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The electronic normal modes of a finite translational polymer helix are found to be well approximated by
sinusoidal standing waves of electronic polarization with either even or odd symmetry with respect to inversion
through the chain center. The dipole and rotational strengths of the normal modes are expressed as products
of two types of sums over the wave: (i) lattice sums which are independent of the structure within the unit
cell and (ii) cell sums which contain the structural information of the unit cell. Owing primarily to the behavior
of the lattice sums at low wavenumberk of the polarization wave, the dipole and rotational strengths of a
single low-k mode tend to dominate the absorption and circular dichroic spectra. The dispersion relation
between frequency and wavenumber is derived for the polarization waves, giving further relations for the
phase velocity and group velocity of a traveling polarization wave. The results are illustrated by calculations
for fully extended poly[(R)-â-aminobutyric acid] chains.

Introduction

A translational helix is a structure generated by translating a
unit cell repeatedly in one dimension, with no accompanying
rotation. The term “one-dimensional crystal” would be appropri-
ate, though in the case of a polymer chain capable of taking on
such a structure, it is more useful to classify it among the various
possible helical conformations of the polymer. (In this context
we regard the unit cell as containing one residue, as any helix
with an exact repeat inN residues could be regarded as a
translational helix if the unit cell were defined as one repeat.)

The poly(â-amino acids) in fully extended form constitute
translational helices. This structure has been found in intermo-
lecularly hydrogen-bonded form in fibers and films of long-
chain, chiral poly(â-aminobutyric acid) [(âAbu)N].1,2 Small
â-peptides have also been found in similar or related sheet forms
in crystals and in solution.3-5 In the preceding paper in this
issue6 Bode and I have shown that our model for electronic
absorption and circular dichroism (CD) of single extended
chains, such as might occur in solution under appropriate
conditions, predicts unusual features which appear to be related
to the unique character of the translational helix. In particular,
the model produces an absorption spectrum which is dominated
by a single electronic normal mode, giving a single Lorentzian
peak. Likewise, the CD spectrum tends to be dominated by the
same mode, giving a single peak that is coincident in wavelength
and shape with that of the absorption spectrum. The CD
spectrum is also unusual in that the system of amideπ-π*
chromophores is planar in a translational helix, so that the
rotational strength of theπ-π* band comes entirely from
interaction of the chromophores with the chiral environment of
nonchromophoric atoms.

The purpose of this paper is to examine the normal modes
predicted by our model for a translational helix to discover how
the unusual spectral features are related to the structure. It is
found that the normal modes are well approximated by
sinusoidal standing waves of electronic polarization and that
all of the spectral properties can be understood by the behavior
of such waves. The known polymer (âAbu)N, which derives its

chirality from a methyl side chain on Câ (here taken as theR
configuration), is taken as an example to illustrate the predicted
wave properties.

The Model

Our model for a translational helix consists of an array ofN
unit cells, each generated from a neighboring unit cell by
translation through a distancea along a specified axis. The unit
cell containsP polarizable point particles representing atoms
or groups of atoms. On each such point lie a number of linear
electronic oscillators, giving a total ofS oscillators in the unit
cell. The properties of the system are to be calculated from the
coordinates and dipole polarizabilities of all oscillators in the
array, assuming that the particles interact only by way of the
electric fields of their induced electric dipole moments. The
position of oscillatorj relative to theorigin of the unit cellis r j

(j ) 1, ..., S). The orientation of oscillatorj is given by unit
vector ûj.

