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Electronic Normal Modes and Polarization Waves in Translational Polymer Helices.
Application to Fully Extended Poly[(R)-#-aminobutyric acid] Chains

Jon Applequist
Department of Biochemistry, Biophysics, and Molecular Biology, lowa Stateelsily, Ames, lowa 50011

Receied: March 6, 2000; In Final Form: May 12, 2000

The electronic normal modes of a finite translational polymer helix are found to be well approximated by
sinusoidal standing waves of electronic polarization with either even or odd symmetry with respect to inversion
through the chain center. The dipole and rotational strengths of the normal modes are expressed as products
of two types of sums over the wave: (i) lattice sums which are independent of the structure within the unit
cell and (i) cell sums which contain the structural information of the unit cell. Owing primarily to the behavior

of the lattice sums at low wavenumbleiof the polarization wave, the dipole and rotational strengths of a
single lowk mode tend to dominate the absorption and circular dichroic spectra. The dispersion relation
between frequency and wavenumber is derived for the polarization waves, giving further relations for the
phase velocity and group velocity of a traveling polarization wave. The results are illustrated by calculations
for fully extended poly[R)-3-aminobutyric acid] chains.

Introduction chirality from a methyl side chain on’Qhere taken as thR
configuration), is taken as an example to illustrate the predicted

A translational helix is a structure generated by translating a wave properties.

unit cell repeatedly in one dimension, with no accompanying
rotation. The term “one-dimensional crystal” would be appropri- 14 Mvodel
ate, though in the case of a polymer chain capable of taking on
such a structure, it is more useful to classify it among the various ~ Our model for a translational helix consists of an arrayNof
possible helical conformations of the polymer. (In this context unit cells, each generated from a neighboring unit cell by
we regard the unit cell as containing one residue, as any helix translation through a distanegalong a specified axis. The unit
with an exact repeat ilN residues could be regarded as a cell containsP polarizable point particles representing atoms
translational helix if the unit cell were defined as one repeat.) or groups of atoms. On each such point lie a number of linear
The polyB-amino acids) in fully extended form constitute electronic oscillators, giving a total & oscillators in the unit
translational helices. This structure has been found in intermo- cell. The properties of the system are to be calculated from the
lecularly hydrogen-bonded form in fibers and films of long- coordinates and dipole polarizabilities of all oscillators in the
chain, chiral polyg-aminobutyric acid) [§Abu)y].2 Small array, assuming that the particles interact only by way of the
S-peptides have also been found in similar or related sheet formselectric fields of their induced electric dipole moments. The
in crystals and in solutiofr:5 In the preceding paper in this position of oscillatof relative to theorigin of the unit cellis r;
issué Bode and | have shown that our model for electronic (i = 1, ..., S). The orientation of oscillatoy is given by unit
absorption and circular dichroism (CD) of single extended Vvector{;.
chains, such as might occur in solution under appropriate For simplicity we consider the case in which the unit cell
conditions, predicts unusual features which appear to be relatedcontains only one dispersive oscillator, which is designated by
to the unique character of the translational helix. In particular, indexj = 1 and is located at the unit cell originy(= 0). The
the model produces an absorption spectrum which is dominatedpolarizability o; of the dispersive oscillator is assigned a
by a single electronic normal mode, giving a single Lorentzian Lorentzian frequency dependence given by
peak. Likewise, the CD spectrum tends to be dominated by the
same mode, giving a single peak that is coincident in wavelength dy0,0,
and shape with that of the absorption spectrum. The CD G=— 5 .
spectrum is also unusual in that the system of amider* Wy~ "t lyw
chromophores is planar in a translational helix, so that the
rotational strength of ther—z* band comes entirely from  Wheredo andwo are the dipole strength (chs™?) and angular
interaction of the chromophores with the chiral environment of frequency of resonance, respectively, of the isolated oscillator,
nonchromophoric atoms. w is the frequency of the light, andis the damping coefficient.
The purpose of this paper is to examine the normal modes [Here we replace wavenumbewused in previous paperwith
predicted by our model for a translational helix to discover how ¢ = 2rcy, wherec is .the velocity _Of light. Hence, the dipole
the unusual spectral features are related to the structure. It isStrengthDo of the previous papers is replacedday= 4m%c?Do.]
found that the normal modes are well approximated by All ot_her Qsc_:lllators are taken to be nondispersive with constant
sinusoidal standing waves of electronic polarization and that Polarizabilities of the form
all of the spectral properties can be understood by the behavior L
of such waves. The known polyme#Abu)y, which derives its a; = o400 ()

