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We investigated qualitative features of an electron-transfer reaction in the case where the viscosity of a solvent
is high and the activation barrier for the reaction is low so that decay of the reactant population is
nonexponential. Using the reaction-diffusion equation for the Sumi-Marcus model and dividing a slow nuclear
coordinate into diffusion-dominated and reaction-dominated regions, we derived expressions for the powers
of dependence of the generalized mean lifetimes on the viscosity. We also derived an expression for the
survival probability at short times. These expressions show fractional (not integer) powers and an algebraic
decay at short times under certain conditions, which were found previously by numerical calculations. Moreover,
from these expressions we found that the time dependence of the survival probability at short times is intimately
related to the viscosity dependence of the mean lifetime. The expressions are in reasonable agreement with
exact numerical calculations for large viscosity.

I. Introduction

Recently, extensive studies have been carried out on the
dynamic effects of a solvent (environment) on an electron
transfer (ET) reaction,1 and the fractional (not integer) power
dependence of the mean lifetimeτ(0) on viscosityη of the solvent
was predicted2 and observed experimentally in many ET
systems.3 In the present work, our main interest is in an
analytical expression of this fractional power dependence.

Let us give a brief survey of theoretical and experimental
results on the dynamic effects. After static theories for the ET
rate were developed,4 Zusman calculated the ET rate with the
dynamic effects incorporated using a one-dimensional reaction-
diffusion equation.5 As a result, the ET rate is inversely
proportional to the relaxation time scale of the solvent when
this time scale is large. This work triggered extensive theoretical
activities.2,6-14 Kosower and Huppert found that the ET rate is
inversely proportional to the longitudinal relaxation time of the
solvent in the excited-state intramolecular ET of arylaminon-
aphthalene sulfonates in alcohol solutions.15 The longitudinal
relaxation time is equal to the relaxation time scale of the solvent
for a Debye-type solvent with a single dielectric relaxation
time.16 The correlation between the solvent relaxation times and
the intramolecular ET rates has been investigated experimentally
by various authors.17-22 It has been shown that nuclear dynamics
coupled to ET is characterized by a broad range of time scales.
However, Zusman’s model includes only one time scale of
solvent relaxation. Thus, Sumi and Marcus developed the model
which includes the broad range of time scales.2 They divided
nuclear modes into fast ones (the intramolecular or atomic
vibrations) and slow ones (the conformational fluctuation of
solvent molecules) and eliminated the former. As a result, they
obtained the one-dimensional reaction-diffusion equation in the
slow nuclear coordinate. In the Sumi-Marcus model the slow

nuclear coordinate fluctuates about its equilibrium value and
the ET reaction occurs at a rate depending on its value. The
fractional power dependence ofτ(0) on η was found by solving
numerically the reaction-diffusion for the Sumi-Marcus model
with the assumption thatη is proportional to the relaxation time
scaleτs of the slow nuclear mode.2,6 Moreover, it was found
that the survival probability decays algebraically at short times.6

The Sumi-Marcus model was applied to several ET systems
to explain a nonexponential feature of the dynamics and a
reaction rate faster than solvation,17-19 and the fractional power
dependence was observed in many ET systems.3 Walker et al.
extended this model to include the effect of high-frequency
quantum modes,23 and this extended model was used to analyze
experimental results.19,23,24

Let us now review theories using one-dimensional reaction-
diffusion equations that have been used not only in electron
transfer reactions but also in different areas of chemical physics,
for example, diffusion-controlled bimolecular reactions,25 poly-
mer reactions,26 protein reactions,27-29 and electronic transition
reactions.30 Because exact solutions can be obtained in only a
few cases,5,29,31perturbation theories (or their equivalent) were
developed in the case where the reaction effect is small
compared to the diffusion effect,25-27,31 and in the opposite
case.27,32 Theoretical development beyond perturbation theory
is as follows. Agmon and Rabinovich developed analytic
approximations for the survival probability by assuming a delta-
function or a Gaussian-function form of the population distribu-
tion.28 Basilevsky and Davidovitch obtained a semianalytical
expression for the survival probability for slow diffusion using
quasiclassical theory.33 Pechukas and Ankerhold simplified the
reaction-diffusion equation by applying an asymptotic ap-
proximation analogous to the WKB approximation.34 Berezh-
kovskii and Zitserman calculated the reaction rate by dividing* E-mail: aokada@ims.tsukuba.ac.jp. Fax:81-298-61-4771.
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the space into two domains, separated at the point where the
escape time equals the solvent relaxation time depending on
the environment state, in the case whereτs is not too large so
that the decay kinetics is single-exponential.35 Okada calculated
the power of the dependence ofτ(0) on τs for a largeτs by
dividing space into reaction-dominated and diffusion-dominated
regions.36

