Reaction Rate Constant Determination of Association Reactions Using Theoretical Calculations: A Case Study of the $HO_2 + NO_2$ Reaction

Simone Aloisio and Joseph S. Francisco*

Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907

Received: February 24, 2000; In Final Form: April 19, 2000

We have calculated the structure of the complex between H_2O and HO_2NO_2 . The species $H_2O-HO_2NO_2$ has a relatively large binding energy of 6.5 kcal mol⁻¹ at the B3LYP/6-311++G(3df,3pd) level of theory. Vibrational frequencies were also calculated. These data were used to calculate the equilibrium constant for the formation of the complex, as well as the rate constant for its dissociation. Using these calculations in conjunction with the Troe method, we computed a reaction rate constant for the HO_2-H_2O complex with NO_2 and compared it to the rate constant for $HO_2 + NO_2$. The $HO_2-HO_2NO_2$ complex is presented for a point of comparison.

I. Introduction

Pernitric acid (PNA) is an important reservoir species that couples both the HO_x and the NO_x chemical families. This type of coupling is critical to many atmospheric processes, including stratospheric ozone removal.¹ The major production route for pernitric acid is from the radical–radical reaction of the hydroperoxyl radical (HO₂) and nitrogen dioxide (NO₂) via the reaction^{2–12}

$$HO_2 + NO_2 + M \rightleftharpoons HO_2NO_2 + M$$
 (1)

This reaction has also been suggested $^{13-16}$ to play an important role in the destruction of HO_x species through the following mechanism.

$$HO_2 + NO_2 + M \rightleftharpoons HO_2NO_2 + M$$
(1)

$$HO_2NO_2 + OH \rightarrow H_2O + O_2 + NO_2$$
(2)

net: $OH + HO_2 \rightarrow H_2O + O_2$

The enhancement of the rate of reaction 1 by the presence of water can influence the importance of this reaction. Sander and Peterson¹⁷ studied the reaction of HO₂ and NO₂ in the presence of water vapor and found that the reaction rate is significantly enhanced. It was suggested that the enhancement involves an intermediate formed by the reaction of the hydroperoxyl radical-water complex (HO₂-H₂O) with NO₂. This intermediate formed by the reaction has been suggested to be more stable with respect to dissociation than the noncomplexed intermediate because of the larger number of vibrational modes available for energy dispersal. In this study, we present the results of our calculations of the probable intermediate formed, the H₂O-HO₂NO₂ complex. We calculate the structure, rotational constants, vibrational frequencies, and energetics of this complex. Based on the observed enhancement of the $HO_2 + NO_2$ reaction in the presence of water and the proposed mechanism for the enhancement given by Sander and Peterson,¹⁷ the reaction rate constant for the reaction involving the water-complexed hydroperoxyl radical with nitrogen dioxide should be faster than

that for isolated HO_2 and NO_2 . That is, reaction 3 should be faster than reaction 1.

$$HO_2 - H_2O + NO_2 + M \rightleftharpoons H_2O - HO_2NO_2 + M \quad (3)$$

Because the HO_2-H_2O complex has not been observed in the gas phase, the rate constant for reaction 3 cannot be directly measured experimentally. In the present work, we use density functional theory to estimate salient features of the potential energy surface, using this information to estimate the reaction rate constants for both of these reactions.

II. Computational Methods

All calculations were performed using the Gaussian 94 suite of programs.¹⁸ Geometries were optimized using the Becke three-parameter hybrid functional combined with the Lee, Yang, and Parr correlation [B3LYP] density functional theory method.¹⁹ This method has been shown to produce reliable results for hydrogen-bonded complexes when compared with other methods.^{20,21} Basis sets employed were the 6-31G(d), 6-311++G (d,p), 6-311++G (2d,2p), 6-311++G(2df,2p), and 6-311++G (3df,3pd). Frequency calculations were also performed at the B3LYP/6-311++G(3df,3pd) level of theory. Zero-point energies taken from these frequency calculations can be assumed to be an upper limit because of the anharmonic nature of the potential energy surface. We use the data provided by these calculations to determine the reaction rate constants for reactions 1 and 3. The methods used will be discussed in the following section.

