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In a recent paper [Makarov, D. E.; Metiu, H.J. Chem. Phys.1998, 108, 590], we developed a directed
genetic programming approach for finding the best functional form that fits the energies provided by ab
initio calculations. In this paper, we use this approach to find the analytic solutions of the time-independent
Schrödinger equation. This is achieved by inverting the Schro¨dinger equation such that the potential is a
functional depending on the wave function and the energy. A genetic search is then performed for the values
of the energy and the analytic form of the wave function that provide the best fit of the given potential on a
chosen grid. A procedure for finding excited states is discussed. We test our method for a one-dimensional
anharmonic well, a double well, and a two-dimensional anharmonic oscillator.

1. Introduction

The solution of most mathematical problems in physical
chemistry can be obtained by minimizing a certain functional.
This is so even in the absence of a “true” variational principle:
we can always search for a solution that gives the smallest error
when inserted in the equation of interest. Let us say that we
want to solve a problem that can be written as

wherey(x;a) is the function we want to extract from eq 1,x is
a set of variables, anda is a set of numerical parameters. LHS
and RHS can contain derivatives, nonlinear terms iny, or
integrals. The problem is solved if we can find a functionf(x;a)
that minimizes the error

Here, {xi}i)1
n is a set of grid points, andwi is a positive

numerical weight associated with the grid pointxi. The variable
f is a function that approximatesy[x;a]; the better the ap-
proximation, the smallerF[f;a] will be. The values ofwi are
chosen to emphasize the importance of some grid pointsxi (by
takingwi > 1) or to diminish the importance of some pointsxj

(by takingwj < 1).
The traditional use of eq 2 requires the user to guess a

functional formf(x;a), which is supposed to describey[x;a] fairly
well, and to find the values of the parametersa that minimize
F[f;a]. The user can do this without great difficulties for those
problems in which the qualitative properties of the solution are
known. Of course, these are the least interesting problems. Those
cases where little is known about the solution are more
interesting. For these, a good guess is hard to make, and a
lengthy and tedious succession of guesses must be undertaken.

An alternative is provided by genetic programming (GP),1,2

which uses the computer to find not only the values of the
parameters but also the functional form off. In other words, in
minimizing F[f;a], one considers as variables not only the
parametersa but also the functionf.

In this article, we explore the use of a version of genetic
programming3 called directed genetic programming (DGP) to

solve the time-independent Schro¨dinger equation. If successful,
the procedure will provide analytic formulas for the wave
functions of the ground and excited states and numerical values
for the corresponding energies.

In principle, this method can solve any physics problem that
can be written in the form of eq 1. This probably includes every
conceivable problem. The real limitation is practical: the
procedure might not be as efficient as its competitors. At this
time, the method is so new and so little tested that such a
comparison has not been made. In general, it is unfair and
unwise to compare a new method with procedures that have
benefited from decades of development and improvements. We
hope that future work, by many investigators, will find classes
of problems for which this method is useful.

2. Writing the Schro1dinger Equation as a
Minimum-Error Problem

We want to solve the equation

A straightforward application of eq 2 would be to define the
error by

Unfortunately, this definition has two shortcomings: (1) the
smallest error is given byf(x;a) ) 0, which is a solution but
not a useful one; (2) when used in the GP program, this
definition leads to an inefficient search and a solution of low
accuracy.

We found that a better definition of the error (the search ends
faster and the results are more accurate) is

This can be regarded as a fitting problem: we are given the
potential energyV(x), and we want to find a functionf(x;a) and

LHS(y(x;a),x) ) RHS(y(x;a),x) (1)

F[f;a] ) ∑
i

wi{RHS(f(xi;a),xi) - LHS(f(xi;a),xi)}
2 (2)

-1/2(d
2/dx2)ψ(x) + V(x)ψ(x) ) Eψ(x) (3)

F[f;a] ) ∑
i)1

n

wi{-1/2
∂

2f(x;a)

∂x2 |x)xi

+ V(x)f(xi;a) - Ef(xi;a)}2

(4)

F[f;a] ) ∑
i)1

n {V(xi) - [ 1

2f(xi;a)

∂
2f(x;a)

∂x2 |x)xi
] - E}2

(5)
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a numberE such that

fits V(xi). The error ofF[f;a] defined by eq 5 is very small when
the values off(x;a) on the grid points are close to those of an
eigenfunction (ground or excited) of the Hamiltonian defined
by eq 3 and whenE is close to the corresponding eigenvalue.