In the present work, we consider the case where the viscosity
of the solvent is large and the activation barrier for the reaction
is low. In this case, the time evolution of the reactant survival
probability is nonexponential, and so no single number can
characterize the kinetics completely. Thus, we calculate not
only τ(0) but also the generalized mean lifetimesτ(n) (n )
0,1,2, . . .) and derive expressions for the powers of the
dependence ofτ(n) on τs by extending the theory developed in
ref 36. Here we defineτ(n) (n ) 0,1,2, . . .) so that a set of all
of their values can characterize the time evolution of the reactant
survival probability completely. Moreover, we derive the
expression for the decay of the survival probability at short
times, which shows clearly the algebraic dependence on time.
We find that this algebraic dependence is intimately related to
the fractional power dependence ofτ(0) on τs. We confirm that
for a largeη (or τs) the expressions are in reasonable agreement
with exact numerical calculations under a nonequilibrium initial
condition as well as under an equilibrium initial condition.

This article is organized as follows. In Section II, we review
the reaction-diffusion equation for ET and introduce the division
of the slow nuclear coordinate into the reaction-dominated
region and the diffusion-dominated region. In Section III, we
investigate the powers of the dependence of the generalized
mean lifetimes on the viscosity of the solvent. In Section IV,
we consider the survival probability at short times. Finally, the
discussion and summary appear in Section V.

II. Theory

In this section, we review the reaction-diffusion equation for
ET and define values characterizing the kinetics (Section II.A.).
To calculate these values, we divide the slow nuclear coordinate
into the reaction-dominated and diffusion-dominated regions36

(Section II.B.). Using this division, we show how the kinetics
at short times is related to that at long times (Section II.C.).
Moreover, we prove that the value of the power of the
dependence ofτ(0) on τs decreases (or does not change) with
increasing width of the reaction window.

A. Reaction-Diffusion Equation. Let us now describe the
reaction-diffusion equation for ET. We consider that ET is
affected by nuclear motions of solvents and solutes. For
simplicity, we neglect a backward reaction from a product state
to a reactant state by assuming a highly exothermic reaction.
Eliminating the fast nuclear modes, we obtain the reaction-
diffusion equation in the slow nuclear coordinateq as2

whereF′(q,t′) is the population distribution in the reactant state
at the timet′, normalized as∫ dqF′(q,0) ) 1. The operatorsS′
and k′ represent the diffusion and the local reaction rate,
respectively,

whereτs andτt are the time scale of the relaxation of the slow
nuclear mode and that of the local reaction, respectively,kB, T,
U(q), and∆G are the Boltzmann constant, the temperature, the
free energy as a function ofq, and the free energy of the product
minus that of the reactant, respectively, andλs, λf, andλ are
the reorganization energy of the slow nuclear mode, that of the
fast nuclear modes, and the sum of these two, respectively. Here
we assume thatU(q) ) q2.2 The time scaleτt is given byτt

-1

) (J2/p)xπ/(λkBT) when the local ET reaction is nonadiabatic,
and by τt

-1 ) ν(λf /λ)1/2 when it is adiabatic. HereJ is the
electronic coupling between the reactant and the product states,
p is Plank’s constant, andν is the average frequency of the fast
nuclear modes.2,7 From now on, for convenience, we will use
dimensionless parameters and variables,κ, r, a, γ, t, andx, and
the population distributionF(x,t) normalized as∫dxF(x, 0) ) 1,
where

We refer tor as the width of the reaction window. The wide
reaction window and the narrow reaction window correspond
to r > 1 andr < 1, respectively. Throughout the present work,
we consider the case where a thermal activation process is not
a rate-determining step and assume that|a| < 1 or |a| ≈ 1.
Using the dimensionless variables and parameters, we recast
eq 1 as

whereL denotesS - k, and

with

Note that a largeη corresponds to a largeκ under the assumption
thatη ∝ τs. A schematic representation ofk(x) andu(x) is shown
in Figure 1.