10.1021/jp000863e CCC: $19.00 © 2000 American Chemical Society
Published on Web 07/06/2000

1)



7134 J. Phys. Chem. A, Vol. 104, No. 30, 2000 Applequist

A AR

Figure 1. Array of chromophore axes in a translational helix.

Thus, nonchromophoric atoms are represented by three mutually
perpendicular oscillators with equal polarizabilities. The'QC
group is represented by the dispersive oscillator of eq 1 plus
three unequal, mutually perpendicular nondispersive oscillators
representing polarizability contributions from electronic transi-
tions well above the frequency range of the chromophore.

Polarization Waves

The basic equation of the dipole interaction mod&| is 9.9
Au=E 3) 9.8

whereA is the interaction matrixg is the column matrix of :u 9.7
dipole moments of all oscillators, arklis the column matrix o
of external electric fields at each oscillator. All matrix elements o 9.6 4
are expressed in DeVoe forfmin particular,A has diagonal 05 /
elementsy;—t and off-diagonal elementy-Tj-0;, whereT; is | /
the dipole field tensor. 9.4

We wish to determine the possible electronic polarization 0.0 0.1 0.2 0.3 0.4 0.5

motions of the system in the absence of an external field. The ka/2n

problem is greatly simplified by partitioning of the matrices Figure 2. Dispersion relation forgAbu)x: (—) calculated by eq 12
into blocks for subsytem 1, containing the dispersive oscillators, for N = 15; (O) normal modes foN = 10; () normal modes foN
and subsystem 2, containing the nondispersive oscillators. The—

partitioned form of eq 3 for this problem is

(All(w) Alz)(.”l): (0) )
A Anl\l: 0

where subscripts 1 and 2 on each block represent the subsystems The equation of motion determines the dispersion relation,
whose oscillators are referred to in the rows or columns, Which relatesw andk. We insert eq 10 into eq 9 and obtain
respectively, of that block, and where it is recognized that the
11 block contains all of the frequency dependencé offhe
consequences of this partitioning have been developed in detail

previously? for the determination of normal modes. For the
present purposes we note that eq 4 leads to the relations for thg,, p=1

it will be shown that such a wave is a good approximation for
fairly short translational helices as well as long ones.

Dispersion Relation

N
wZei(wt+pka+(5) — do Z[Allr (0)]pmei(a)t+mka+(5) (11)
m=

..,N. On rearranging and taking the real part, we

dipole moments

A (w)u; =0 )
Hy= _A22_1A21,”1 (6)

where
Ay (@) =Ap(w) — A12A2271A21 (7

Using eq 1 with neglect of the damping term, we have
Arf (@) = Ay (0) = (07fdy)! ®)
wherel is the identity matrix. From eqs 5 and 8 we have

Ay O, = (CUZ/ do)uy )

have

N
w*=d, Z[An'(onpm cos[(n — p)kd] (12)

This relation would be independent pffor an infinitely long
chain. But the diagonal elements @&f1,'(0) are relatively
constant for chromophores more than2cells from the ends

of the chain, and the off-diagonal elements diminish rapidly
with the distance between chromophores. Hence, eq 12 is nearly
independent op for values well removed from the ends of a
finite chain. We will apply the relation using= [(N + 1)/2],
where the brackets denote the integer part. The following are
important consequences of eq 12: dij—k) = w(K); (i) w(K)