For simplicity we consider the case in which the unit cell
contains only one dispersive oscillator, which is designated by
index j ) 1 and is located at the unit cell origin (r1 ) 0). The
polarizability r1 of the dispersive oscillator is assigned a
Lorentzian frequency dependence given by

whered0 andω0 are the dipole strength (cm3 s-2) and angular
frequency of resonance, respectively, of the isolated oscillator,
ω is the frequency of the light, andγ is the damping coefficient.
[Here we replace wavenumberνj used in previous papers7 with
ω ) 2πcνj, wherec is the velocity of light. Hence, the dipole
strengthD0 of the previous papers is replaced byd0 ) 4π2c2D0.]
All other oscillators are taken to be nondispersive with constant
polarizabilities of the form

r1 )
d0û1û1

ω0
2 - ω2 + iγω

(1)

rj ) Rjûjûj (2)
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Thus, nonchromophoric atoms are represented by three mutually
perpendicular oscillators with equal polarizabilities. The NC′O
group is represented by the dispersive oscillator of eq 1 plus
three unequal, mutually perpendicular nondispersive oscillators
representing polarizability contributions from electronic transi-
tions well above the frequency range of the chromophore.

Polarization Waves

The basic equation of the dipole interaction model is8

whereA is the interaction matrix,µ is the column matrix of
dipole moments of all oscillators, andE is the column matrix
of external electric fields at each oscillator. All matrix elements
are expressed in DeVoe form.9 In particular,A has diagonal
elementsRj

-1 and off-diagonal elementsûj‚T jl‚ûl, whereT jl is
the dipole field tensor.

We wish to determine the possible electronic polarization
motions of the system in the absence of an external field. The
problem is greatly simplified by partitioning of the matrices
into blocks for subsytem 1, containing the dispersive oscillators,
and subsystem 2, containing the nondispersive oscillators. The
partitioned form of eq 3 for this problem is

where subscripts 1 and 2 on each block represent the subsystems
whose oscillators are referred to in the rows or columns,
respectively, of that block, and where it is recognized that the
11 block contains all of the frequency dependence ofA. The
consequences of this partitioning have been developed in detail
previously10 for the determination of normal modes. For the
present purposes we note that eq 4 leads to the relations for the
dipole moments

where

Using eq 1 with neglect of the damping term, we have

whereI is the identity matrix. From eqs 5 and 8 we have

which corresponds to the classical equation of motion for a
system of undamped, coupled oscillators having a time depen-
dence of the form eiωt. Let µmj be the component ofµ for
oscillator j in unit cell m. For an infinitely long translational
helix the equation of motion for the chromophores is satisfied
by traveling waves of the form11

where c1 is a constant,k is the wave vector, related to the
wavelengthλ by k ) (2π/λ, andδ is an arbitrary phase angle.
This wave is called here a “polarization wave”. In what follows

it will be shown that such a wave is a good approximation for
fairly short translational helices as well as long ones.

Dispersion Relation

The equation of motion determines the dispersion relation,
which relatesω andk. We insert eq 10 into eq 9 and obtain

for p ) 1, ..., N. On rearranging and taking the real part, we
have

This relation would be independent ofp for an infinitely long
chain. But the diagonal elements ofA11′(0) are relatively
constant for chromophores more than 2-3 cells from the ends
of the chain, and the off-diagonal elements diminish rapidly
with the distance between chromophores. Hence, eq 12 is nearly
independent ofp for values well removed from the ends of a
finite chain. We will apply the relation usingp ) [(N + 1)/2],
where the brackets denote the integer part. The following are
important consequences of eq 12: (i)ω(-k) ) ω(k); (ii) ω(k)
) ω(k + 2π/a); (iii) ω(k) may be either an increasing or a
decreasing function ofk in the range 0e k e π/a, depending
on whether theA11′(0) elements for near neighbors are negative
or positive, respectively. If the system consisted only of the
array of oscillators in Figure 1, these elements would be positive
for θ > 54.7° and negative forθ < 54.7°.