In calculating the error, we treat the energyE on a different
footing thanf anda. We insertf(x;a) in eq 5 and obtain a second-
order expression inE. Then we minimize this expression with
respect toE and subject it to the constraint thatE is a real
number. When we search for an excited state, we impose the
additional constraint thatE is larger than the energies of all
lower-lying states.

There are other ways to rewrite eq 3 as a minimization
problem. For instance, to find the ground state, we can directly
use the variational principle and minimize〈E〉 ) 〈f|H|f〉/〈f|f〉
with respect tof. Such a procedure, however, involves the
evaluation of integrals for each trial functionf and is orders of
magnitude slower than the previously described method.

We want to minimize the expression (eq 5) with respect to
variations of the functional form off, the numerical values of
the parametersa, and the value ofE. To do that, we use the
genetic programming approach. An excellent review of genetic
programming can be found in Koza’s books.1,2 Our implementa-
tion of GP3 uses the Mathematica programming language and
draws heavily on a paper by Nachbar.4

In GP, each functionf(x,a) is represented as a tree1,2 with
nodes for various functions or operators and “leaves” for
parameters (a) or variables (x). The program generates a random
list, or “population”, of trial functions{fi(x;ai)}i)1

m , each having
different parameters. The population is then allowed to evolve
according to a Monte Carlo procedure, which is designed to
promote and improve the fitter population members (i.e., the
ones having the smaller errorF[fi,ai]) and to eliminate nonper-
formers. In the course of evolution, each population member
can undergo random changes (genetic operations) similar to
Monte Carlo moves in stochastic minimization methods. The
search is continued until a population member is created, for
which the error (eq 5) is smaller than a given value. Details of
our approach are described in ref 3.

3. The Ground State of a One-Dimensional Well

In this section, we use directed genetic programming to find
the ground state of a particle of unit mass in the Eckart well

This potential supports four bound states, as shown in Figure
1. The exact eigenfunctions can be written in terms of
hypergeometric functions.6

We use a uniform grid{xj}, with xj ) xmin + j(xmax - xmin)/
(N - 1) (j ) 0, ..., N - 1), whereN ) 26, xmin ) -3, and
xmax ) 3. A straightforward GP search forf(x,a) that minimizes
the error (eq 5) leads to poor results: it takes a long time, and
its accuracy is not very good. Why does this happen? The
ground-state wave function of a particle confined in a well has
rather unique properties. It has no zeros and decays to zero at
|x| f ∞. The computer does not know about this: it generates
random functionsf(x,a), most of which do not have the required
properties. The search space is too large, while its relevant

domain (containingf(x,a) terms that can be ground-state wave
functions of some potentials) is much smaller.

To circumvent this problem, we use the directed GP (DGP)
approach.3 Instead of directly searching for thef(x) that is an
(approximate) solution of eq 3, we guide the search by seeking
a functionø(x) such that

The use of eq 8 is suggested by the fact thatf(x) ) 1/cosh(x)
has the bell shape expected for the ground-state wave function.
One may therefore hope that replacingx by some simple
functionø(x) will lead to a better approximate solution of eq 3.
And indeed, it does.

The set of elementary functions (nodes)3 from which all the
trial functionsø(x) are built are the four arithmetic operations:
addition, subtraction, multiplication, and division. Typically, we
worked with a population ofM ) 100 trial functions and
terminated the search after a total of 25 000 genetic operations
were performed. We ran many independent searches, and most
produced a wave function whose energy was within 0.5% of
the dissociation energy. It is emphasized that the energyE
corresponding to the wave functionf(x) is calculated by
minimizing F[f] with respect toE. This is not exactly equal to
the expectation value of the energy〈E〉 ) 〈f|H|f〉/〈f|f〉, where
f(x) is the function giving the smallest error in eq 5.

One of the searches produced the following (unnormalized)
wave function:

The energy obtained for this function isE0 ) -1.5576 eV,
which compares well with the exact energy of-1.5586 eV.
The expectation value of energy for this function is〈E〉 )
-1.5577 eV, which is very close to the exact value. Thus, we
have confidence that the wave function can be used for
computing matrix elements.