III. Results and Discussion

A. Structure and Energy of the Species Studied. Saxon and Liu²² and, more recently, Chen and Hamilton²³ have performed theoretical studies of pernitric acid. Chen and Hamilton showed that the B3LYP method calculated a minimum structure similar to that of both Møller–Plessett perturbation theory (MP2) and quadratic configuration interaction theory with single and double substitution (QCISD) using similar size basis sets. Our calculated geometry for PNA is given in Table 1. It is in good agreement with the structure calculated by Chen and Hamilton, as well as with the experimentally derived results of

TABLE 1: Geometry of Pernitric Acid

		B3LYP			
6-31G(d)	6-311++G(d,p)	6-311++G(2d,2p)	6-311++G(2df,2p)	6-311++G(3df,3pd)	$expt^b$
0.978	0.972	0.970	0.970	0.970	0.965
1.404	1.399	1.401	1.397	1.396	
1.511	1.531	1.516	1.516	1.515	1.511
1.198	1.189	1.190	1.187	1.186	
1.199	1.190	1.192	1.189	1.188	
102.7	103.4	103.2	103.4	103.4	
109.1	109.6	109.6	109.7	109.6	102.9
116.5	116.4	116.6	116.5	116.5	
110.1	109.9	109.9	109.9	109.9	
85.4	90.3	88.1	88.1	87.5	72.8
-10.5	-9.8	-9.3	-9.4	-9.2	0.0
171.0	171.1	171.8	171.7	171.9	
	6-31G(d) 0.978 1.404 1.511 1.198 1.199 102.7 109.1 116.5 110.1 85.4 -10.5 171.0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c } \hline B3LYP \\ \hline \hline $B3LYP$ \\ \hline \hline $B3LYP$ \\ \hline $B3$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

^a Bond distances are reported in angstroms, bond angles and dihedrals in degrees. ^b Taken from ref 24.

TABLE 2: Geometry of the Water-Pernitric Acid Complex

	B3LYP						
coordinate ^a	6-31G(d)	6-311++G(d,p)	6-311++G(2d,2p)	6-311++G(2df,2p)	6-311++G(3df,3pd)		
R	1.732	1.768	1.776	1.777	1.767		
H_1O_1	0.998	0.986	0.985	0.985	0.985		
O_1O_2	1.405	1.397	1.399	1.396	1.395		
NO_2	1.482	1.509	1.495	1.494	1.493		
NO_3	1.208	1.192	1.194	1.191	1.190		
NO_4	1.202	1.194	1.196	1.193	1.192		
H_2O_5	0.972	0.963	0.962	0.962	0.962		
H_3O_5	0.970	0.963	0.962	0.962	0.962		
$H_1O_1O_2$	102.2	102.8	102.8	103.0	103.0		
O_1O_2N	10.1	110.1	110.1	110.2	110.2		
O_2NO_3	117.4	117.0	117.2	117.1	117.0		
O_2NO_4	111.1	110.4	110.5	110.5	110.5		
$H_2O_5H_3$	105.3	106.7	106.3	106.4	106.2		
$H_2O_5H_1$	96.5	119.4	111.7	112.8	112.4		
$O_5H_1O_1$	161.5	173.9	173.7	173.7	174.3		
$H_1O_1O_2N$	80.1	87.3	84.6	84.5	84.0		
$O_1O_2NO_3$	-13.0	-8.7	-9.2	-9.2	-9.2		
$O_1O_2NO_3$	169.0	172.4	172.1	172.1	172.1		
$H_2O_5H_1O_1$	-1.4	-41.0	-9.6	-10.6	-7.1		
$H_3O_5H_1O_1$	109.4	100.9	116.0	117.8	120.2		
$O_5H_1O_1O_2$	-74.0	-48.1	-71.2	-70.7	-72.8		

^a Bond distances are reported in Ångstroms, bond angles and dihedrals in degrees.

Figure 1. Structure of Pernitric Acid.

Suenram et al.²⁴ This gives us confidence in the methodology used in this work. The structure of HO_2NO_2 is shown in Figure 1.