Figure 2 shows the dispersion relation calculated for (âAbu)15

from eq 12. For this and all other results reported here for
(âAbu)N, the structure was generated as described in the
preceding paper in this issue,6 and the calculations included the
interactions among all atoms and amideπ-π* chromophores
in the system. The abscissa iska/2π ) a/λ. The unit cell length
a is 4.824 Å.6 The chromophore parameters (which are
equivalent to those of data setHy

12) ared0 ) 1.133× 108 cm3

s-2, ω0 ) 10.85× 1015 s-1, andû1 oriented at 9.3° with respect

Figure 1. Array of chromophore axes in a translational helix.

Figure 2. Dispersion relation for (âAbu)N: (s) calculated by eq 12
for N ) 15; (O) normal modes forN ) 10; (0) normal modes forN
) 30.

ω2ei(ωt+pka+δ) ) d0∑
m)1

N

[A11′(0)]pmei(ωt+mka+δ) (11)

ω2 ) d0∑
m)1

N

[A11′(0)]pm cos[(m - p)ka] (12)

Aµ ) E (3)

(A11(ω) A12

A21 A22
)(µ1

µ2
)) (00) (4)

A11′(ω)µ1 ) 0 (5)

µ2 ) -A22
-1A21µ1 (6)

A11′(ω) ) A11(ω) - A12A22
-1A21 (7)

A11′(ω) ) A11′(0) - (ω2/d0)I (8)

A11′(0)µ1 ) (ω2/d0)µ1 (9)

µm1 ) 1/2c1e
i(ωt+mka+δ) (10)
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to the N-C′ bond toward the O atom. The collective behavior
of the unit cell contents is like that of an oscillator oriented at
angle θ ) 13.9°,6 corresponding to the region of negative
interaction noted above.

The dispersion curves calculated forN g 7 are all in good
agreement with the curve in Figure 2, with only slight variations
for the shorter chains. As noted above, the same values ofω
are obtained when the sign ofk is reversed, and the curve
oscillates with period 1 on the abscissa scale. The range-0.5
e ka/2π e +0.5 is known as the first Brillouin zone.13 Values
of k outside this range have no physical significance, as they
correspond to wavelengths shorter than 2a.

Electronic Normal Modes

The normal modes of the system are solutions to eq 4
corresponding to standing waves. In the partially dispersive
normal mode method, the problem is reduced to the solution of
eq 9 in the form of the eigenvalue problem:10

whereωn
2 is thenth eigenvalue corresponding to eigenvector

t1
(n), whose components are dipole moments of the chro-

mophores obeying the orthonormality condition

where superscript T denotes transpose andδnn′ is the Kronecker
delta. The factor 4π2c2 preserves the units oft1

(n) used in our
previous papers. There areN normal modes in accordance with
the N degrees of freedom in the system of chromophores.

In the following sections we approximate a normal mode by
a superposition of two waves of the form of eq 10 with opposite
signs ofk, giving the standing wave

where the indexn specifies a particular normal mode, usually
in order of increasingωn. Then the components oft1

(n), denoted
τm1

(n) (m ) 1, ...,N), are

The normalization constantc1 depends onδ, as shown in the
following section.

It should be noted that the discrete set ofωn values are the
only pure frequencies of free oscillation consistent with the
equations of motion for a given chain length. Equation 12
expressesω and k as continuous variables, though only for
infinite chains do all points on the dispersion curve represent
possible waves in the absence of an external force.

Symmetry of Normal Modes

A principle from the theory of molecular vibrations applies
to the electronic normal modes as well: every normal mode
must belong to an irreducible representation (symmetry species)
of the molecule at rest.14 Thus, the symmetries of the normal
modes are governed by the symmetry of the molecule. The
normal mode method10 requires no information on the symmetry
of the molecule, though the eigenvectors describing the normal
modes automatically belong to whatever symmetry species are
required by the structure.

Our translational helix does not necessarily have any sym-
metry elements. However, it turns out that the normal modes

whose frequencies are correlated with the resonant frequency
of the chromophore have very nearly the symmetry governed
by the symmetry of the array of chromophores, without regard
to the presence of nonchromophoric oscillators.