Let us describe the initial condition forF(x,t). For a largeκ,
generally we should not assume that the initial population
distribution is equilibrated. In the present work, we consider
mainly a photoinduced ET and assume that the free energy
curves for the ground and excited states of the reactant are
quadratic inq with the same curvature and different centers.
That is, the former and the latter free energy curves are
expressed asUg(q) ) (q - ∆q)2 + ∆Gg and U(q) ) q2,
respectively, where∆Gg is the free energy of the ground-state
minus that of the excited state. The initial distribution in the
excited states is the same as the equilibrium distribution in the

∂F′(q,t′)
∂t′ ) [S′(q,

∂

∂q) - k′(q)]F′(q,t′) (1)

S′(q,
∂

∂q) ≡ 1
2τs

∂

∂q [kBT
∂

∂q
+

dU(q)
dq ] (2)

k′(q) ≡ τt
-1 (λf

λ)-1/2

exp[-
(-2xλsq + ∆G + λ)2

4λf kBT ] (3)

κ ≡ τs

τt
, r ≡ λf

λs
, a ≡ ∆G + λ

x4λskBT
, γ ≡ λf

λ
, t ≡ t′/τs,

x ≡ q/xkBT - a (4)

∂F(x,t)
∂t

) L(x,
∂

∂x)F(x,t) (5)

S(x,
∂

∂x) ≡ 1
2

∂

∂x [ ∂

∂x
+

du(x)
dx ] (6)

k(x) ≡ κ f(x) (7)

f(x) ≡ γ-1/2e-r-1x2
(8)

u(x) ≡ (x + a)2 (9)
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ground state, therefore we have the initial condition

with ∆a ≡ -∆q/xkBT. We refer to eq 10 with∆a * 0 as the
nonequilibrium initial condition and that with∆a ) 0 as the
equilibrium initial condition. A schematic representation of the
initial condition is shown in Figure 1.

Let us now define the values characterizing the kinetics. Using
F(x,t) governed by eq 5, we define the reactant survival
probability P(t) as

The survival probabilityP(t) decays exponentially at long times,
P(t) ) PA exp(-εt) because the eigenvalues of-L are positive
and discrete, wherePA is the amplitude of the exponential tail,
andε is the lowest eigenvalue of-L. In the smallκ limit (κ f
0) and in the wide reaction window limit (r f ∞), it is well-
known that the decay is exponential,P(t) ) exp(-τeq

-1τst), with
the rateτeq

-1 calculated by transition state theory,τeq
-1 ≡ τt

-1

∫ dxk(x)F(eq)(x). Hereτs appears because of the normalization
of t andF(eq)(x) is the equilibrium distribution. The rate is given
by τeq

-1 ) τt
-1 exp[-∆G*/(kBT)], where the thermal activation

energy∆G* is (∆G + λ)2/(4λ) ()(kBTλs/λ)a2).4 UsingP(t), we
define thenth momentP(n) as

Using P(n), we define thenth mean lifetimeτ(n) (>0) as

Using τ(n), we define thenth powerR(n)(κ) as

Finally, we define the powerRA(κ) for the amplitudePA as

Note thatτ(0) is the mean lifetime, and that a set of all the values
of P(n) (or τ(n)) is sufficient to reproduce the time evolution of
P(t) for the following reason. LetP̃(s) be the Laplace transfor-
mation of P(t) (P̃(s) ≡ ∫o

∞dte-stP(t)). Using limtf∞ P(t) ) 0,

we then obtainP̃(s) ) Σ
∞

n)0
(-s)nP(n). Therefore, using this

equation, we can calculateP(t) from a set of all of the values

of P(n) (or τ(n)). The powerR(0)(κ) was proved to satisfy two
inequalities,36

Note thatR(0)(κ) can be negative for a certain initial condition.
B. Reaction-Dominated Region and Diffusion-Dominated