In this work, we have calculated the structure of the complex between water and pernitric acid, $H_2O-HO_2NO_2$. In this complex, the PNA is a hydrogen donor to the oxygen atom on the water. The structure is shown in Figure 2. The intermolecular bond (*R*) has a calculated distance of 1.767 Å at the B3LYP/ 6-311++G(3df,3pd) level of theory. This is 0.016 Å shorter than the calculated intermolecular bond in HO_2-H_2O ,²⁵ which has similar connectivity, at the same level of theory. The full optimized geometry for this complex is given in Table 2. The oxygen–hydrogen bond in HO_2NO_2 is elongated in the water– PNA complex by 0.015 Å, or 1.5%. Whereas the O_1-O_2 bond distance is relatively unchanged in PNA, the N–O₂ bond

Figure 2. Structure of the Water-Pernitric Acid Complex.

distance is decreased by 0.022 Å, about 1.5%. The other coordinates of HO_2NO_2 are relatively unchanged.

We have also calculated the structure for the complex between the hydroperoxyl radical and pernitric acid, HO₂-HO₂NO₂, shown in Figure 3. In that species, PNA is the hydrogen donor to the terminal oxygen atom of HO₂, and the hydroperoxyl radical is a hydrogen donor to one of the oxygen atoms of pernitric acid. These intermolecular bonds, along the R₁ and R₂ coordinates, have distances of 1.792 and 1.882 Å, respectively. The geometry of the HO₂-HO₂NO₂ complex is shown in Table 3. As for the H₂O-PNA complex, the H₁-O₁ bond is elongated by 1.9%, which is more than in the water-pernitric acid complex. The N-O₂ bond is shortened relative to that in isolated PNA by 2.5%, which is more than was the case for H₂O-HO₂NO₂. The hydrogen-oxygen bond on the hydroper-

	TABLE 3:	Hydroperoxy	1 Radical–Pernitric	Acid Comple
--	----------	-------------	---------------------	-------------

	B3LYP					
coordinate ^a	6-31G(d)	6-311++G(d,p)	6-311++G(2d,2p)	6-311++G(2df,2p)	6-311++G(3df,3pd)	
R_1	1.798	1.843	1.811	1.817	1.792	
R_2	1.901	1.926	1.909	1.913	1.882	
H_1O_1	0.996	0.987	0.987	0.987	0.988	
O_1O_2	1.405	1.398	1.399	1.396	1.394	
NO_2	1.480	1.496	1.481	1.480	1.477	
NO ₃	1.212	1.204	1.206	1.203	1.202	
NO_4	1.197	1.187	1.189	1.186	1.186	
H_2O_5	0.994	0.986	0.986	0.986	0.986	
O_5O_6	1.326	1.322	1.323	1.320	1.318	
$H_1O_1O_2$	103.0	103.7	103.6	103.8	103.8	
O_1O_2N	110.0	110.4	110.5	110.6	110.6	
O_2NO_3	117.8	117.1	117.5	117.3	117.3	
O_2NO_4	111.1	111.2	111.2	111.2	111.3	
$H_2O_5O_6$	105.5	106.1	105.8	106.0	105.9	
$O_5O_6H_1$	103.2	109.4	107.0	107.5	107.2	
$O_6H_1O_1$	150.9	155.3	158.1	158.0	160.1	
$H_1O_1O_2N$	91.8	87.7	86.8	86.3	85.5	
$O_1O_2NO_3$	-9.8	-11.9	-11.1	-11.3	-11.3	
$O_1O_2NO_3$	170.6	168.9	169.7	169.5	169.5	
$H_2O_5O_6H_1$	11.3	12.5	11.8	12.0	11.6	
$O_5O_6H_1O_1$	16.0	13.2	17.2	16.9	17.9	
$O_6H_1O_1O_2$	-111.9	-103.3	-105.7	-105.5	-104.0	

^a Bond distances are reported in angstroms, bond angles and dihedrals in degrees.