Consider, then, a system consisting solely of the array ofN
chromophore oscillator axes spaced at uniform intervals along
a translational axis and oriented at angleθ with respect to the
translational axis, as shown in Figure 1 forN ) 5. The system
belongs to point groupC2h, though higher symmetries occur if
θ ) 0 or π/2. From the method of characters of symmetry
operations14 one finds that all normal modes must be of
symmetry species Ag or Bu, the number of modes of each species
being those shown in Table 1. There are no degenerate modes.
For our purposes it is sufficient to specify the symmetries of
the modes by their behavior with respect to inversion through
the inversion center, indicated by the subscripts g (symmetric
with respect to inversion) and u (antisymmetric with respect to
inversion).

Assuming that the normal modes are given by eq 16, the
following phases satisfy the symmetry requirements:

A shift in δ from these values by(π also satisfies the
corresponding symmetry, as it simply reverses the signs of the
dipole moments.

By normalization oft1
(n) according to eq 14, one finds

where the upper sign applies to g-modes and the lower sign to
u-modes.

Tests of Normal Mode Wave Forms

Figure 3 shows the normal mode components of the amide
chromophores in (âAbu)10. The bars showτm1

(n) for each
chromophorem1 in each normal moden calculated directly by
eqs 13 and 14, which assume no particular wave form. It is
seen that every odd-numbered mode has u symmetry and every
even-numbered mode has g symmetry. These symmetries are
not exact, as expected from the fact that the full system does
not haveC2h symmetry; however, the discrepancies between
“symmetric” components are 1% or less, and are not apparent
in the figure.

The curves in Figure 3 were calculated by eqs 16-18, using
kn values obtained fromωn by interpolation in eq 12. The values
are given in Table 2. The curves agree well with the components
indicated by the bars, showing that the simple sinusoidal wave
form is an accurate representation of the normal modes. Note
that this conclusion is not evident from the bars alone.

The dispersion relation of Figure 2 provides a further test.
The figure shows a number of data points for the eigenfrequen-
ciesωn calculated for (âAbu)N with N ) 10 and 30, and using
k values estimated from a spline fit (a crude sine curve) to
eigenvector components such as those shown by the bars in
Figure 3. These data confirm that (i) eq 12 is consistent with

A11′(0)t1
(n) ) (ωn

2/d0)t1
(n) (13)

t1
(n)Tt1

(n′) ) δnn′d0/4π2c2 (14)

µm1
(n) ) c1e

iωnt cos(mkna + δ) (15)

τm1
(n) ) c1(mkna + δ) (16)

TABLE 1: Number of Normal Modes of Each Symmetry
Species in a Translational Helix ofN Unit Cells

N Ag Bu

even N/2 N/2
odd (N - 1)/2 (N + 1)/2

δ ) {-(N + 1)kna/2 (u-modes)
-(N + 1)kna/2 + π/2 (g-modes)} (17)

c1 )
d0

1/2

2πc(N2 -
sinNkna

2 sinkna)-1/2

(18)
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an accurate normal mode analysis and (ii) the same dispersion
relation is valid for a wide range of chain lengths.

A further noteworthy feature of the normal modes is that they
do not obey, even approximately, a periodic boundary condition,
which requires that the component on particleN + 1 be identical
to the component on particle 1. This condition has been applied
to related problems on one-dimensional systems as a simplified
means of obtaining normal modes.15,16

Dipole Moments of Nondipsersive Oscillators

The eigenvector blockt2
(n) contains the componentsτpj

(n) of
the normal mode dipole moments of the nondispersive oscil-
lators, withp ) 1, ...,N and j ) 2, .., S. Let

wherecj andθj are amplitudes and phase angles determined by
eq 6; i.e.