An important question is whether our success is dependent
on the particular choice of the directing function eq 8. To see
if this is the case, we have carried out a guided search using a
different function

where I0 is the Bessel function of zeroth order. The genetic
algorithm easily finds the ground state

W(xi) ) 1
2f(xi;a)

∂
2f(x;a)

∂x2 |x)xi

+ E (6)

V(x) ) -2/cosh2(x/2) (7)

Figure 1. Potential of eq 7. Dashed lines indicate the energies of the
bound states.

f(x) ) 1/cosh[ø(x)] (8)

f(x) ) 1/cosh[1.086x +
0.023x(-1.78+ 1.086x)(1.658+ 1.086x)] (9)

f(x) ) 1/I0(ø(x)) (10)

f(x) ) 1

I0(1.77(x - 1.93x

7.51+ x2))
(11)
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with E0 ) -1.559 eV and〈E〉 ) -1.5586 eV. In Figure 2a, we
plot this wave function and the exact wave function; within the
resolution of the graph, the two functions are identical. In Figure
2b, we plotV(x) (given by eq 7) as a continuous line andW(x)
(eq 6) as points on the graph. If the fit is good, the points
representing the values of eq 6 at the grid points fall on the
solid line.

The two guiding functions (eqs 8 and 10) have a bell-shaped
curve and the correct asymptotic behavior (exponential) at
|x| f ∞. One might argue that the guiding function contains
too many details which may not be known in more complicated
cases. For this reason, we have performed a search using the
function

This function does not have the proper asymptotic behavior.
Furthermore, since we did not include square root among the
elementary functions, we did not offer the search an easy way
of creating a function with the proper asymptotic behavior.
Nevertheless, our search finds

to have E0 ) -1.556 eV and〈E〉 ) -1.5584 eV. Both are within
0.003 eV of the exact value.

We conclude that our algorithm is relatively insensitive to
the choice of the guiding function as long as the latter has the
“proper ground-state shape”. Note that the proper choice of the
grid is important here. Had we chosen|xmin| and |xmax| to be
too large, we would have included points that were far away
from the origin and would have required an accurate fitting of
the wave function in those regions. However, the wave function
is practically zero there, so its exact value is unimportant as far

as the energy is concerned. That is exactly why the precise
asymptotic form of the guiding function is not important, as
we only need to fit the wave function at points where it is large.
This is true for the ground state, which is well-localized in space.
However for higher-lying states that are more extended in space,
failure to reproduce the tails of the wave function may lead to
quite poor solutions. Moreover, if the wave function were later
used in tunneling calculations, we would have to emphasize
the asymptotic region, since this dominates tunneling.

4. The Excited States of the One-Dimensional Well (eq 7)

The “fitting error” of eq 5 is equal to zero whenf is equal to
any of the eigenfunctionsψn. Therefore, an undirected search
can, in principle, generate higher eigenstates. Without an
additional constraint, we should be unable to control which
eigenstate the computer will find. While this may be a problem
in principle, this is never a problem in practice. In all the
undirected searches we made, the computer found the ground
state. We do not fully understand why this happened, but we
believe that it is reasonable to expect that the computer will
more readily find the solution that has the simplest functional
form. In our case, this is the ground state.

As a consequence, excited states are difficult to find without
designing a proper guiding procedure that excludes the lower-
lying states. One such procedure builds thenth excited state
from the (n - 1)-st state by applying the raising operatora†

Had we known the exacta†, there would have been no need
for a genetic search for the excited states. Since we do not know
it, we use the harmonic oscillator creation operator

The frequencyω is an adjustable parameter which we most often
chose to be equal to the harmonic frequency of the well

xV′′(xeq)/µ; xeq is the equilibrium position of the particle (zero
in our case), andµ is its reduced mass (1 in our case).

The application of the harmonic oscillator creation operator
(eq 15) tofn-1(x) gives a guess forfn(x), which is used as a
guiding function for the genetic search. We have used two
procedures.

Method 1. To search for the first excited-statef1 we use the
guiding function

whereΦ is a bell-shaped function (any one of the functions
defined by eq 7, 9, or 12 will do) andø is the function to be
found by the genetic algorithm. The functionΦ guides the
search to generate the ground state, anda†Φ guides it to generate
the first excited state. To obtain the second excited state, we
use

To start the genetic search, we use a large population of the
form eq 16 (or 17), which corresponds to a large number of
different randomly generated functionsø. Then this population
is altered by the genetic program (which changesø) until a
satisfactory function is found.