TABLE 4: Rotational Constants for H₂O-PNA and HO₂-PNA Complexes

	rotational			B3LYP		
species	constant ^a	6-31G(d)	6-311++G(d,p)	6-311++G(2d,2p)	6-311++G(2df,2p)	6-311++G(3df,3pd)
H ₂ O-HO ₂ NO ₂	А	5253	5439	5430	5448	5474
	В	2296	1902	1953	1952	1959
	С	1880	1725	1737	1734	1740
HO ₂ -HO ₂ NO ₂	А	4580	4370	4405	4418	4400
	В	1530	1535	1545	1543	1566
	С	1269	1250	1264	1261	1277

^a Rotational constants are reported in MHz.

Figure 3. Structure of the Hydroperoxyl Radical-Pernitric Acid Complex.

oxyl radical, H_2-O_5 , is elongated by 1.1% relative to those in isolated HO₂. Also, the nitrogen-oxygen bond nearest to the R_2 bond on the PNA, N-O₃, is elongated by 1.3%. These latter two bonds are indicative of the interaction along R_2 . The analogous coordinates in $H_2O-HO_2NO_2$ are not significantly different from those in isolated PNA. The rotational constants for both complexes are presented in Table 4.

Pernitric acid has twelve fundamental vibrational modes, and water has three. The water-pernitric acid complex has modes that are similar to these, as well as an additional six new modes that are unique to it. All of these modes are listed in Table 5. The modes that are similar to those of the parent molecules may be shifted with respect to the isolated monomers. The PNA oxygen-hydrogen stretch (mode number 3) is red-shifted by 290 cm⁻¹ with respect to that in isolated HO₂NO₂. This is consistent with the lengthening of the H₁-O₁ bond along that coordinate. This mode also has the largest band intensity, making it a good candidate for experimental detection of this species.

The hydroperoxyl radical-pernitric acid complex also has twenty-one fundamental vibrational modes, listed in Table 6. Many of these modes show shifts similar to those of the H₂O- HO_2NO_2 complex. The PNA H_1-O_1 stretch (mode number 2) has a larger red shift, 358 cm⁻¹, than that in the water-pernitric acid complex. It has weaker intensity, $255.3 \text{ km mol}^{-1}$, however. The H₁ out-of-plane torsion of PNA (mode number 10) has the same size blue shift, 440 cm⁻¹, as that in $H_2O-HO_2NO_2$. Unlike in the water-pernitric acid complex, where modes in common with the water molecule modes are relatively unaffected by complexation, in the HO₂-HO₂NO₂ complex, the hydroperoxyl H_2-O_5 stretch (mode number 1) is red-shifted by 155 cm⁻¹ with respect to the same stretch in isolated HO₂. It is also the mode with the largest calculated intensity in HO₂-HO₂NO₂, 714.1 km mol⁻¹. The hydroperoxyl $H_2-O_5-O_6$ bend is blueshifted by 87 cm⁻¹. Of the intermolecular modes in HO₂-HO₂-NO₂, the H₂ out-of-plane torsion at 523 cm^{-1} is the most strongly absorbing band, with an intensity of 125.2 km mol⁻¹.

The binding energies for the $H_2O-HO_2NO_2$ and $HO_2-HO_2-NO_2$ complexes are listed in Table 7. At the highest level of theory used, B3LYP/6-311++G(3df,3pd), the binding energies (D_o) are calculated to be 6.5 and 6.9 kcal mol⁻¹, respectively. There was relatively good convergence as the size of basis set was increased in these calculations. It is clear that the 6-31G-(d) basis set is too small to accurately predict energies for these types of molecules, overestimating the binding energies by about 50% for each complex. The complexes have similar binding energies, but for different reasons. In the case of H_2O-HO_2 -NO₂, water is a good hydrogen acceptor, and pernitric acid is

