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A multiparameter artificial neural network (ANN) approach was successfully utilized to predict the solubility
of C60 in different solvents. Molar volume, polarizability parameter, LUMO energy, saturated surface, and
average polarizability molecular properties were chosen to be the most important factors determining the
solubilities. The results show that in a large number of solvents (126) the solubility decreases with increasing
molar volumes of the solvents and increases with their polarizability and saturated surface areas. A method
is suggested to the approximate determination of experimentally not easily measurable solubility related
thermodynamic parameters, e.g., the Hildebrand parameter, based on reliable solubility measurements.

I. Introduction

The solubility of C60 in different solvents has been extensively
studied in the past few years.1-4 The experimental studies were
mainly motivated to improve the efficiency of the separation
process of fullerenes. Moreover, C60, being a globular molecule,
provides an excellent example for theoretical studies. Single
solvent properties were applied to account for the extremely
different solubilities,1-3 but these attempts were not successful.
Multiparameter studies based on linear free energy relationship
(LFER) provided better results.5,6 These studies suffer from two
drawbacks. First, they assume that the chosen solvent property
contribute to solubility with same weight for all solvents. This
assumption may be valid for a family of solvents (e.g., for a
homologous series) but not for widely different ones. Second,
the solvent properties (especially the Hildebrand parameter)
required for LFER studies are not easily available, therefore
only a subset of the solvents (61 in ref 5, 47 in ref 6) were
involved in the calculations. Our study was focused on finding
molecular parameters that are readily available meanwhile
providing satisfactory results for 134 solvents. To obtain better
results ANNs were applied to introduce nonlinearity in the
numerical treatment. ANNs provide a very efficient way of
extracting important information from large quantities of data
in chemistry.7,8

The Hildebrand parameterδ9 is an important thermodynamic
parameter widely used in solubility studies. However, calculation
of the Hildebrand parameter involves the precise measurement
of evaporation enthalpy. Since the Hildebrand parameter (among
other parameters as well) is related to solubility, in theory, it is
possible to determine the Hildebrand parameter based on reliable
solubility measurements. We present a procedure to calculate
the Hildebrand parameters of different solvents based on the
solubilities of C60 and I2 in them.

The paper is structured as follows. Experimental and numer-
ical methods are described in section II. Selection procedure of
important solvent properties is presented in section III. An ANN
algorithm was applied to check the chemists’ old “similar
dissolves similar” rule of thumb in section IV. The calculation

of C60 solubility and Hildebrand parameter are presented in
sections V and VI, respectively. The results are discussed and
compared to the LFER studies in section VII.

II. Solvent Properties

The solubilities of C60 in different solvents (see Table 1) were
taken from the comprehensive review of Beck and Ma´ndi.4 The
solubility was usually measured using photometry, but for some
solvents13C NMR method and gravimetry was applied by
different investigators. For some solvents (e.g., benzene) dif-
ferent solubilities were measured using different methods. In
these cases the solvents were not used directly in the fitting
procedures therefore we could compare the different experi-
mental values with the predicted ones.

Since the experimental solvent properties are usually difficult
to acquire we restricted our study on easily measurable physical
properties (e.g., density) or physical properties that can be
calculated numerically. The following properties were applied
in the numerical treatment (see Table 1, Table 2 and Table
1S): molar volume (Vm), polarizability parameter ([n2 - 1]/
[n2 + 2]), molar refraction (Rm ) Vm[n2 - 1]/[n2 + 2]),
experimental polarizability (R ) 3ε0 Rm/NAv), experimental
polarizability volume (R′ ) R/(4πε0)), HOMO energy, LUMO
energy, exchange energy, total electrostatic interaction, electron-
electron repulsion, electron-nuclear attraction, total energy,
saturated surface area, unsaturated surface area, polar surface
area, calculated dipole moment, average polarizability, and
polarizability volume (for a definition of parameters see
MOPAC 6.0 manual10 and references therein).Vm was calculated
from density and molecular weight, polarizability parameter
from the refraction index (n). The geometry of a solvent
molecule was preoptimized by PCModel (commercially avail-
able) program based on van der Waals radii of the atoms. The
geometry was further optimized by subsequent application of
MMX (or Hückel method for aromatic molecules) and semi-
empiric AM1 methods. The parameters (using the optimized
geometry) were calculated using MOPAC 6.010 and PCModel
software packages on a PC (Table 2 lists the specific program
used for the calculation). Note that there is correlation between
some of the experimental (Rm, R, and R′) and the calculated
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TABLE 1: The Applied Solvents in the Numerical Treatmenta