Region. In this subsection, we divide thex-coordinate into the
reaction-dominated and diffusion-dominated regions. Using this
division, we develop an approximation forP(t), which is
expected to be only qualitatively correct. In the case of the
Gaussian sink (eq 8), the reaction predominates over the
diffusion around the originx ) 0 for a largeκ, and the latter
predominates over the former in the region far from the origin.
We assume that if the local reaction rate is larger than the
relaxation rate of the slow nuclear mode, then the reaction
predominates over the diffusion, and if it is not, then the latter
predominates over the former. Accordingly, we divide the
x-coordinate into the reaction-dominated regionΩr and the
diffusion-dominated regionΩd as

Using this division, we expressP(t) as a sum of the contribution
Pr(t) from Ωr and thatPd(t) from Ωd,

Because the reaction is considered to predominate over the
diffusion inΩr, neglecting the effect of the diffusion, we obtain

If the particle representing the ET system is initially inΩd, it
needs to migrate toΩr for the reaction to occur. This migration
is considered to be a rate-determining process in this case. It
takes roughly the relaxation time of the slow nuclear mode,
because we are considering the case of a low activation barrier.
Thus, we approximatePd(t) by roughly

Note eq 21 is not about the population distribution as a function
of x but about the amount of population. That is, we cannot
discuss the time evolution of the population distribution using
eq 21. In the limit of largeκ, eq 20 leads to the exact result for
P(t) at short times. On the other hand, eq 21 leads to at least
qualitatively correct behavior of the tail ofP(t) at long times as
follows. As mentioned in Section II.A.P(t) decays exponen-
tially, P(t) ∝ exp(-εt), for long times, whereε is the lowest
eigenvalue of-L. Equations 19-21 also lead to the exponential
tail, but somewhat differently,P(t) ∝ exp(-t). However, the
effect of this difference on the values of the powers defined in
Section II.A. are expected to be small for a largeκ. We will
describe the reason and discuss this effect in Section V. Let us
now approximateP(n) andτ in a similar way as forP(t),

Figure 1. Figure 1. A schematic representation of the sinkk(x), the
potentialu(x), and the initial population distributionF(x,0).

F(x,0) ) π-1/2 exp[-(x + a + ∆a)2] (10)

P(t) ≡ ∫-∞

∞
dxF(x,t) (11)

P(n)(κ) ≡ 1
n! ∫0

∞
dttnP(t) (12)

τ(0)(κ) ≡ τtκP(0), τ(n)(κ) ≡ τtκ[P(n)

P(0)]1/n

for n g 1 (13)

R(n)(κ) ≡ d log τ(n)(κ)
d logκ

)
d log τ(n)(τs/τt)

d log τs
(14)

RA(κ) ≡ d logPA(κ)

d logκ
)

d logPA(τs/τt)

d log τs
(15)

R(0)(κ) e 1 under an arbitrary initial condition (16)

R(0)(κ) g 0 under the equilibrium initial conditionF(x, 0) )
F(eq)(x) (17)

{Ωr ≡ {x|k(x) > 1}
Ωd ≡ {x|k(x) e 1} (18)

P(t) ) Pr(t)+Pd(t) (19)

Pr(t) ) ∫xεΩr
dxe-k(x)tF(x,0) (20)

Pd(t) ) e-t ∫xεΩd
dxF(x,0) (21)

P(n)(κ) ) Pr
(n)(κ) + Pd

(n)(κ) (22)

τ(0)(κ) ) τr
(0)(κ) + τd

(0)(κ) (23)
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where

Using τi
(0)(κ) (i ) r or d) that is the contribution fromΩi to

τ(0)(κ), we define the powerRi
(0)(κ) as

Note that using eqs 18-21, we obtain

C. The Relationship between the Kinetics at Short Times
and at Long Times. In this subsection, we derive an equation
describing the relationship betweenP(t) at short times and the
amplitudePA(κ) as a function ofκ. Suppose that there are two
systems (system 1 and system 2) and the only difference
between them is in the values ofκ, κ < κ2. Here the subscript
2 indicates values, variables, functions, or operators of system
2. We do not use such subscripts for system 1 in this subsection.
First, we consider the amplitudePA(κ) of system 1. Using eqs
21 and 28, we obtain

where Ωd ≡ {x|k(x) e 1}. Next, we consider the survival
probability P2(t) of system 2 at short times. At short times
(before the diffusion starts:t , 1), we can approximateP2(t)
as P2(t) ) ∫ dx exp[-k2(x)t] F(x, 0). To proceed further, we
consider the case where the slope ofk2(x)t is large, that is〈dk2-
(x)t/dx〉 . 1. Here 〈F2 (x)〉 is the average∫ dxF2(x)F2(x,t)/∫
dxF2(x,t). We approximatek2(x)t by roughly κ2t, thus this
inequality is recast ask2