1

 TABLE 5: Vibrational Frequencies^a of the Water-Pernitric

 Acid Complex

mode		B3LYP/6-311++G(3df,3pd			
number	mode description	frequency	shift	intensity	
1	water H ₂ -O ₅ -H ₃	3902	-11	95.0	
	asymmetric stretch				
2	water H ₂ -O ₅ -H ₃	3805	-9	16.2	
	symmetric stretch				
3	PNA $H_1 - O_1$ stretch	3425	-290	766.4	
4	PNA O ₃ -N-O ₄	1769	-28	424.1	
	asymmetric stretch				
5	water H ₂ -O ₅ -H ₃ bend	1627	0	66.9	
6	$PNA H_1 - O_1 - O_2 bend$	1549	+114	51.3	
7	PNA O ₃ -N-O ₄	1348	-5	231.0	
	symmetric stretch				
8	PNA $O_1 - O_2$ stretch	1008	+7	36.6	
9	PNA N-O ₂ stretch	846	+30	116.8	
10	PNA H ₁ out-of-plane	814	+440	51.0	
	torsion				
11	PNA NO ₃ umbrella	729	-21	26.1	
12	$PNA O_3 - N - O_4 bend$	662	0	3.9	
13	PNA O ₃ -N-O ₄ rock	474	+13	14.0	
14	PNA $N-O_2-O_1$ bend	337	+29	1.3	
15	intermolecular H ₁ -O ₅	297		9.5	
	stretch				
16	intermolecular H2 wag	274		217.6	
17	intermolecular H2O twist	240		40.8	
18	PNA O ₂ -NO ₂ torsion	161	+11	5.2	
19	intermolecular H ₂ -O ₅ -H ₁	133		46.5	
	bend				
20	intermolecular	56		3.0	
	$H_2 = O_5 = H_1 = O_1$ torsion				
21	intermolecular	37		3.4	
	O ₅ -H ₁ -O ₁ -O ₂ torsion				

 a Vibrational frequencies are reported in cm $^{-1}$, intensities in km mol $^{-1}$.

a good hydrogen donor. The intermolecular bond distance, R, is 1.767 Å. In the case of HO₂-HO₂NO₂, there are two interactions along the R_1 and R_2 coordinates. The hydroperoxyl radical is not as good of a hydrogen acceptor as water, as is evident by the longer bond along the R_1 coordinate, 1.792 Å. In that case, there is a second interaction in which HO₂ is a hydrogen donor to PNA along the R_2 coordinate, which has a distance of 1.882 Å. The combination of these two interactions makes the binding energy of the hydroperoxyl radical-pernitric acid complex about 0.4 kcal mol⁻¹ larger than that of the water-pernitric acid complex.

Thermodynamic data are listed in Table 8. The data for HO₂, NO₂, H₂O, and PNA were taken from NASA's JPL Publication 97-4.²⁶ Enthalpy data were extrapolated to other temperatures using Kirchhoff's Law.

$$\Delta H(T_2) - \Delta H(T_1) = \Delta C_p \,\Delta T \tag{4}$$

where *T* is the temperature and ΔC_p is the difference in heat capacity at constant pressure of the substances whose enthalpy is being calculated compared to those of the elements in their natural state. The heat capacities for all of the species at 298 K were taken from the output of the ab initio calculations. Differences in heat capacities were assumed to be independent of temperature. Entropies were extrapolated to different temperatures using the following equation

$$S(T_2) - S(T_1) = C_v \ln(T_2/T_1)$$
(5)

where C_v is the heat capacity at constant volume. The enthalpies of the complexes at zero Kelvin (ΔH_f^0) were calculated from the difference in their internal energies and extrapolated to

 TABLE 6: Vibrational Frequencies^a of the Hydroperoxyl Radical–Pernitric Acid Complex