Method 2. Another method uses

a

b

Figure 2. (a) Ground-state wave function for the potential of eq 7.
(b) Equation 6 evaluated at grid points (dots) and a plot of eq 7 (solid
line).

f(x) ) exp[-ø(x)2] (12)

f(x) ) exp[-0.236x2(1 + 2/(5.716+ x2))2] (13)

fn(x) ) a†fn-1(x) (14)

a† ) xω/2(x - (1/ω)(d/dx)) (15)

f1(x;a) ) a†Φ(ø(x;a)) (16)

f2(x;a) ) a†a†Φ(ø(x;a)) (17)

f1(x) ) a†f0(x) (18)

8542 J. Phys. Chem. A, Vol. 104, No. 37, 2000 Makarov and Metiu



to find the first excited state. Here,f0(x) is the approximate
ground state found in a preliminary genetic search. To find the
second excited state, we use

In this procedure, we generate a large population in which all
individuals are equal to each other and given by eq 18 (or 19).
Then the genetic program alters these functions and allows the
survival of those that give smaller errors. This method counts
on the fact that some of the alterations do not destroy the desired
nodal structure, and therefore, the program has a chance of
finding the excited state. Another helpful feature is to give a
function a large error if the corresponding energy (obtained by
minimizing eq 5) is less than some lower bound for the excited
state. This feature did not help when used in method 1.

Both methods work. We find that method 2 is in general more
efficient, but it is less accurate.

Using method 1, we obtained in one of the searches

with E1 ) -0.8003 eV and〈E〉 ) 〈f1|H|f1〉/〈f1|f1〉 ) -0.8008
eV. The exact energy is-0.8008 eV. Unfortunately, usinga†a†

sech[ø(x)] as a guiding function for the second excited state
was unsuccessful; we found no acceptable solution in the allotted
time (about a week on a Power Macintosh with a 75 MHz
processor).

Using method 2 and starting from thef0 given by eq 9, we
found the first two excited states of the potential (eq 7). For
n ) 1 one of the searches produced

with E1 ) -0.803 eV and〈E〉 ) 〈f1|H|f1〉/〈f1|f1〉 ) -0.7998
eV. Forn ) 2, we obtained in one of the searches

with E2 ) -0.293 eV and〈E〉 ) 〈f2|H|f2〉/〈f2|f2〉 ) -0.290 eV.
The exact value isE2

ex ) -0.293 eV.
The potential (eq 7) is rather anharmonic. The energies for

the harmonic approximation to eq 9 areE0 ) -1.5 eV,E1 )
-0.5 eV, andE2 ) 0.5 eV. Note that the second excited state
of the harmonic approximation lies in the continuum of the true
potential. Despite this strong anharmonicity, the harmonic
oscillator creation operatora† helps us find the anharmonic wave
functions.

These methods become more and more inefficient as we try
to calculate higher excited states. It is likely that we need new
ideas if we intend to calculate highly excited eigenstates.

5. The Eigenstates of a Symmetric Double Well

In this section, we investigate whether our method is capable
of describing tunneling and consider finding the lowest two
states of the symmetric double-well potential

Obviously, the method used in section 4 for guiding the wave
function for a single well is inadequate for a double-well
problem. To find a guiding function for the double well, we
need to invoke the physics of the problem. If we neglect
tunneling between the wells, the ground state is doubly
degenerate, and we can construct an eigenfunctionψL that is
localized in the left well and an eigenfunctionψR that is
localized in the right well. By symmetry, these wave functions
are related through

Tunneling lifts this degeneracy. From near-degenerate per-
turbation theory, the ground-state and the first excited-state wave
functions are, respectively, the symmetric (ψ+) and antisym-
metric (ψ-) combinations of the localized wave functions

This suggests looking for the solution in the form of symmetric
and antisymmetric combinations of functions localized in the
left and the right wells, i.e., using eq 24 as a template. We further
guide the search forψR(x) by using a bell-shaped template
function such as the one in eq 8

whereø(x) will be determined by the genetic search. Thus, the
function used in the genetic algorithm is

We emphasize that in choosing this functional form, we do
not assume the validity of near-degenerate perturbation theory.
Rather, we use eq 26 as a physically motivated template function
to guide the search.

One of the searches produced the following (unnormalized)
ground-state wave function:

with ø(x) in eq 25 taking the form

The wave functionf+(x) has an energy of 0.570 eV and
〈f+|H|f+〉/〈f+|f+〉 ) 0.573 eV, while the exact energy is 0.572
eV. Figure 3 shows howf ′′+(x)/2f+(x) + E fits the potential (eq
22) at the grid points used in the search.