-1 , 1. Under this condition, we can
approximateP2(t) by roughly

whereΩt ≡ {x|k2(x)t e 1}. Finally, becauseΩt* ) Ωd for t* )
κ/κ2, we obtain

under the conditionκ2
-1 , t* , 1. We expect that eq 31 is at

least qualitatively correct for a largeκ.
D. The Smaller Powerr(0)(∞) for the Larger Width r of

the Reaction Window. In this subsection, we prove
Statement 1: Under an arbitrary initial condition, ifR(0)(κ)
conVerges to a finiteValue R(0)(∞) in the largeκ limit, R(0)(∞)
decreases (or does not change) with increasing r.
Statement 1 means that the less strongly the slow nuclear mode
couples to ET, the smaller the powerR(0)(∞) becomes (or it
does not change). This agrees with the intuitive idea that the
larger value ofR(0)(∞) indicates the greater importance of the
slow nuclear mode in the reaction. To prove Statement 1, we
use
Statement 2: If the only difference between system 1 and system
2 is in the sink operators and k2(x) g k1(x), then we obtain
F2(x,t) e F1(x,t) for t g 0.

The subscripti indicates values, variables, functions, or operators
of systemi in this subsection. Statement 2 simply means that
the larger the sink, the smaller the population distribution. Note
that fromF2(x,t) e F1(x,t) we can immediately obtainP2

(n) e
P1

(n). Let us prove statement 1 using statement 2. Suppose that
the only difference between system 1 and system 2 is in the
sink operators. Let us assume thatr1 e r2 and fix these two
values. We varyκ1 andκ2 by keeping the ratioκ2/κ1 fixed to
(γ2/γ1)1/2 so thatk2(0) ) k1(0). We then obtaink2(x) g k1(x).
Thus, from statement 2 we obtainP2

(0)(κ2) e P1
(0)(κ1). If R(0)-

(κ) converges to a finite valueR(0)(∞), we obtainPi
(0)(κi) ≈

κi
Ri

(0)(∞)-1 for i ) 1 and 2, and so we obtainP2
(0)(κ2) ≈ κ1

R2
(0)(∞)-1.

Here we have used the relationship betweenκ1 andκ2. Thus, if
R1

(0)(∞) < R2
(0)(∞), then we obtainP2

(0)(κ2) > P1
(0)(κ1) at some

value ofκ1. This contradicts statement 2. Therefore, we obtain
R1

(0)(∞) g R2
(0)(∞).

III. Power Laws for Large Viscosity

In this section, we derive expressions for the powers,Rr
(0)-

(κ), Rd
(0)(κ), andRA(κ) under the initial condition eq 10. We

show that the present results are in reasonable agreement with
those found by the numerical calculations for a largeκ.

Let us first calculatePr
(n)(κ) andPd

(n)(κ) for a largeκ. Using
eq 18, we obtain the dividing pointsx ) (xrd betweenΩr and
Ωd as

Substituting eq 32 into eqs 20 and 21, we obtain

Note thatPd
(n)(κ), andPr

(n)(κ) depend on the initial distribution
but not on the potential in the present approximation. That is,
they are functions of the sum ofa and∆a. We can now calculate
the values of the powers using eqs 33 and 34. Ifκ is so large
that we can use the asymptotic forms37 of the error function
and the complex error function appearing in eqs 33 and 34, we
obtain the expressions

where we define the parameters,µ and µn, and the auxiliary
functions,fd(κ), fr(n)(κ), andFr

(n)(κ) as

xrd(κ) ) xr log(κγ-1/2) (32)

Pd
(n)(κ) ) ∫-xrd(κ)

xrd(κ)
dxk-(n+1)(x)F(x,0) (33)

Pr
(n)(κ) ) ∫-∞

-xrd(κ)
dxF(x,0) +∫xrd(κ)

∞
dxF(x,0) (34)

Pd
(n)(κ) ≈ 1

2xπ
exp{-[xrd(κ) - |a + ∆a|]2} fd(κ) whenκ .