mode		B3LYP/6-3	311++G	(3df,3pd)
number	mode description	frequency	shift	intensity
1	HO ₂ H ₂ -O ₅ stretch	3447	-155	714.1
2	PNA $H_1 - O_1$ stretch	3357	-358	255.3
3	PNA O ₃ -N-O ₄	1756	-41	470.2
	asymmetric stretch			
4	$PNAH_1 - O_1 - O_2$ bend	1541	+106	66.1
5	$HO_2H_2-O_5-O_6$ bend	1523	+87	41.1
6	PNA O ₃ -N-O ₄	1336	-17	204.1
	symmetric stretch			
7	$HO_2 O_5 - O_6$ stretch	1214	+35	12.5
8	PNA $O_1 - O_2$ stretch	1009	+8	33.8
9	PNA N-O ₂ stretch	830	+14	142.4
10	PNA H ₁ out-of-plane	814	+440	22.4
	torsion			
11	PNA NO ₃ umbrella	726	-24	19.6
12	PNA O ₃ -N-O ₄ bend	657	-5	7.7
13	intermolecular H ₂	523		125.2
	out-of-plane torsion			
14	PNA O ₃ -N-O ₄ rock	487	+26	12.8
15	PNA N-O ₂ -O ₁ bend	341	+33	1.1
16	PNA $O_2 - O_2$ torsion	273	+123	37.7
17	intermolecular O ₁ -H ₁ -O ₆	189		25.0
	bend			
18	intermolecular H ₂ -O ₃	158		4.2
	stretch			
19	intermolecular	119		1.4
	$O_1 - H_1 - O_6 - O_5$ torsion			
20	intermolecular	81		3.1
	N-O ₃ -H ₂ -O ₅ torsion			
21	intermolecular	55		0.6
	O ₂ -N-O ₃ -H ₂ torsion			

 a Vibrational frequencies are reported in $\rm cm^{-1},$ intensities in $\rm km\ mol^{-1}.$

TABLE 7: Binding Energies^{*a*} of $H_2O-HO_2NO_2$ and $HO_2-HO_2NO_2$

	$H_2O-HO_2NO_2$		HO ₂ -H	IO ₂ NO ₂
B3LYP basis set	$D_{\rm e}$	$D_{ m o}$	$D_{ m e}$	$D_{ m o}$
6-31G(d)	12.8	10.9	12.3	10.3
6-311++G(d,p)	9.6	7.7	8.7	6.7
6-311++G(2d,2p)	8.4	6.6	8.6	6.6
6-311++G(2df,2p)	8.4	6.5	8.5	6.5
6-311++G(3df,3pd)	8.3	6.5	8.9	6.9

^{*a*} Binding energies are reported in kcal mol⁻¹.

different temperatures using eq 4. Entropies at 300 K were calculated using the ab initio calculations and extrapolated using eq 5.

Using the data in Table 8, we calculated the equilibrium constants for the formation of the complexes (K_f) via the following reactions

$$H_2O + HO_2NO_2 \rightleftharpoons H_2O - HO_2NO_2 \tag{6}$$

$$HO_2 + HO_2NO_2 \rightleftharpoons HO_2 - HO_2NO_2$$
(7)

At 300 K, $K_{\rm f}$ is 1.9×10^{-21} cm³ molecule⁻¹ for H₂O–HO₂-NO₂ and 6.9×10^{-23} cm³ molecule⁻¹ for HO₂–HO₂NO₂. The difference in $K_{\rm f}$ between the complexes arises from the change in entropy being much more favorable in the case of the water complex. At 200 K, the formation of the complexes is more favored, with $K_{\rm f}$ values of 1.3×10^{-19} for H₂O–HO₂NO₂ and 7.2×10^{-21} for HO₂–HO₂NO₂.

B. Determination of Reaction Rate Constants. As mentioned earlier, Sander and Peterson¹⁷ observed a significant enhancement in the rate constant of reaction 1 in the presence

TABLE 8:	Thermodynamic	Data ^a
----------	---------------	-------------------

	HO_2	NO ₂	H_2O	HO_2NO_2	$HO_2 - H_2O$	$H_2O-HO_2NO_2$	HO ₂ -HO ₂ NO ₂
$\Delta H_{ m f}{}^0$	3.5	8.4	-57.1	-11.4	-59.8	-75.0	-14.8
$\Delta H_{ m f}^{200}$	3.0	8.1	-57.7	-11.8	-60.4	-75.8	-15.7
$\Delta H_{ m f}^{300}$	2.8	7.9	-57.8	-12.5	-60.8	-76.2	-16.1
ΔS^{200}	51.9	54.5	42.7	64.6	65.9	79.9	80.9
ΔS^{300}	54.4	57.3	45.1	70.8	72.3	90.2	91.1
$K_{\rm f}^{200}$						1.3×10^{-19}	7.2×10^{-21}
$K_{\rm f}{}^{300}$						1.9×10^{-21}	6.9×10^{-23}