If the near-degenerate perturbation theory were valid, then
forming an antisymmetric combination

f2(x) ) a†f1(x) (19)

f1(x) ) a† sech(0.855(x +
0.176(0.045+ 3.689x3)

15.411+ x2 ))

f1(x) ) (1.844× 1019 + (2.44(1.80- x) + 1.084x)(1.686+

8.767x + 0.573x5))(x(1.012+ 0.06x2) sech(x +
0.022x(-3.31+x2)) + x sech(x + 0.044x(-0.636+x2)))

(20)

f2(x) )

0.707(-0.729(5.03× 109 - 1.887/x)(70928.4- x) ×
(x - 67207.4)x2((1.012+ 0.053x2) sech(0.965x) +

sech(0.044x(x2 + 22.06)))- 1.115(0.839x(x + x2) +
57189.9(x + 70927.9)(x2 + x + 5.03× 109) ×

(sech(0.027x(x2 + 7.494) tanh(0.039x(x2 + 22.0634)))+
sech(0.022x(x2 + 31.68))(1.012+ 0.179x2 -

0.00396x(13.9865+ x2) ×
(16.94+ x2)tanh(0.021x(x2 + 34.085)))))) (21)

V(x) ) (1 - (x/2)2)2 (22)

ψL(x) ) ψR(-x) (23)

ψ((x) ) {ψR(x) ( ψR(-x)}/x2 (24)

ψR(x) ) 1/cosh(ø(x)) (25)

f((x) ) 1/cosh[ø(x)] ( 1/cosh[ø(-x)] (26)

f+(x) ) (ψR(x) + ψR(-x))/x2 (27)

ø(x) ) 1.63+ 0.85(-4.07+ x) + 0.19x +
0.005(-0.98+ 0.945x)x2(-2.94+ x2) (28)

f-(x) ) (ψR(x) - ψR(-x))/x2 (29)

Genetic Programming To Solve Schro¨dinger Equation J. Phys. Chem. A, Vol. 104, No. 37, 20008543



with ψR determined from eqs 25 and 28 would give the wave
function for the first excited state. It turns out that eq 29 gives
an error of about 20% in the value of the tunneling splitting
between the energies of the two lowest states.

We have performed a new search for the best functionø(x)
in eqs 25 and 29. This search yields the energy (of the first
excited state) of 0.688 eV, which is equal to the exact value.
The excited-state wave function is given in eq 29 with

In Figure 4, we compare the localized wave functionψR (eqs
25 and 28), found by the genetic search for the ground state, to
the functionψR (eq 30), used to construct the first excited state
(eq 29). Note that eq 25 is not normalized while the functions
in Figure 4 are. The two localized wave functions are seen to
have similar shapes except in the barrier region, where they
decay at different rates. This is the region having the most effect
on the magnitude of the tunneling splitting.

6. The Eigenstates of a Two-Dimensional Anharmonic
Oscillator

We now use DGP to find the eigenstates of an anharmonic
oscillator in two dimensions. Our model is a particle of unit
mass described by the Hamiltonian

with

A contour plot ofV(x,y) is shown in Figure 5.
The error for this search is defined by

A brute-force, undirected search did not succeed in yielding
any eigenstates of this potential within the allotted time. In the
same amount of time, a directed search, consisting of the
following three steps, was successful:

Step 1.ExpandV(x,y) to second order inx andy, and find
the normal coordinates,ê andη. For the potential (eq 32), the
normal coordinates are

They are schematically shown in Figure 5.
Step 2.Use the directed genetic program to search for the

best wave function within the Hartree approximation

It is well known that the normal coordinates give a much better
Hartree approximation than the Cartesian coordinates.

As in the one-dimensional case, we further set

whereΦ(x) is a suitable bell-shaped curve andø andλ are the
functions to be optimized by the genetic program. ForΦ, we
use the harmonic oscillator ground state

As we have shown in the case of the one-dimensional well, the
choice of the bell-shaped curve does not seem to affect the
ability of the program to find a good wave function. The search
for the best functionsø(ê) andλ(η) starts with a population of
randomly created functions.

Figure 3. Equation 6 evaluated at grid points (dots) and a plot (solid
line) of the exact potential, eq 22, for the ground-state function (eqs
25, 27, and 28) found in a genetic search.

Figure 4. Localized wave functionψR(x) found in the genetic search
for the ground state (solid line) and the first excited state (dashed line).