solvents Gexp GANN Ig Sexp Ig SANN δexp/MPa0.5 δ(C60)/MPa0.5 δ(I2)/MPa0.5

pentane 0 0 -6.1 -6.9 14.3 16 15
hexane 1 1 -5.1 -5.9 14.9 18 17
octane 1 1 -5.2 -5.2 15.6 15
iso-octane -5.2 -5.9 15 14
decane 1 1 -4.7 -4.7 13.5 14
dodecane 2 1 -3.5 -4.8 16.2 17
tetradecane 1 1 -4.3 -4.6 13
cyclopentane 0 0 -6.6 -6.3 17.8 17 16
cyclohexane 1 1 -5.3 -5.1 16.8 19 15
cis-decahydronaphthalene 3 1 -3.3 -3.4 18 19 14
trans-decahydronaphthalene -3.5 -3.6 19 14
1,5,9-cyclododecatriene -2.7 -3.3 20
cyclopentyl bromide 2 2 -4.2 -3.7 20
cyclohexyl chloride 2 3 -4.1 -3.9 20
cyclohexyl bromide 3 3 -3.4 -3.5 20
cyclohexyl iodide 4 4 -2.8 -3.3 20
1,2-dibromocyclohexane 4 * -2.6 -3.3 20
cyclohexene 2 2 -3.8 -4.0 15.1 20
1-methyl-1-cyclohexene 2 3 -3.8 -3.8 20
methylcyclohexane 1 1 -4.5 -4.9 15.9 19
cis-1,2-dimethylcyclohaxane 1 1 -4.6 -4.6 18
trans-1,2-dimethylcyclohexane -4.6 -4.8 18
ethylcyclohexane 1 1 -4.3 -4.5 19
dichloromethane 1 1 -4.6 -5.7 19.8 20 22
chloroform 1 * -4.8 -4.9 19 20 20
carbon tetrachloride 1 1 -4.4 -4.6 17.6 20 17
dibromomethane 1 1 -4.5 -4.2 20
bromoform 3 * -3.2 -3.6 20 21
iodomethane 2 2 -4.2 -5.5 20.9 22
diiodomethane -4.8 -4.9 24.1 24
bromochloromethane 2 1 -4.2 -4.6 20
bromoethane 1 1 -5.2 -5.3 19.6 20
iodoethane 1 1 -4.5 -4.5 19.2 20
1,1,2,2-tetrachloroethane 3 3 -3.1 -4.1 19.8 20
1,1,2-trichlorotrifluoroethane 0 0 -5.6 -5.1 14.9 20
1,2-dichloroethane 1 1 -5.0 -4.7 20 20
1,2-dibromoethane 2 2 -4.2 -3.7 19.8 20
1,1,1-trichloroethane 1 1 -4.7 -4.7 20
1-chloropropane 0 0 -5.6 -5.6 17.4 21
1-bromopropane 1 1 -5.2 -4.8 18.2 20
1-iodopropane 1 1 -4.6 -4.3 20
2-chloropropane 0 0 -5.9 -5.9 16.6 21
2-bromopropane 0 1 -5.4 -5.0 20
2-iodopropane6 1 1 -4.8 -4.4 20
1,2-dichloropropane 1 1 -4.9 -4.6 18.4 20
1,3-dichloropropane 1 1 -4.8 -4.5 20
(+-)-1,2-dibromopropane 2 * -4.3 -3.7 21.3 20
1,3-dibromopropane 2 2 -4.2 -3.6 20
1,3-diiodopropane 3 * -3.4 -3.2 20
1,2,3-tribromopropane 4 4 -2.9 -3.2 20
1,2,3-trichloropropane 2 * -4.0 -4.1 20
1-bromo-2-methylpropane 1 1 -4.9 -4.8 20
1-chloro-2-methylpropane 0 0 -5.4 -5.4 21
1-iodo-2-methylpropane 2 2 -4.3 -4.4 20
2-chloro-2-methylpropane 0 0 -5.7 -5.6 21
2-bromo-2-methylpropane 1 1 -5.0 -5.1 20
2-iodo-2-methylpropane 1 * -4.4 -4.6 20
1,2-dibromoethylene 2 2 -3.7 -4.0 20.7 20
trichloroethylene 2 2 -3.8 -4.4 18.8 20
tetrachloroethylene 2 * -3.8 -4.0 19 20
1-chloro-2-methylpropene 1 1 -4.5 -4.7 20
benzene -4.0 -4.2 18.8 20 19
toluene 3 3 -3.4 -3.7 18.2 20 16
1,2-dimethylbenzene 4 3 -2.9 -3.4 20
1,3-dimethylbenzene 3 3 -3.3 -3.3 20
1,4-dimethylbenzene 3 3 -3.3 -3.3 20
1,2,3-trimethylbenzene 3 2 -3.1 -3.0 20
1,2,4-trimethylbenzene 4 4 -2.5 -2.9 20
1,3,5-trimethylbenzene -3.5 -3.1 18 20
1,3,5-trimethylbenzene -3.5 -3.1 20
1,2,3,4-tetramethylbenzene 4 4 -2.9 -2.8 20
1,2,3,5-tetramethylbenzene 4 4 -2.4 -2.8 20
tetralin 4 4 -2.5 -2.7 20
ethylbenzene 3 3 -3.4 -3.5 18 20
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(average polarizability, polarizability volume) solvent properties.
These values were used as counterchecks during the numerical
procedures (i.e., similar results must be obtained for these
parameters provided that both the ANN and the quantum
mechanical calculations are properly done).