= w(k + 27/a); (iii) w(k) may be either an increasing or a
decreasing function df in the range O< k < z/a, depending

on whether thé\;,'(0) elements for near neighbors are negative

which corresponds to the classical equation of motion for a or positive, respectively. If the system consisted only of the
system of undamped, coupled oscillators having a time depen-array of oscillators in Figure 1, these elements would be positive

dence of the form 'et. Let um; be the component of for
oscillatorj in unit cell m. For an infinitely long translational

for 6 > 54.7 and negative fof) < 54.7.
Figure 2 shows the dispersion relation calculatedfédu);s

helix the equation of motion for the chromophores is satisfied from eq 12. For this and all other results reported here for

by traveling waves of the forih

Uy = 1/2C1ei(wt+mka+a) (10)

(BAbu)y, the structure was generated as described in the
preceding paper in this iss@@nd the calculations included the
interactions among all atoms and amide* chromophores

in the system. The absciss&k@2x = a/A. The unit cell length

wherec; is a constantk is the wave vector, related to the a is 4.824 A® The chromophore parameters (which are
wavelengthl by k = +27/4, ando is an arbitrary phase angle.  equivalent to those of data sd§*?) ared, = 1.133x 10° cm®
This wave is called here a “polarization wave”. In what follows s72, wo = 10.85x 105 s, and(; oriented at 9.3with respect



Electronic Normal Modes in Polymer Helices

to the N=C' bond toward the O atom. The collective behavior
of the unit cell contents is like that of an oscillator oriented at
angle ® = 13.9,% corresponding to the region of negative
interaction noted above.

The dispersion curves calculated fdr> 7 are all in good
agreement with the curve in Figure 2, with only slight variations
for the shorter chains. As noted above, the same values of
are obtained when the sign &fis reversed, and the curve
oscillates with period 1 on the abscissa scale. The rar®g
< kal2r < 4+0.5 is known as the first Brillouin zong€.Values
of k outside this range have no physical significance, as they
correspond to wavelengths shorter than 2

Electronic Normal Modes

The normal modes of the system are solutions to eq 4
corresponding to standing waves. In the partially dispersive
normal mode method, the problem is reduced to the solution of
eq 9 in the form of the eigenvalue probléf:

i _ 2
Ay O = (0, 7d)t (13)
wherewy? is thenth eigenvalue corresponding to eigenvector
t™ whose components are dipole moments of the chro-
mophores obeying the orthonormality condition
Te(n' 2.2
tOTM = ¢ _dy4n’c (14)
where superscript T denotes transposed@nds the Kronecker
delta. The factor #42c2 preserves the units af” used in our
previous papers. There dkenormal modes in accordance with
the N degrees of freedom in the system of chromophores.

In the following sections we approximate a normal mode by
a superposition of two waves of the form of eq 10 with opposite
signs ofk, giving the standing wave

=

c,€“" cosnka + ) (15)
where the index specifies a particular normal mode, usually
in order of increasing,,. Then the components &f’, denoted
@ m=1, ..,N), are

-

c,(mka+ o) (16)
The normalization constam depends o, as shown in the
following section.

It should be noted that the discrete setgfvalues are the
only pure frequencies of free oscillation consistent with the
equations of motion for a given chain length. Equation 12
expressesv and k as continuous variables, though only for
infinite chains do all points on the dispersion curve represent

possible waves in the absence of an external force.

Symmetry of Normal Modes

A principle from the theory of molecular vibrations applies
to the electronic normal modes as well: every normal mode

J. Phys. Chem. A, Vol. 104, No. 30, 2000135

TABLE 1: Number of Normal Modes of Each Symmetry
Species in a Translational Helix ofN Unit Cells

N Ag By
even N/2 N/2
odd N —1)/2 N+ 1)/2

whose frequencies are correlated with the resonant frequency
of the chromophore have very nearly the symmetry governed
by the symmetry of the array of chromophores, without regard

to the presence of nonchromophoric oscillators.