ψR(x) ) 1/cosh[3.52- 0.55(-3.20+
1.14(-0.38+ 1.06(x - 1.05)))+

0.13x(x + 0.018)(1.10x - 1.63)- (1.03(3x + 0.024))/
((x + 2.32)(2.20+ x - 0.24(0.023+ x)))] (30)

H ) px
2/2 + py

2/2 + V(x,y) (31)

Figure 5. Contour plot of the potential (eq 32) and its normal
coordinates.

V(x,y) ) 3(1 - e-x)2 + 0.5(1- e-x)y + y2/2 (32)

F[f;a] ) ∑
i

{V(xi,yi) -
1

2f(xi,yi;a)
×

[∂2f(x,y;a)

∂x2
+

∂
2f(x,y;a)

∂y2 ]|x)xi,y)yi
- E}2

(33)

x ) 0.995ê - 0.0985η, y ) 0.0985ê - 0.995η (34)

f(ê,η) ) φ(ê)æ(η) (35)

φ(ê) ) Φ(ø(ê)) and æ(η) ) Φ(λ(η)) (36)

Φ(x) ) (1/π)1/4 exp(-x2/2) (37)
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Step 3.While the Hartree approximation is often rather good,
we were interested in finding a wave function that includes
correlation effects. For this, we relax the constraint imposed
by the Hartree approximation eq 35 and allow the functionsø
andλ in eq 36 to depend on bothê andη. To do so, we initiate
a new search with an initial population in which each individual
is the best Hartree solution, obtained at step 2. However, when
we modify these individuals, we allow the modifications to be
functions of both variablesê andη.

A search in which these three steps have been performed
came up with

Unlike in the other searches, we included the exponential
function among the elementary functions used to construct new
functions. The grid used for the data points was the 10× 10
grid that fills uniformly the frame of Figure 6. The wave function
of eq 38 is characterized byE0 ) 1.544 eV, while the exact
energy is 1.587 eV. We also notice that anharmonic effects are
significant for the ground state of this potential and are properly
accounted for by the wave function (eq 38), as the harmonic
approximation gives for the ground-state energyE0 ) 1.72. This
is also seen from the contour plot of the potential “generated
by eq 38”,W(x,y) ) E + [f ′′xx(x,y) +f ′′yy(x,y)]/[2f(x,y)], shown
in Figure 6a, as compared with the potentialV(x,y) of eq 32,
shown in Figure 6b. Both potentials are plotted in Figure 6 as
functions of the normal coordinatesê andη.

When the potential is not too anharmonic, excited states can
be built from the known lower states using the approach
described in section 4. As functionsf(x,y) become more complex
in two dimensions, the CPU time required to evaluate eq 33
becomes larger, so finding excited states is rather time-
consuming. We have built an approximation to the wave
function of the first excited state by applying the harmonic
creation operator for theη coordinate

to the wave function (eq 38). The adjustable frequencyω was
chosen to be equal to the harmonic frequency in theη direction.
The resulting expression was used as an initial guess in
performing an undirected genetic search.

The wave function

found in this way givesE ) 2.534. The exact value is 2.554.
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(a) the potentialW(x,y) “generated by eq 38” and (b)V(x,y) from eq
32.

f(ê,η) ) exp[-1/2(-0.269+ 0.927(0.074+ 0.936ê))2 ×
(1.67- 0.264ê + 0.07η)2 - 1/2(0.116+ η +

ê/(25 + exp(-0.55+ ê) + exp(ê) + exp(2ê) + exp(η) -
7.056ê + η + exp(-η)η + (0.631+ η)(ê + 3.51η)))2]

(38)

aη
+ ) xω/2 (η - 1

ω
d

dη) (39)

f1(ê,η) ) 0.48 exp(-0.46(0.14- 0.87ê)2 (1.67- 0.24ê +

0.073η)1.64- 0.58η2)η - 0.62 exp(-0.49(0.2- 0.87ê)2 ×
(1.67- 0.26ê + 0.069η)2.242- 0.47(0.14η + ê/(20.61+
exp(2ê) + exp(η) + (x - 6.43)ê + 5.51η + 3.02η2)0.9)2×

(-0.094(0.31+ ê2)2 - 2.15(0.011+ η + ê/(29.4+
exp(2.17ê) + exp(η) + 2.3(η - 6.43)+ η + êη2)1.39)) (40)
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