Here eq 16 has been incorporated in complex form, recognizing
that the real parts of bothτpj

(n) andτm1
(n) are the actual eigenvector

components. Equation 20 is rearranged to give

Thus,cj andθj are determined from the absolute value and polar
angle of the expression on the right. Note thatθ1 ) 0 by eq 16.
Equation 21 is nearly independent ofp for values more than
2-3 unit cells from the ends. In the following we takep ) [(N
+ 1)/2].

Dipole Strength and Rotational Strength

An electric dipole momentµ(n) and magnetic dipole moment
m(n) of the nth normal mode are defined by10

whereRm is the origin of unit cellmwith respect to a molecular
coordinate origin. We takeRm ) maê, whereê is a unit vector
along the translation axis of the helix. The normal mode dipole
strengthDn and rotational strengthRn are17

Figure 3. Normal modes of fully extended (âAbu)10. The ordinate isτm1
(n) in units of 10-7 cm1/2. Bars show eigenvector components on amide

chromophores. Curves show wave forms calculated by eq 16. Modes are numbered in order of increasing frequency.

TABLE 2: Frequencies and Wave Vectors of Normal Modes
of Fully Extended (âAbu)10

n ωn (1015 s-1) kna/2π n ωn (1015 s-1) kna/2π

1 9.4503 0.0432 6 9.7836 0.2787
2 9.5336 0.0878 7 9.8146 0.3259
3 9.6159 0.1351 8 9.8365 0.3695
4 9.6859 0.1841 9 9.8507 0.4169
5 9.7413 0.2302 10 9.8585 0.4600

cje
iθj ) -c1∑

m)1

N

(A22
-1A21)pj,m1e

i(m-p)kna (21)

µ(n) ) ∑
m)1

N

∑
j)1

S

τmj
(n)ûj (22)

m(n) ) ∑
m)1

N

∑
j)1

S

τmj
(n)(Rm + r j) × ûj (23)

τpj
(n) ) cje

i(pkna+δ+θj) (19)

cje
i(pkna+δ+θj) ) -c1∑

m)1

N

(A22
-1A21)pj,m1e

i(mkna+δ) (20)
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When the wave form of eq 19 is introduced,Dn andRn become
functions of a continuous variablek, which will be denoted
D(N,k) and R(N,k). By combining eqs 19 and 22-25, one
obtains

where the lattice sumsL1 andL2 are

and the cell sumsC1, C2, andC3 are

The upper line in the parentheses in eqs 30-32 applies to
g-modes and the lower line to u-modes. TheLi(N,k) come from
the sums over unit cellsm in eqs 22 and 23 and are independent
of the structure within the unit cell. TheCi(N,k) come from the
sums over oscillatorsj in one unit cell; their dependence onN
comes primarily from the normalization of coefficients in eq
18. Notice that the rotational strength comes entirely from the
chirality of the unit cell and not that of the lattice for a
translational helix.

Figure 4 shows the lattice sums for variousN. Figure 5 shows
the cell sums for (âAbu)15. Figure 6 showsD(N,k) along with
the normal mode dipole strengths for various (âAbu)N. Figure
7 showsR(N,k) along with the normal mode rotational strengths.
It is seen that the region of lowk is dominant for both strength
functions, and this is increasingly so asN increases. This is
largely due to the behavior of the lattice sums. The most
important finding is that bothD(N,k) andR(N,k) are largest for
the normal mode of lowestk, in agreement with the normal
mode calculations. Likewise, the functions reproduce the
strengths of most of the weak modes quite well. These results
account for the unusual behavior of calculated absorption and
circular dichroic spectra of fully extended poly(â-amino acid)
chains.6

Wave Velocities
This study has focused mainly on polarization waves as

standing waves. The approach produces realistic results in terms
of spectra calculated by more accurate methods, and it is
therefore relevant to ask whether traveling polarization waves
in similar systems have any physical significance. The most
important properties of traveling waves are their phase velocities

Vp and group velocitiesVg. These velocities are of no immediate
concern in our study of optical properties, but they help to
complete the picture of polarization waves. The velocities are
fixed by the relation betweenω andk according to18