The selection of solvent properties is always somewhat
arbitrary and with increasing the number of parameters along
with the number of solvents the quality of fitting should improve.
In our study we tried to find some important solvent parameters

with which satisfactory results can be obtained while keeping
the number of parameters relatively small.

The solubilities are not given in weight units (e.g., mg/mL),
but in terms of logarithmic values of molar fractions (logS)
because the logSvalues correspond to the free energy changes
in the solvation process. For some solvents zero solubility values
were reported therefore the respective logS is undeterminable.
To compare the measured and numerically fitted values we used
the experimentally detectable< -8 notation in the tables.

TABLE 1 (Continued)

solvents Gexp GANN Ig Sexp Ig SANN δexp/MPa0.5 δ(C60)/MPa0.5 δ(I2)/MPa0.5

n-propylbenzene 2 2 -3.5 -3.4 17.6 20
iso-propylbenzene -3.6 -3.5 20
n-butylbenzene 3 2 -3.4 -3.3 20
sec-butylbenzene 2 2 -3.6 -3.4 20
tert-butylbenzene 2 2 -3.7 -3.5 20
fluorobenzene 2 b -4.1 -4.3 20
chlorobenzene 3 3 -3.0 -3.6 19.4 20
bromobenzene 3 b -3.3 -3.3 20.2 20
iodobenzene 3 3 -3.5 -3.2 20.7 20
1,2-dichlorobenzene 4 4 -2.4 -3.2 20.5 20
1,3-dichlorobenzene 3 4 -3.4 -3.2 20
1,2-dibromobenzene 4 4 -2.6 -2.9 20
1,3-dibromobenzene 4 4 -2.6 -2.8 20
1.2-Br-Cl-benzene -2.4 -3.0 20
1.3-Br-Cl-benzene -3.0 -3.0 20
1,2,4-trichlorobenzene 4 4 -2.8 -2.8 20
styrene 3 3 -3.2 -3.3 20
o-cresol 0 0 -5.7 -3.3 20
nitrobenzene 2 2 -3.9 -4.8 20.5 20
benzonitrile 2 2 -4.2 -4.1 17.2 20
anisole 3 b -3.1 -3.3 20
benzaldehyde 2 2 -4.2 -3.8 19.2 20
phenyl isocyanate -3.4 -3.5 20
2-nitrotoluene 3 3 -3.4 -3.5 20
3-nitrotoluene 3 3 -3.4 -3.5 20
thiophenol -3.0 -2.9 20
benzyl chloride 3 3 -3.4 -3.1 20
benzyl bromide -3.1 -2.9 20
R,R,R-trichlorotoluene -3.0 -2.9 20
1-methylnaphthalene -2.2 -2.4 20
dimethylnaphthalenes 4 4 -2.1 -2.3 20
1-phenylnaphthalene 4 4 -1.9 -2.1 20
1-chloronaphthalene 4 4 -2.0 -2.4 20
1-bromo-2-methylnaphthalene 4 4 -2.1 -2.3 20
methanol 4 4 <-8 -7.6 29.6 29
ethanol 0 0 -7.1 -7.5 26 26 20
1-propanol 0 0 -6.4 -7.1 24.3 24
1-butanol 0 0 -5.9 -6.8 23.3 22
1-pentanol 0 0 -5.3 -6.1 22.3 21
1-hexanol 0 0 -5.1 -5.3 21.9 20
1-octanol 1 b -5.0 -4.6 21.1 18
nitromethane 1 1 <-8 -7.1 26 23
nitroethane 0 0 -6.7 -5.8 22.7 21
acetone 0 b -7.0 -6.4 20.2 22
acetonitrile 0 0 <-8 -7.7 24.3 27
n-butylamine -3.3 -7.0 17.8 18
acrylonitrile -6.4 -7.6 21.5 21
2-methoxyethyl ether 0 0 -5.2 -4.7 20
N,N-dimethylformamide 1 1 -5.3 -5.3 20.5 21 19
tetrahydrofuran 0 0 <-8 -6.4 18.6 21
tetrahydrothiophene 0 0 -5.4 -3.4 20
thiophene 0 b -4.4 -4.3 20.1 20
2-methylthiophene 1 1 -3.0 -3.3 20
N-methyl-2-pyrrolidone 3 3 -3.9 -3.7 23.1 20
pyridine 2 2 -4.0 -4.4 21.9 20
quinoline 2 2 -2.9 -2.7 22.1 20
aniline 4 4 -3.9 -3.5 21.1 20
N-methylaniline -3.8 -3.0 20
N,N-dimethylaniline -3.2 -2.8 19.8 20

