t* = «/kp. We plot logo (zO(x)/y) and logo[xat* Pa(t*)]

as a function of logx (=logiocot*) in Figure 4. This figure
shows that the leading dependence®{x) on « is similar to

the leading dependence th,(t) ont at short times. Note that
the absolute values of both sides in eq 50 can be different,
although they depend anin a similar way.

V. Discussion and Summary

In the previous sections, we have seen that the values of the
powers calculated from eqs 381 are in reasonable agreement

[2]a + Aaxq4(«t)]. Because this algebraic decay is limited to a with those found by the numerical calculations for a lakge

certain range of time, the momer&) do not diverge.
Let us consider the relationship betwegt(x) of system 1

although eq 21 leads to the tail of the survival probabilRt)
O exp(t), which is slightly different from the exact taiR(t)

andP,(t) of system 2, where the only difference between system O exp(—et). We can reduce this discrepancy by modifying eqs

1 and system 2 is in the valuesgfc < «,. Here the subscript

18 and 21 as
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