Dn ) (Re)µ(n)‚(Re)µ(n) (24)

Rn ) (Re)µ(n)‚(Re)m(n) (25)

D(N,k) ) [L1(N,k)]2 C1(N,k) (26)

R(N,k) ) [L1(N,k)]2 C2(N,k) + L1(N,k) L2(N,k) C3(N,k) (27)

L1(N,k) )
sin(Nka/2)

sin(ka/2)
(28)

L2(N,k) )
(N + 1) sin[(N - 1)ka/2] - (N - 1) sin[(N + 1)ka/2]

2(1 - coska)
(29)

C1(N,k) ) ∑
j)1

S

∑
l)1

S (sin θj sin θl

cosθj cosθl
)cjclûj‚ûl (30)

C2(N,k) ) ∑
j)1

S

∑
l)1

S (sin θj sin θl

cosθj cosθl
)cjclûj‚r l × ûl (31)

C3(N,k) ) ∑
j)1

S

∑
l)1

S (sin θj cosθl

- cosθj sin θl
)acjclûj‚ê× ûl (32)

Figure 4. Lattice sums for 1-dimensional lattice withN unit cells:
(- - -) N ) 5; (- - -) N ) 10; (s s) N ) 15; (s) N ) 20.

Figure 5. Cell sums for (âAbu)15. The ordinate units are 10-16 cm for
C1 and 10-24 cm2 for C2 andC3: (s) u-modes; (- - -) g-modes. The
value ofC1 for g-modes is essentially zero on the scale shown.

Vp ) ω/k (33)

Vg ) dω/dk (34)
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The velocities are shown in Figure 8, as calculated for (âAbu)25

from eq 12 and its derivative.Vp is less than the velocity of
light over most of the range, thoughVp f ∞ ask f 0. There
is no contradiction to the theory of relativity in this result,
according to the resolution of related problems of phase
velocities by Sommerfeld.19 Vg is closely analogous to the group
velocity of excitation waves (“excitons”) in the quantum
mechanical theory of excitations in crystals.20 In that caseVg

represents the velocity of migration of excitation in the crystal,

as expressed by a wave whose amplitude is the coefficient
expressing the probability of excitation at each chromophore.20

The correspondence between exciton theory and the classical
polarizability model has been demonstrated for a 3-dimensional
crystal by Ball and McLachlan.21

Discussion

The main conclusions of this study are the following.
(1) The electronic normal modes of a finite translational helix

are well approximated by sinusoidal standing polarization waves.
This conclusion is based on the facts that (i) such wave forms
agree accurately with computed eigenvector components, (ii)
the relation between frequency and wave vector for such waves
agrees with an accurate normal mode analysis, and (iii) the
waveforms lead to dipole strengths and rotational strengths of
normal modes in agreement with accurate calculations.

(2) The assumption of sinusoidal wave forms leads to
expressions for dipole and rotational strengths in terms of
products of lattice sums and cell sums; the former are
independent of unit cell structure, and the latter contain all the
information on the contents of the unit cell. This provides a
convenient means of tracing the origins of effects that are
otherwise buried in the equations of the eigenvalue equations
for the normal modes. The new expressions may also offer
computational convenience in some problems, though the
eigenvalue equations are more accurate and usually present no
computational limitations.

(3) The absorption and circular dichroic spectra of the finite
translational helices of (âAbu)N are dominated by the single
normal mode of lowestk, which has u symmetry. A major
reason for this is the large value of the lattice sumsL1(N,k) and
L2(N,k) in the low-k region; thus, there should be a tendency
for similar spectral behavior in any chiral translational helix.
Similar calculations for (âAmb)N and (âChc)N6 do show the
dominance of the low-k mode in both absorption and CD.
However, the distribution of rotational strengths among normal
modes is rather different in (âAib)N,6 showing that the cell sums,
which are characteristic of the particular unit cell structure, also
play an important role in determining the major features of the
spectra.