Consider, then, a system consisting solely of the arrayl of
chromophore oscillator axes spaced at uniform intervals along
a translational axis and oriented at anglavith respect to the
translational axis, as shown in Figure 1 fér= 5. The system
belongs to point grougz,, though higher symmetries occur if
6 = 0 or /2. From the method of characters of symmetry
operation* one finds that all normal modes must be of
symmetry species f£or By, the number of modes of each species
being those shown in Table 1. There are no degenerate modes.
For our purposes it is sufficient to specify the symmetries of
the modes by their behavior with respect to inversion through
the inversion center, indicated by the subscripts g (symmetric
with respect to inversion) and u (antisymmetric with respect to
inversion).

Assuming that the normal modes are given by eq 16, the
following phases satisfy the symmetry requirements:

g

A shift in 6 from these values bytx also satisfies the
corresponding symmetry, as it simply reverses the signs of the
dipole moments.

By normalization oft(l”) according to eq 14, one finds

—(N+ ka2 (u-modes 17
—(N+ 1)ka/2 + n/2 (g-modes (17

dy? sinN K1a)1/2

=0 [N >
“= 2710(2 2 sink a (18)
where the upper sign applies to g-modes and the lower sign to
u-modes.

Tests of Normal Mode Wave Forms

Figure 3 shows the normal mode components of the amide
chromophores in AAbu)i. The bars showz{) for each
chromophoraml in each normal mode calculated directly by
egs 13 and 14, which assume no particular wave form. It is
seen that every odd-numbered mode has u symmetry and every
even-numbered mode has g symmetry. These symmetries are
not exact, as expected from the fact that the full system does
not haveCy, symmetry; however, the discrepancies between
“symmetric” components are 1% or less, and are not apparent
in the figure.

The curves in Figure 3 were calculated by eqs-18, using
k. values obtained frorw,, by interpolation in eq 12. The values
are given in Table 2. The curves agree well with the components

must belong to an irreducible representation (symmetry species)indicated by the bars, showing that the simple sinusoidal wave

of the molecule at rest Thus, the symmetries of the normal
modes are governed by the symmetry of the molecule. The
normal mode methdfrequires no information on the symmetry
of the molecule, though the eigenvectors describing the normal

form is an accurate representation of the normal modes. Note
that this conclusion is not evident from the bars alone.

The dispersion relation of Figure 2 provides a further test.
The figure shows a number of data points for the eigenfrequen-

modes automatically belong to whatever symmetry species areciesw, calculated for Abu)y with N = 10 and 30, and using

required by the structure.
Our translational helix does not necessarily have any sym-
metry elements. However, it turns out that the normal modes

k values estimated from a spline fit (a crude sine curve) to
eigenvector components such as those shown by the bars in
Figure 3. These data confirm that (i) eq 12 is consistent with
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Figure 3. Normal modes of fully extended3fbu).,. The ordinate isr™) in units of 107 cmY2 Bars show eigenvector components on amide
chromophores. Curves show wave forms calculated by eq 16. Modes are numbered in order of increasing frequency.

TABLE 2: Frequencies and Wave Vectors of Normal Modes Here eq 16 has been incorporated in complex form, recognizing

of Fully Extended (BAbu)so that the real parts of bot}) andz{}) are the actual eigenvector
n  wn(10®s?) ka2t n  on(10%sY)  kal2r components. Equation 20 is rearranged to give

1 9.4503 0.0432 6 9.7836 0.2787

2 9.5336 0.0878 7 9.8146 0.3259 N

3 9.6159 0.1351 8 9.8365 0.3695 i — -1 i(m—pkna

ce c Ao A0 i€ 21
4 9.6859 0.1841 9 9.8507 0.4169 1 rr;( 22 Azpim (1)
5 9.7413 0.2302 10 9.8585 0.4600

an accurate normal mode analysis and (i) the same dispersionThus,c; and6; are determined from the absolute value and polar
relation is valid for a wide range of chain lengths. angle of the expression on the right. Note that= 0 by eq 16.