µ, (35)

Pr
(n)(κ) ≈

{ 1

2xπ
exp{-[xrd(κ) - |a + ∆a|]2}fr

(n)(κ)

(xγ
κ )n+1

Fr
(n)(κ)

for r < n + 1
whenκ . µn,

for r > n + 1
(36)

µ ≡ γ1/2 exp[(1+ |a + ∆a|)2/r] (37)

µn ≡ γ1/2 exp{[|ún|-1/2 + |ún
-1(a + ∆a)|]2/r} (38)

Pr
(n)(κ) ) 1

n!∫0

∞
dttnPr(t) (24)

Pd
(n)(κ) ) Pd(t ) 0) (25)

τi
(0)(κ) ≡ τsPi

(0) for i ) r or d (26)

Ri
(0)(κ) ≡ d log τi

(0)(κ)

d logκ
)

d log τi
(0)(τs/τt)

d log τs
for i ) r or d (27)

PA ) Pd(t ) 0) (28)

PA(κ) ) ∫xεΩd
dxF(x,0) (29)

P2(t) ) ∫xεΩt
dxF(x,0) (30)

PA(κ) ) P2(t*) (31)
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with ún ≡ (n + 1)r-1 - 1. Note that the strongest dependence
of Pd

(n)(κ) andPr
(n)(κ) on κ is algebraic, namely exp[-xrd

2(κ)]
≈ κ-r or κ-(n+1). The second strongest dependence comes from
the factor exp[2|a + ∆a|xrd(κ)]. The auxiliary functions,fd(κ)
andfr(n)(κ) are less dependent onκ, compared with these factors.
However, the auxiliary functionFr

(n)(κ) contains the factor exp-
[2|a + ∆a|xrd(κ)], and so its dependence is comparable to the
second strongest one. Equations 35 and 36 show thatPd

(n)(κ)
andPr

(n)(κ) depend onκ in a similar way forr < n + 1 and the
large κ. Let us now calculate the values of the powers using
eqs 35 and 36,

Here we have neglected the dependence offd(κ) andfr(n)(κ) on
κ. The second term in the square bracket of the rhs of eqs 42-
44 converges very slowly to 0 in the limit of largeκ. Physically,
this slow convergence is attributed to the fact that the reaction-
dominated and diffusion-dominated regions vary only very
slowly with increasing viscosity. This slow convergence explains
the limiting behavior ofR(0)(κ) observed by the numerical
calculations,6 namely that R(0)(κ) varies very slowly with
increasingκ. Let us calculate the values of the powers in the
largeκ limit. Using eqs 35 and 36 and taking the largeκ limit,
we obtain

The expression forR(0)(∞) in eq 46 was obtained in the previous
work.36 Note that this expression forR(0)(∞) contradict

neither statement 1 in Section II.D. nor the exact results,
R(0)(∞) ) 1 for r ) 0 andR(0)(∞) ) 0 for r ) ∞. Let us compare
the present results to those found by the exact numerical
calculations. We comment on these numerical calculations
briefly. If κ is not extremely large, there is no difficulty in these
calculations. However, if it is, a difficulty lies with the previ-
ously used methods.38 In the present work, we use time split-
ting39 in order to avoid a very small time step required for a
numerical time integration whenκ is very large. Computer time
and memory required then increase only very slowly asκ in-
creases. We plotR(0)(κ) andR(1)(κ) as functions ofr with κ )
105 under the initial condition thata ) 0 and∆a ) 0 in Figure
2, and under the two initial conditions thata ) -1 and∆a )
0 and thata ) 0 and∆a ) -1 in Figure 3. These figures show
that the present results are in reasonable agreement with those
found by the exact numerical calculations for a largeκ. The
differences between the cases whena ) -1 and∆a ) 0 and
whena ) 0 and∆a ) -1 are small for a largeκ. This shows
that the values of the powers are similar for a largeκ as long as
the initial distributions are the same, even if the potentials are
different. The powersRA(κ), Rr

(0)(κ) andRd
(0)(κ) were also cal-

culated (not shown), and the results support the same conclu-
sions. Here the powersRr