^{*a*} Enthalpies are reported in kcal mol⁻¹, entropies in cal mol⁻¹ K⁻¹, and equilibrium constants in cm³ molecule⁻¹.

of water. This is thought to occur because a complex between water and the hydroperoxyl radical has a faster rate constant in reaction with NO_2 than does isolated HO_2 . It has been proposed that the enhanced rate constant involves the following reaction

$$HO_2 - H_2O + NO_2 + M \rightleftharpoons H_2O - HO_2NO_2 + M \quad (3)$$

We can use the data in Table 8, in combination with a method first developed by Troe^{27,28} and further shown to be effective by Patrick and Golden²⁹ for reactions of atmospheric importance, to estimate the rate constant for the reverse of reaction 3. We compare this to the reaction rate constant calculated for the formation of pernitric acid not involving complex formation.

$$HO_2 + NO_2 + M \rightleftharpoons HO_2NO_2 + M \tag{1}$$

In the method we use, the dissociation rate constant for the complex is calculated using the following equation

$$k_{\rm dissoc} = Z_{\rm LJ} \, \rho(E_0) \, RT(Q_{\rm vib})^{-1} \exp(-E_0 R^{-1} T^{-1}) \, F_{\rm E} F_{\rm anh} F_{\rm rot}$$
(8)

where Z_{LJ} is the Lennard-Jones collision frequency; $\rho(E_0)$ is the density of states; *R* is the gas constant; *T* is the temperature; Q_{vib} is the vibrational partition function for the associated species; E_0 is the critical energy; and F_{E} , F_{anh} , and F_{rot} are correction terms for the energy dependence of the density of states, for anharmonicity, and for rotation, respectively. The critical energy represents the energy needed for this reaction to take place, in this case the difference in energies between the products and reactants.

To compare our calculated value with a rate that has been measured, we first used this method to calculate the rate constant for reaction 1. The experimentally determined rate constant at 300 K reported in ref 26 is 1.8×10^{-31} cm⁶ molecule⁻² s⁻¹. Our calculated value at the same temperature is 2.2×10^{-32} cm⁶ molecule⁻² s⁻¹. This is the rate constant for the association of HO₂ and NO₂ in reaction 1 (k_{assoc}). Under equilibrium conditions, this is

$$k_{\rm assoc} = K_{\rm f} k_{\rm dissoc} \tag{9}$$

The calculated value is within an order of magnitude of what is determined experimentally. Differences in experimental and calculated values arise from the fact that we use our calculated energies, which are slightly different from the measured values, to determine the rate constants. We use the calculated numbers to be consistent with the comparison of reactions 1 and 3. For reaction 3, we determine the rate constant to be 4.7×10^{-30} cm⁶ molecule⁻² s⁻¹. This is about 200 times faster than the rate constant we calculated for reaction 1 and about 25 times faster than the experimentally determined rate constant for that reaction. We can appraise these results as the upper and lower limits on the relative rates of reaction 3 and reaction 1. Hence, we estimate the rate constant for reaction 3 to be between 4.7 $\times 10^{-30}$ cm⁶ molecule⁻² s⁻¹ and 3.6 $\times 10^{-29}$ cm⁶ molecule⁻² s⁻¹. The increase in k_{assoc} for reaction 3 compared to that for reaction 1 arises from two contributions: (1) the presence of lower-energy intermolecular vibrational modes in the H₂O–HO₂NO₂ complex that contribute to the vibrational partition function (Q_{vib}) term in eq 8 and (2) the binding energy of the H₂O–HO₂NO₂ complex. For reaction 3, k_{assoc} is about 2 orders of magnitude greater than that for reaction 1.

IV. Conclusions

We have calculated the structures, energies, and vibrational frequencies for the complexes between water and the hydroperoxyl radical with pernitric acid. The vibrational frequencies reported provide a guide to the experimental detection of these complexes. We use the calculated data to estimate the equilibrium constants for the formation of these complexes. In turn, we use the Troe method to compute the reaction rate constant for the reaction of HO₂-H₂O with NO₂. These data support the already-proposed explanation for the enhancement in the rate constant observed in the reaction between HO₂ and NO₂ in the presence of H₂O. These results suggest that the additional stabilization of HO₂NO₂ by water may be a driving force for the rate enhancement of the HO₂ + NO₂ reaction in the presence of water vapor. The present results are consistent with the results of Sander and Peterson.¹⁷

Acknowledgment. The authors thank the Jet Propulsion Laboratory Supercomputer Center at the California Institute of Technology for ample computational resources to complete this study.