A further noteworthy feature of the normal modes is that they Equation 21 is nearly independent pffor values more than
do not obey, even approximately, a periodic boundary condition, 2—3 unit cells from the ends. In the following we tage= [(N
which requires that the component on partldle- 1 be identical ~ + 1)/2].
to the component on particle 1. This condition has been applied
to related problems on one-dimensional systems as a simplifiedpipole Strength and Rotational Strength
means of obtaining normal mod#&s!é

An electric dipole moment™ and magnetic dipole moment
Dipole Moments of Nondipsersive Oscillators m(® of the nth normal mode are defined By

The eigenvector block{” contains the components of
the normal mode dipole moments of the nondispersive oscil- " _ iz

(n)
lators, withp = 1, ...,N andj = 2, .., S Let 0y (22)

mJJ

(n) i (Pknato-+6;) N S
=ce ! 19
(19) m® = > Zz;:}(Rer r) x 0 (23)
m=1j=

whereRp, is the origin of unit celmwith respect to a molecular
coordinate origin. We takBy, = mag, whereé is a unit vector

Pkt ot0) — ¢ Z(A22_1A21)p] q€Mat)(20)  along the translation axis of the helix. The normal mode dipole
strengthD,, and rotational strengtR, are’

wherec; andg; are amplitudes and phase angles determined by
eq 6; i.e.
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D, = (Rep™-(Rep" (24) 2
R,= (Reu"-(Rgm® (25) 1 \
When the wave form of eq 19 is introducd?}, andR, become § 10 “‘
functions of a continuous variable which will be denoted j— 5 X
D(N,K) and R(N,k). By combining eqs 19 and 225, one \\;-.
. Y -
obtains ° \‘\\/ > --,.“&a..»- eweed
D(N.K) = [Ly(N,K)]? Cy(N.K) (26) s [
R(N,K) = [Ll(N,k)]2 C,(N,K) + Li(N,K) L,(N,k) C5(N,K) (27) 100 A
80
where the lattice sumis; andL, are I \
60
sin(Nkal2) I /
L,(NK) =———— 28 = 40
1(NK) sinkal2) (28) iz; Il \
20 - .
L(NK) = B ZANTAY: Y NP
(N+ 1) sin[(N — Dka/2] — (N — 1) sin[(N + 1)ka/2] 0 B ,/«\ ]\
: 29) RYAY
2(1— coska) -20
and the cell sum€,, C,, andC; are -40
0.0 0.1 0.2 0.3 0.4 05
S S .. . ka/2n
C,NK = (sm 0 sin6), )C—C 0.0 (30) Figure 4. Lattice sums for 1-dimensional lattice withd unit cells:
1' ;; cosg; coso, |77 (--)N=5; (- — —) N=10; = —) N = 15; () N = 20.