(0)(κ) and Rd
(0)(κ) are calculated as

follows. We obtainPd(t) and Pr(t) from P(t) found by the
numerical calculations asPd(t) ) P(1/ε) for t e 1/ε andPd(t)
) P(t) for t > 1/ε, andPr(t) ) P(t) - P(1/ε) for t e 1/ε and

Figure 2. The powersR(0)(κ) andR(1)(κ) as functions ofr with κ )
105, a ) 0, and∆a ) 0. The definitions of the parameters are given
by eqs 4 and 10. (a)R(0)(κ) is plotted. Solid line: exact numerical
solution. Dashed line: present approximation, eqs 33 and 34. Dotted
line: the large viscosity limit (κ f ∞) of the present approximation,
eqs 45-48. (b) Same as (a) but forR(1)(κ).

fd(κ) ≡ 1
xrd(κ) - |a + ∆a| +

exp[-4|a + ∆a|xrd(κ)]

xrd(κ) + |a + ∆a| (39)

fr
(n)(κ) ≡ 1

únxrd(κ) + |a + ∆a| +
exp[-4|a + ∆a|xrd(κ)]

únxrd(κ) - |a + ∆a| ,

(40)

Fr
(n)(κ) ≡

exp[-
(ún+1)(a+∆a)2

ún
]

xπ|ún| {1 -

(xγ
κ )r-(n + 1) exp[ún

-1(a + ∆a)2]

2x|ún|
×

[exp[-2|a + ∆a|xrd(κ)]

xrd(κ) - ún
-1|a + ∆a|

+
exp[2|a + ∆a|xrd(κ)]

xrd(κ) + ún
-1|a + ∆a|]} (41)

Rd
(0)(κ) ) 1 - r[1 - |a + ∆a|

xrd(κ) ] for κ . µ andκ . µ0 (42)

Rr
(0)(κ) ) R(0)(κ) ) 1 - r[1 - |a + ∆a|

xrd(κ) ] for r < 1, κ .

µ, andκ . µ0 (43)

RA(κ) ) -r[1 - |a + ∆a|
xrd(κ) ] for κ . µ (44)

Rd
(0)(∞) ) 1 - r (45)

Rr
(0)(∞) ) R(0)(∞) ) {1 - r for r < 1

0 for r g 1
(46)

R(n)(∞) ) {1 for r < 1
n+1-r

n
for 1 e r < n + 1 whenn g 1

0 for n + 1 e r

(47)

RA(κ) ) -r (48)

7748 J. Phys. Chem. A, Vol. 104, No. 33, 2000 Okada



Pr(t) ) 0 for t > 1/ε. FromPd(t) andPr(t) obtained in this way,
we calculateRd

(0)(κ) andRr
(0)(κ).

IV. The Decay of the Reactant Population at Short
Times.

In this section, we derive an expression forP(t) at short times
and find that the time dependence ofP(t) at short times is
intimately related to the viscosity dependence of the mean
lifetime τ(0)(κ). We confirm this relationship by the exact
numerical calculations. Let us derive the expression forP(t) at
short times. Using eq 30, we obtain

Note that we do not use eqs 18-21 when we derive eq 49.
Equation 49 shows that whenµ , κ the algebraic decay, exp[-
xrd

2(κt)] ≈ (κt)-r, occurs duringκ-1µ , t , 1. Note that there
is a weaker, compared with this algebraic dependence, but
nonnegligible time dependence ofP(t), namely the factor exp-
[2|a + ∆a|xrd(κt)]. Because this algebraic decay is limited to a
certain range of time, the momentsP(n) do not diverge.

Let us consider the relationship betweenτ(0)(κ) of system 1
andP2(t) of system 2, where the only difference between system
1 and system 2 is in the values ofκ, κ < κ2. Here the subscript

2 indicates operators, functions, variables, or values for system
2 introduced in Section II.C. We do not use such subscripts for
system 1 in this subsection. Using eqs 35, 36, and 49 and
neglecting the dependence offd(κ) and fr(n)(κ) on κ, we obtain

with t* ) κ/κ2. We plot log10 (τ(0)(κ)/τt) and log10[κ2t*P2(t*)]
as a function of log10κ ()log10κ2t*) in Figure 4. This figure
shows that the leading dependence ofτ(0)(κ) on κ is similar to
the leading dependence oftP2(t) on t at short times. Note that
the absolute values of both sides in eq 50 can be different,
although they depend onκ in a similar way.