a The experimental (lgSexp) and calculated (lgSANN) solubility of C60 in them and the corresponding group numbers (Gexp andGANN, see text for
definition). The experimental (δexp) and ANN predicted (based on the solubility of C60 and I2, δ(C60) andδ(I2), respectively) Hildebrand parameters
are also presented. The outlyer solvents are boldfaced.b Not classified.
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The solubilities of iodine11 (see Table 3S) in some solvents
were also used in this study to calculate the Hildebrand
parameters of the solvents (see Table 1).12

Following a standard ANN methodology,7 all parameters
(involving log Svalues) were linearly rescaled in the region of
0.1-0.9 based on the minimum and maximum values of the
specific solvent property.

III. Choosing the Most Important Solvent Properties

One hundred fourteen solvents were classified into five
different groups according to the solubility of C60 in them. The
borderlines of the groups were selected so that approximately
the same number of solvents can be found in each group. The
respective ranges are as follows: group #0: 0-5 × 10-6, group
#1: 5× 10-6-5 × 10-5, group #2: 5× 10-5-3 × 10-4, group
#3: 3 × 10-4-1 × 10-3, group #4: 1× 10-3-1. The group
numbers of the solvents are given in Table 1 (Gexp). We applied
Gerenia Neural Network Development System 2.0 by Active
Record Software System, Ltd. (Hungary) to train an ANN to

classify the solvents into the correct groups. Using only a single
solvent property (see Table 2) about 58%-66% of the solvents
can be successfully classified (the best results with polarizability
parameter, 75 correct response, while the worst results with
average polarizability and calculated dipole moment, 66 correct
response, are obtained). The accuracy of the success rate can
be estimated from the correlated parameters (Rm, R, R′, Pa, Vpol),
and was found to be 1%. Combination of two solvent properties
(all possible combinations were checked, the best pairs are
shown in Table 3) greatly enhances the performance of the
network: with polarizability parameter and the average polar-
izability 75% of the solvents are classified correctly. Note that
the average polarizability alone gives poor predictions (58%)
but the prediction is much better if it is combined with other
parameters, e.g., with the polarizability parameter. Similar
synergetic-like effect can be observed with LUMO energy and
the molar volume. The LUMO energy alone has a success rate
of 60%; however, the rate increases to 73% with molar volume
(the combination of molar volume and polarizability parameter
results in 72% success). On the basis of the results of one- and
two-parameter combinations the five most successful solvent
properties were chosen: molar volume, polarizability parameter,
LUMO energy, saturated surface area, and average polarizabil-
ity. With these parameters the network classified correctly 91
solvents, classified incorrectly 10 solvents and could not classify
13 solvents (80% success rate, see Table 1). Adding a sixth
parameter (out of the remaining thirteen) does not increase the
performance of the network (see Table 4), therefore we
concluded that the listed five parameters are the most dominant
factors determining the solubility of C60.