References and Notes

(1) Wennberg, P. O.; Cohen, R. C.; Stimpfle, R. M.; Koplow, J. P.; Anderson, J. G.; Salawitch, R. J.; Fahay, D. W.; Woodbridge, E. L.; Keim, E. R.; Gao, R. S.; Webster, C. R.; May, R. D.; Toohey, D. W.; Avallone, L. M.; Proffitt, M. H.; Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Wofsy, S. C. *Science* **1994**, *266*, 398.

- (2) Simonaitis, R.; Heicklen, J. J. Phys. Chem. 1974, 78, 653.
- (3) Cox, R. A.; Derwent, R. G. J. Photochem. 1975, 4, 139.
- (4) Simonaitis, R.; Heicklen, J. J. Phys. Chem. 1976, 80, 1.
- (5) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. Chem. Phys. Lett. 1977, 45, 564.
- (6) Hanst, P. L.; Gay, B. W., Jr. *Environ. Sci. Technol.* **1977**, *11*, 1105.
 (7) Levine, S. Z.; Uselman, W. M.; Chan, W. H.; Calvert, J. G.; Shaw, J. H. *Chem. Phys. Lett.* **1977**, *48*, 528.

(8) Howard, C. J. J. Chem. Phys. **1977**, 67, 5258.

- (9) Graham, R. A.; Winer, A. M.; Pitts, J. N., Jr. Chem. Phys. Lett.
- **1977**, *51*, 215. (10) Graham, R. A.; Winer, A. M.; Pitts, J. N., Jr. *J. Chem. Phys.* **1978**,
- 68, 4505.
- (11) Uselman, W. M.; Levine, S. Z.; Chan, W. H.; Calvert, J. G.; Shaw,J. H. Chem. Phys. Lett. 1978, 58, 437.
 - (12) Cox, R. A.; Patrick, K. Int. J. Chem. Kinet. 1979, 11, 635.
- (13) Barnes, I.; Bastian, V.; Becker, K. H.; Fink, E. H.; Zabel, F. Chem. Phys. Lett. **1981**, 83, 459.
- (14) Trevor, P. L.; Black, G.; Barker, J. R. J. Phys. Chem. 1982, 86, 1661.
- (15) Smith, C. A.; Molina, L. T.; Lamb, J. J.; Molina, M. J. Int. J. Chem. Kinet. 1984, 16, 41.
- (16) Barnes, I.; Bastian, V.; Becker, K. H.; Fink, E. H.; Zabel, F. Chem. Phys. Lett. 1986, 123, 28.

(17) Sander, S. P.; Peterson, M. E. J. Phys. Chem. 1984, 88, 1566.
(18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. G.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; *Gaussian 94*, revision D. 2; Gaussian, Inc.: Pittsburgh, PA, 1995.

(19) Becke, A. M. J. Chem. Phys. 1993, 98, 5648.

- (20) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089.
- (21) Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837.
- (22) Saxon, R. P.; Liu, B. J. Phys. Chem. 1985, 89, 1227.

(23) Chen, Z.; Hamilton, T. P. J. Phys. Chem. 1996, 100, 15731.

(24) Suenram, R. D.; Lovas, F. J.; Pickett, H. M. J. Mol. Spectrosc. 1986, 116, 406.

(25) Aloisio, S.; Francisco, J. S. J. Phys. Chem. 1998, 102, 1899.

(26) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.; *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling*; Evaluation No. 12; National Aeronautics and Space Administration, Jet Propulsion Laboratory: Pasadena, CA, 1997.

(27) Troe, J. J. Chem. Phys. 1977, 66, 4745.

(28) Troe, J. J. Chem. Phys. 1977, 66, 4758.

(29) Patrick, R.; Golden, D. M. Int. J. Chem. Kinet. 1983, 15, 1189-1227.