V. Discussion and Summary

In the previous sections, we have seen that the values of the
powers calculated from eqs 18-21 are in reasonable agreement
with those found by the numerical calculations for a largeκ,
although eq 21 leads to the tail of the survival probability,P(t)
∝ exp(-t), which is slightly different from the exact tail,P(t)
∝ exp(-εt). We can reduce this discrepancy by modifying eqs
18 and 21 as

Figure 3. Same as Figure 2, but witha ) -1 and∆a ) 0, anda )
0 and∆a ) -1. Solid line: exact numerical solutions fora ) -1 and
∆a ) 0. Dash-dotted line: exact numerical solutions fora ) 0 and∆a
) -1. The present approximations, eqs 33, 34, and 42-44, are the
same for the two cases whena ) -1 and∆a ) 0 and whena ) 0 and
∆a ) -1. The powers in the large viscosity limit (κ f ∞) do not
depend ona and∆a (eqs 45-48).

P(t) ≈ 1

2xπ
exp{-[xrd(κt) - |a + ∆a|]2}fd(κt) for κ

-1 µ ,

t , 1 (49)

Figure 4. Functions log10(τ(0)(κ)/τt) and log10(κ2t*P2(t*)) as functions
of log10κ under the condition thatt* ) κ/κ2 with different values ofr.
Solid line and long dashed line: exact numerical solutions for log10-
(τ(0)(κ)/τt) and log10(κ2t*P2(t*)), respectively. Short dashed line: present
approximation, eq 49 withfd(κt) ≈ 1. The values of log10(τ(0)(κ)/τt)
and log10(κ2t*P2(t*)) depend onκ in a similar way, but their absolute
values can be different. Parameters are as follows:τt ) 1.0,∆a ) 0.0,
κ2 ) 106, and (a)a ) 0.0 and (b)a ) -1.0.

τ(0)(κ)
τt

≈ κ2t*P2(t*) for r < 1 andκ2
-1 µ, κ2

-1 µ0 , t* , 1

(50)
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As a result of numerical calculations (not shown), the values
of the powers by eqs 51 and 52 are much closer to the exact
ones compared to those calculated from eqs 18 and 21. Thus,
it is probable that the errors included in the present approxima-
tion are mainly due to this discrepancy. However, the effect of
the tail difference on the values of the powers is small for a
large κ for the following reason. If we use eqs 51 and 52 in
calculating the values of the powers,ε always appears in the
form κcε, wherec is a constant. Becauseε depends onκ very
weakly asε ≈ (r/2) log κ,33 compared with the algebraic factor
κc, we can neglect the dependence ofε on κ for a largeκ.

In summary, we investigate the qualitative features of ET in
the case where the viscosity is large and the activation energy
for the reaction is smaller than or similar to the thermal energy
such that the decay of the reactant population is nonexponential.
We proved that the power of the dependence of the mean
lifetime on the viscosity decreases (or does not change) with
increasing width of the reaction window. We derived the
expressions for the powers of the dependence of the generalized
mean lifetimesτ(n) on the viscosityη by dividing the slow
nuclear coordinate into the diffusion-dominated and reaction-
dominated regions. These expressions show the fractional power
dependenceτ(n) ∝ ηR(n) under the condition on the ratio of the
reorganization energy of the fast nuclear modes to that of the
slow one (See eq 47). When there is a barrier for the reaction,
the convergence of the values of the powers in the large viscosity
limit is very slow. This slow convergence is attributed to the
fact that the reaction-dominated and diffusion-dominated regions
vary only very slowly with increasing viscosity. We also derived
the expression forP(t) at short times. This expression shows
the algebraic decayP(t) ∝ tâ. From these expressions we find
that R(0) ) â + 1 under the condition that the reorganization
energy of the fast nuclear modes is smaller than that of the slow
one. The present results are in reasonable agreement with those
found by the numerical calculations for a largeκ under the
nonequilibrium initial condition as well as under the equilibrium
initial condition.
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{Ωr ≡ {x|k(x) > ε}
Ωd ≡ {x|k(x) e ε} (51)

Pd(t) ) e-εt ∫xεΩd
dxF(x,0) (52)
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