IV. Kohonen Network Approach

Kohonen ANNs have been widely applied to map a multi-
dimensional parameter space to a two-dimensional array of
neurons. The projection is made so that the topological relations
are preserved. The “similar dissolves similar” rule of thumb
means that solvents with similar parameter combinations will
result in similar solubility. Therefore, provided that proper
molecular parameters were chosen, if two solvents are mapped
onto the same (or nearby) neuron the solubility should be close
in them. We note that the inverse statement is not necessarily

TABLE 2: The Applied Solvent Properties, Their Origin
(experimental (exptl) or calculated by the given programs),
and the Number of Successfully Identified Group Number
of Solvents Using One-Parameter Approach

parameter origin
identified
solvents

molar volume of the solvent (Vm, cm3 mol-1) exptl 72
polarizability parameter (n 2- 1)/(n2 + 2) exptl 75
molar refraction (Rm) exptl 69
exptl polarizabilityR (×1033, C2m2J-1) exptl 67
exptl polarizability volumeR′ (×1023, cm3) exptl 69
EHOMO (eV) MOPAC 67
ELUMO (eV) MOPAC 69
exchange energyEexchange, (eV) MOPAC 70
total electrostatic interactionEtot-stat(eV) MOPAC 72
electron-electron repulsionEel-el (eV) MOPAC 67
electron-nuclear attractionEel-nu(eV) MOPAC 69
total energyEtot (eV) MOPAC 71
saturated surfaceSsat (Å2) PCMODEL 69
unsaturated surfaceSunsat(Å2) PCMODEL 67
polar surfaceEpol (Å2) PCMODEL 69
calculated dipole momentDc (debye) MOPAC 66
average polarizabilityPa(×1023 ESU) MOPAC 66
polarizability volumeVpol (Å3) MOPAC 69

TABLE 3: The Number of Successfully Identified Group Number of Solvents Using Two- and Three-Parameter Combinations

parameters identified solvents parameters identified solvents

Vm, (n2-1)/(n2+2) 82 Vm, (n2 - 1)/(n2 + 2), ELUMO 80
Vm, ELUMO 83 Vm, (n2 - 1)/(n2 + 2), Ssat 80
Vm, Ssat 76 Vm, (n2 - 1)/(n2 + 2), Pa 87
Vm, Pa 77 Vm, ELUMO, Ssat 83
(n2 - 1)/(n2 + 2), ELUMO 75 Vm, ELUMO, Pa 81
(n2 - 1)/(n2 + 2), Ssat 78 Vm, Ssat, Pa 84
(n2 - 1)/(n2 + 2), Pa 85 (n2 - 1)/(n2+2), ELUMO, Ssat 84
ELUMO, Ssat 79 (n2 - 1)/(n2 + 2), ELUMO, Pa 90
ELUMO, Pa 82 (n2 - 1)/(n2 + 2), Ssat, Pa 86
Ssat, Pa 82 ELUMO, Ssat, Pa 89

TABLE 4: The Number of Successfully Identified Group Number of Solvents Using Four and Six-parameter Combinations

parameters identified solvents parameters identified solvents

Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat 84 Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Etot-stat 90
Vm, (n2 - 1)/(n2 + 2), ELUMO, Pa 83 Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Eel-el 84
Vm, (n2 - 1)/(n2 + 2), Ssat, Pa 87 Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Eel-nu 84
Vm, ELUMO, Ssat, Pa 86 Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Etot 79
(n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa 91 Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Sunsat 87
Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Rm 87 Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Epol 89
Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, R 85 Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Dc 78
Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, R′ 86 Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Vpol 84
Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, EHOMO 91
Vm, (n2 - 1)/(n2 + 2), ELUMO, Ssat, Pa, Eexchange 88
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true. Solvents in which the solubility is similar might have
different molecular parameters: the change of one parameter
might compensate the change of other parameter(s). We expect
the ANN to reveal hidden relationships between the provided
data sets.

A 10 × 10 two-dimensional neuron-map was constructed to
project the 134 solvents with the five solvent parameters
determined in section III. The projection was carried out
following standard ANN procedures.7 The neuron map is
torroidal, maximum signal criterion was applied with triangular
function for scaling corrections on neighbor weights.