S S [sin6 sin6 . . 15
Cy(NK) = JZZ(COSéi Cosél)chuj.rl x 0 (31) i /\
=2
s S sin6; coso, L f'- s / \/\\"'\. Py
Cy(NK) = Z — cos6, sin agol-ex 0, (32 Y
Sl
(]
The upper line in the parentheses in eqs-3Q applies to 0.8
g-modes and the lower line to u-modes. Th,k) come from /\
the sums over unit celisin egs 22 and 23 and are independent 0.4 g
of the structure within the unit cell. Th&(N,k) come from the < 00 — \ .
sums over oscillatorgin one unit cell; their dependence dh Z '"‘\< """
comes primarily from the normalization of coefficients in eq oV-0.4 —
18. Notice that the rotational strength comes entirely from the 08 al
chirality of the unit cell and not that of the lattice for a ) \/
translational helix. -1.2
Figure 4 shows the lattice sums for varidlisFigure 5 shows 0.0
the cell sums forAbu);s. Figure 6 showd®(N,k) along with A
the normal mode dipole strengths for variog&\bu)y. Figure -0.1 174% o
7 showsR(N,k) along with the normal mode rotational strengths. = i\ ,16’# ':
It is seen that the region of lowis dominant for both strength € -02 \‘) » Y
functions, and this is increasingly so Bsincreases. This is i K‘)r\ , /
largely due to the behavior of the lattice sums. The most 0.3 O~
important finding is that botlD(N,k) andR(N,k) are largest for o4 1 -

the normal mode of loweg, in agreement with the normal

: e . 0.0 0.1 0.2 0.3 04 05
mode calculations. Likewise, the functions reproduce the ka/2x
strengths of most of the weak modes quite well. These resultsFigure 5. Cell sums for Abu)s. The ordinate units are 1€ cm for
account for the unusual behavior of calculated absorption and C; and 1024 cn for C, andCs: (—) u-modes; £ — —) g-modes. The
circular dichroic spectra of fully extended pgiyamino acid) value ofC; for g-modes is essentially zero on the scale shown.

chains®
V, and group velocitie¥y. These velocities are of no immediate

Wave Velocities ) o concern in our study of optical properties, but they help to
This study has focused mainly on polarization waves as complete the picture of polarization waves. The velocities are

standing waves. The approach produces realistic results in termgiyed py the relation betweem andk according té8

of spectra calculated by more accurate methods, and it is

therefore relevant to ask whether traveling polarization waves V, = olk (33)
in similar systems have any physical significance. The most
important properties of traveling waves are their phase velocities Vg = da/dk (34)
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The velocities are shown in Figure 8, as calculatedféu),s
from eq 12 and its derivativev, is less than the velocity of
light over most of the range, though — « ask — 0. There

is no contradiction to the theory of relativity in this result,
according to the resolution of related problems of phase
velocities by Sommerfeltf Vg is closely analogous to the group
velocity of excitation waves (“excitons”) in the quantum
mechanical theory of excitations in crystéldn that casev,
represents the velocity of migration of excitation in the crystal,

Applequist
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Figure 8. Phase and group velocities of polarization waves in
(BAbu)s: (—) phase velocity; € — —) group velocity.

as expressed by a wave whose amplitude is the coefficient
expressing the probability of excitation at each chromopRbre.
The correspondence between exciton theory and the classical
polarizability model has been demonstrated for a 3-dimensional
crystal by Ball and McLachlaft

Discussion

The main conclusions of this study are the following.

(1) The electronic normal modes of a finite translational helix
are well approximated by sinusoidal standing polarization waves.
This conclusion is based on the facts that (i) such wave forms
agree accurately with computed eigenvector components, (ii)
the relation between frequency and wave vector for such waves
agrees with an accurate normal mode analysis, and (iii) the
waveforms lead to dipole strengths and rotational strengths of
normal modes in agreement with accurate calculations.

(2) The assumption of sinusoidal wave forms leads to
expressions for dipole and rotational strengths in terms of
products of lattice sums and cell sums; the former are
independent of unit cell structure, and the latter contain all the
information on the contents of the unit cell. This provides a
convenient means of tracing the origins of effects that are
otherwise buried in the equations of the eigenvalue equations
for the normal modes. The new expressions may also offer
computational convenience in some problems, though the
eigenvalue equations are more accurate and usually present no
computational limitations.