(4) The occurrence of the lowestk wave at the lowest
frequency of the band of normal modes in fully extended poly-
(â-amino acid) chains arises from the negative interaction matrix
elements in eq 12. When these elements are positive, as when
θ > 54.7° (Figure 1), the lowestk occurs at the highest
frequency.

Figure 6. Dipole strength function for (âAbu)N: (s) u-modes. The
function for g-modes is essentially zero on the scale shown. Data points
show calculations by normal mode analysis: (O) u-modes; (0) g-modes.

Figure 7. Rotational strength function for (âAbu)N: (s) u-modes;
(- - -) g-modes. Data points show calculations by normal mode
analysis: (O) u-modes; (0) g-modes.

Figure 8. Phase and group velocities of polarization waves in
(âAbu)25: (s) phase velocity; (- - -) group velocity.
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(5) The normal mode polarization waves do not obey a
periodic boundary condition, and the normal modes behave
rather differently from those derived from a periodic boundary
condition. As Moffit16 pointed out in his exciton treatment of
general helices, this boundary condition results in exact vanish-
ing of dipole strengths of all normal modes but one for a
translational helix of any finite chain length. It can be shown
further that the remaining “allowed” normal mode hask ) 0
for all chain lengths. These features are contrary to the present
results for finite tranlational helices.
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(4) Krauthäuser, S.; Christianson, L. A.; Powell, D. R.; Gellman, S.

H. J. Am. Chem. Soc.1997, 119, 11719.
(5) Seebach, D.; Abele, S.; Gademann, K.; Jaun, B.Angew. Chem.,

Int. Ed. 1999, 38, 1595.
(6) Applequist, J.; Bode, K. A.J. Phys. Chem. A2000, 104, 7129.
(7) Applequist, J.J. Chem. Phys.1979, 71, 4332; erratum,J. Chem.

Phys.1980, 73, 3521.

(8) Applequist, J.; Carl, J. R.; Fung, K.-K.J. Am. Chem. Soc.1972,
94, 2952.

(9) DeVoe, H.J. Chem. Phys.1965, 43, 3199.
(10) Applequist, J.; Sundberg, K. R.; Olson, M. L.; Weiss, L. C.J. Chem.

Phys.1979, 70, 1240; erratum,J. Chem. Phys.1979, 71, 2330.
(11) Brillouin, L. WaVe Propagation in Periodic Structures, 1st ed.;

McGraw-Hill: New York, 1946; pp 26-30.
(12) Bode, K. A.; Applequist, J.J. Phys. Chem.1996, 100, 17825;

erratum,J. Phys. Chem. A1997, 101, 9560.
(13) Brown, F. C.The Physics of Solids; W. A. Benjamin: New York,

1967; p 154.
(14) Wilson, Jr., E. B.; Decius, J. C.; Cross, P. C.Molecular Vibrations;

McGraw-Hill: New York, 1955; pp 92-99.
(15) Born, M.; Huang, K.Dynamical Theory of Crystal Lattices; Oxford

University Press: London, 1954; pp 55-61.
(16) Moffitt, W. J. Chem. Phys.1956, 25, 467.
(17) Applequist, J.J. Chem. Phys.1979, 71, 1983.
(18) Born, M.Atomic Physics, 5th ed.; Hafner: New York, 1951; pp

330-331.
(19) Sommerfeld, A.Optics; Academic Press: New York, 1964; p 114.
(20) Davydov, A. S.Theory of Molecular Excitons; McGraw-Hill: New

York, 1962; pp 35-37, 81.
(21) Ball, M. A.; McLachlan, A. D.Proc. R. Soc. London Ser. A1964,

282, 433.

Electronic Normal Modes in Polymer Helices J. Phys. Chem. A, Vol. 104, No. 30, 20007139