The obtained two-dimensional map is presented in the
supporting material (Figure 1S). Interestingly, the solvents with
largest solubilities are mapped onto the same neuron as C60

(since C60 is not a solvent, it has not been used in the
construction of the ANN) and the solvents with small solubilities
are mapped further from this point. In Figure 1 the solubility is
shown as a function of the distance from the C60 center. The
correlation is remarkable, especially if we keep in mind that
the actual solubility values were not used explicitly to make
the projection. The further the solvent from the position of C60

is being mapped, the smaller solubility is measured. We do not
expect a straight line (i.e., linear correlation) in this graph since
the variation of the solubility inx andy direction on the neuron
map might be different and nonlinear.

V. Calculating the Solubility of C60

Since the classification and Kohonen approach ensured that
the chosen parameters are suitable we constructed an ANN to
estimate the solubility of C60. An ANN of five input units, five
hidden units, and one output unit was applied. Jetnet 3.0
freeware software13 was used for the training (Langevin type
network with bold driver method for dynamically changing the
learning parameters). Twenty thousand epochs were used during
a training procedure (with further increasing the length of
training the predictive power of the network seriously de-
creased). The architecture of the network was determined using
a bottom-top approach, i.e., increasing the number of hidden
units until overfitting occurs and the quality of the fit becomes
worse. The results are given in Table 1. Correlation between
the experimental and calculated solubility values are shown in
Figure 2. The standard deviation was found to beσ ) 0.58.
Excluding the solvents that have deviation of more than 2σ

(outlyers), the standard deviation decreased to 0.45. To evaluate
the effect of a molecular parameter on the solubility we
determined the [d logSANN/d solvent parameter] derivatives
(“weights”) numerically for each solvent (Table 2S). The
derivative represents a coefficient that is optimal for a linear fit
of the considered solvent. Because of the nonlinear numerical
treatment of the problem, we expected to obtain different
derivatives for different solvents. The derivatives are shown as
a function of the experimental solubility in Figure 3. Generally
(except the graph forELUMO) the derivatives get closer to zero
as the solubility increases. The sign of derivatives determines
whether solubility is increased or decreased with increasing the
parameter. On the basis of the ANN prediction, the solubility
decreases with increasing molar volume, increases with polar-
izability parameter, saturated surface area and average polar-
izability, and does not have a definite tendency with LUMO
energy. The peculiar feature of LUMO energy is probably
related to the fact that it is not a dominant factor for all the
solvents (as it was found in section III), but can be an important
cofactor for a certain group of solvents.

One may expect that for a family of solvents derivatives will
be approximately the same. To check this assumption, predicted
solubility vs molecular parameter graphs were created. These
graphs show what would be the solubility in a specific solvent
if it had different parameter. The graphs can be similar for a
family of solvents. Figure 4 shows the graphs for halogen
substituted alkanes. The curves are usually slightly shifted but
have the same shape. However, alcohols (Figure 5) exhibit
qualitatively different variations and derivatives indicating that
the solubility properties can be relatively different even in a
homologous series. These figures also justify the application
of nonlinear treatment: if linear relationships had been observed
the application of ANNs would have been irrelevant.

VI. Calculating Hildebrand Parameters

Once solubility is known for a given solvent one might relate
it to other important thermodynamic quantities. Therefore, an
ANN can be trained, for example, to predict the Hildebrand
parameter (δ) of the solvent if the solubility is known. As it
was shown by Ruoff et al.,3 the solubility vsδ parameter graph
consists of largely scattered points with a maximum at about
the Hildebrand parameter of C60. Both the large error and the
observed maximum (in agreement with the theoretical predic-
tions1,9) imply that additional parameters should be considered
to calculate the Hildebrand parameter from a reliable solubility

Figure 1. The solubility of C60 in the solvent as a function of the
distance between the ANN projection of C60 and that of the specific
solvent on the Kohonen map (Figure 1S). Dashed lines show the
approximate area of the points.

Figure 2. Calculated vs experimental logarithmic solubilities.
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measurement. As a demonstration of the strength of the ANN
approach we present a calculation of Hildebrand parameters of

the solvents using four parameters (polarizability parameter,
LUMO energy, average polarizability, and the solubility of C60)
with a 4-2-1 network (see Figure 6). Note that in this case

Figure 3. The calculated numerical derivative of the solubilities with respect to the specific molecular property (a-e: molar volume, polarizability
parameter, LUMO energy, saturated surface, average polarizability, respectively) vs experimental solubilities for the solvents.