(3) The absorption and circular dichroic spectra of the finite
translational helices ofgAbu)y are dominated by the single
normal mode of lowesk, which has u symmetry. A major
reason for this is the large value of the lattice sluy(#\,k) and
Lo(N,K) in the lowk region; thus, there should be a tendency
for similar spectral behavior in any chiral translational helix.
Similar calculations for {Amb)y and (3Chc)\é do show the
dominance of the lovk mode in both absorption and CD.
However, the distribution of rotational strengths among normal
modes is rather different iffAib)y,6 showing that the cell sums,
which are characteristic of the particular unit cell structure, also
play an important role in determining the major features of the
spectra.

(4) The occurrence of the lowest wave at the lowest
frequency of the band of normal modes in fully extended poly-
(B-amino acid) chains arises from the negative interaction matrix
elements in eq 12. When these elements are positive, as when
6 > 54.7 (Figure 1), the lowestk occurs at the highest
frequency.
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(5) The normal mode polarization waves do not obey a (8) Applequist, J.; Carl, J. R.; Fung, K.-Kl. Am. Chem. S0d.972

- " 94, 2952.
periodic boundary condition, and the normal modes behave
rather differently from those derived from a periodic boundary (% 2‘9\/'09' _Ht'Jj Cgerrnghysiggs ?)?' 3193" | Weiss. Licch

. 16 i S h pplequist, J.; Sundberg, K. R.; Olson, M. L.; Weiss, em.

condition. As Moff_|t pointed out in r_ns exciton treatment o_f Phys.1979 70, 1240- erratumy). Chem. Phys1979 71, 2330.
general helices, this boundary condition results in exact vanish- 1) giiliouin, L. Wave Propagation in Periodic Structuredst ed.:
ing of dipole strengths of all normal modes but one for a McGraw-Hill: New York, 1946; pp 26-30.
translational helix of any finite chain length. It can be shown (12) Bode, K. A.; Applequist, JJ. Phys. Chem1996 100, 17825;
further that the remaining “allowed” normal mode Has= 0 erratum,J. Phys. Chem. A997 101, 9560. o
for all chain lengths. These features are contrary to the present, 9&13) Brown, F. C.The Physics of Solid$V. A. Benjamin: New York,

. . . 7, p 154.
results for finite tranlational helices. (14) Wilson, Jr., E. B.; Decius, J. C.; Cross, P Mlecular Vibrations

McGraw-Hill: New York, 1955; pp 9299.

References and Notes (15) Born, M.; Huang, KDynamical Theory of Crystal Lattice®xford

(1) Bestian, HAngew. Chem., Int. Ed. Engl96§ 7, 278. University Press: London, 1954; pp SB1.
(2) Schmidt, E Angew. Makromol. Cheni97Q 14, 185. (16) Moffitt, W. J. Chem. Phys1956 25, 467.
(3) Seebach, D.; Overhand, M.;"Kaole, F. N. M.; Martinoni, B.; (17) Applequist, JJ. Chem. Phys1979 71, 1983.

Oberer, L.; Hommel, U.; Widmer, Hdelv. Chim. Actal996 79, 913. (18) Born, M. Atomic Physics5th ed.; Hafner: New York, 1951; pp
(4) Krauthaiser, S.; Christianson, L. A.; Powell, D. R.; Gellman, S.  330-331.

H. J. Am. Chem. Sod.997, 119, 11719.

(5) Seebach, D.; Abele, S.; Gademann, K.: JaunABgew. Chem (19) Sommerfeld, AOptics Academic Press: New York, 1964; p 114.
Int. Ed.1999 38, 1595. T ' ' (20) Davydov, A. STheory of Molecular ExcitongicGraw-Hill: New

(6) Applequist, J.; Bode, K. AJ. Phys. Chem. £00Q 104, 7129. York, 1962; pp 35-37, 81.

(7) Applequist, J.J. Chem. Phys1979 71, 4332; erratum,). Chem. (21) Ball, M. A.; McLachlan, A. DProc. R. Soc. London Ser.1964

Phys.198Q 73, 3521. 282 433.