Figure 4. Predicted dependence of solubilities on the molecular
parameters for different solvents. Solvents: 2-X-propane, (solid) X)
Cl, (dashed) Br, (dotted) I. a-e for different parameters: molar volume,
polarizability parameter, LUMO energy, saturated surface, average
polarizability, respectively.

Figure 5. Predicted dependence of solubilities on the molecular
parameters for different solvents. Homologous series of alcohols. (solid)
methanol, (dashed) 1-pentanol, (dotted) 1-octanol. a-e for different
parameters: molar volume, polarizability parameter, LUMO energy,
saturated surface, average polarizability, respectively.
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the size of the network was reduced due the lack of available
data in the training data set and the applied parameters were
not optimized. Similar calculations were carried out using the
solubilities of I2 instead of C60 in different solvents. The standard
deviations of the predicted and experimental Hildebrand pa-
rameters were 2.0 in both cases. Hence a rough estimate ((10%)
can be obtained for the Hildebrand parameter of the solvents
(see Table 1).

VII. Discussion

We demonstrated that ANNs can be trained to predict the
solubility of C60 in various solvents. The parameters required
for the procedure are either calculated numerically or easily
available experimentally (density and refraction index measure-
ments). The “similar dissolves similar” rule of thumb was
reassured using a Kohonen-type network. Similarity is expressed
as similar molecular parameter combinations. However, when
other properties are considered, it is likely that the criterion of
similarity will be different.

The ANN appeared to be very efficient in finding hidden
similarity relations in a relatively large solubility related data
set. The relations are chemically correct: the derivatives of the
solubility with respect to the different molecular parameters are
approximately the same for certain group of solvents. The ANN
predicts the logarithmic solubility of the solute with good
accuracy of 0.45 for 126 solvents out of the applied 134. This
standard deviation is comparable to the previous works (σ )
0.40 in ref 5 andσ ) 0.47 in ref 6) but in our treatment 134
solvents were involved. The trend of the nonlinear fit of the
ANN is the same as in the LFER studies: the logarithmic
solubility decreases with molar volume of the solvent5 and
increases with increasing polarizability parameter,6 saturated
surface area, and average polarizability.

Different polyenes are reported to react with C60.14 We
measured the (logarithmic) solubility in cyclopentadiene, cy-
cloheptatriene, and cyclooctatriene experimentally (-2.6,-3.2,
and -2.8, respectively). The numerical predictions are-4.9,
-3.4, and-3.2, respectively. These values are smaller than the
experimental ones; however, the difference is near the error limit
(0.45) for cycloheptatriene and cyclooctatetraene. There is a
remarkable difference between the predicted and experimental
values for cyclopentadiene. This is an indication of chemical
reaction between the solvent and C60. If the difference between
the predicted and experimental solubility is large (as in the case
of cyclopentadiene) chemical reaction is possible either in the

liquid or in the solid phase. However, the agreement of the
predicted and experimentally found solubility does not prove
the absence of chemical reaction.

There are several reported different values of solubility of
C60 in benzene:-3.72, -3.73, -4.0,4 -4.0.14 The ANN algorithm
predicts-4.2 therefore the numerical result is consistent with
the experimental data of Beck and Ma´ndi4 and Letcher et al.14

Table 5 lists the outlyer solvents and compares them with
the results of LFER studies. The large solubility of some outlyers
(e.g.,n-butylamine, cyclopentadiene) can be related to chemical
reaction. The prediction of ANN and LFER studies was rather
poor for long-chain alkanes (e.g.,n-dodecane).

Solubility is usually easily measurable thermodynamic quan-
tity. Therefore, solubility related thermodynamic quantities could
be determined by simple solubility measurements using proper
fitting techniques such as ANNs. We proposed an algorithm to
determine approximately the Hildebrand parameter of a solvent
by measuring the solubility of C60 and/or I2 in them. The
obtained results can be regarded as a first evaluation and can
be useful when no other data is available. The safest is to
measure the solubility of both C60 and I2 and accept the values
if they are close to each other (e.g., the Hildebrand parameter
of CHBr3 is predicted to be approximately 20-21 MPa0.5).
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