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A computational methodology to treat the covalent boundary between QM and MM regions in the Effective
Fragment Potential (EFP) method, by defining a buffer region consisting of frozen localized molecular orbitals
(LMOs), is introduced. The implementation of energy, gradient, and EFP parameter evaluations in the presence
of frozen LMOs is discussed. The magnitude and source of errors introduced by various choices of buffer
region is studied for the proton affinities of lysine and the tripeptide glycine-lysine-glycine. It is shown that
by reasonable choice of the frozen density buffer region the proton affinity error can be consistently decreased
to less than 0.5 kcal/mol compared to the full ab initio calculation.

I. Introduction

Hybrid quantum mechanical/molecular mechanical methods1

(QM/MM) hold a great promise for molecular modeling since
they in principle can deliver “QM accuracy” for many “MM-
sized” chemical systems, including reactions in which bonds
are broken or formed. The popularity of this approach precludes
any comprehensive review here, so we merely mention a few
representative example of its versatility. Morokuma’s1a ONIOM
approach has been used to investigate the reaction mechanisms
of large organic and organometallic systems, while Gao’s1b

combined use of AM1 and a polarizable force field has proven
to be an effective model of discrete solvation. Similarly, Merz
and co-workers1c,d have investigated a large variety of enzyme
mechanisms using a hybrid PM3/MM approach.

In the Effective Fragment Potential (EFP) method2 the active
part of a molecular system is treated with ab initio quantum
mechanics while the rest is replaced by EFPs. The EFPs are
generated by separate ab initio calculations.

In their present implementation2 the EFPs simulate the most
important nonbonded energy terms: Coulomb interactions,
classical many-body induction, and an empirical representation
of the short-range energy terms (the internal geometries of the
EFPs are frozen and their internal energies can be neglected).
The Coulomb term consists of a distributed multipole expansion3

(charges through octupoles at all atomic centers and bond
midpoints), while the induction term consists of dipole polar-
izability tensors for each valence (localized) molecular orbital.
Both expressions can be systematically improved by including
higher order terms or more expansion points, but the current
form has proved sufficient thus far. The short-range term
represents the difference between the SCF interaction energy
and the Coulomb plus induction energies and accounts for purely
quantum effects such as exchange repulsion and exchange-
induction. It iscurrentlygenerated by a fit to an energy surface
that describes all the possible intermolecular arrangements of a
representative chemical system (e.g., the water dimer for a
water-EFP).

The EFP method has successfully been applied to the study
of aqueous solvation effects,4 by using EFPs to represent solvent
molecules while the solute molecule (or molecules) is treated
with Hartree-Fock theory, as well as to some studies5 of
enzyme active site mechanisms.

Construction of the short-range potential is the most com-
putational and time-demanding step in creating new EFPs. Thus,
recent work has focused on replacing this term with separate
expressions for the short-range forces that arefree of adjustable
empirical parameters.Thus, a complete EFP can be generated
by asingleab initio calculation on the corresponding molecule
as shown in Scheme 1. The general expression for EFP/EFP
exchange repulsion interactions has been published some years
ago,6 while two different general approaches to include charge
penetration have been developed very recently.7,8 Work on
expressions for exchange-induction (including EFP/ab initio
exchange repulsion), charge transfer, and dispersion is currently
in progress.

However, another major improvement is necessary to make
the EFP methodology generally applicable to the study of
chemistry in large condensed phase systems, namely the ability
to place the ab initio/EFP boundary across a covalent bond.
This is the subject of the present paper.

The general problem of covalent boundaries was first dealt
with by introducing link atoms (usually hydrogen) that satisfy
the valence requirements of the QM system but not contribute
to the molecular energy.9 Gao et al.10 have reviewed the
literature and problems associated with this technique, though
subsequent work by Zhang, Lee, and Yang11 using specifically
parametrized boundary atoms gave promising results.

Rivail and co-workers12 have addressed the boundary problem
in a different manner, similar to an earlier idea by Warshel and
Levitt,9a by representing the boundary-bonds as frozen localized
molecular orbitals (LMOs) within their local self-consistent field
(LSCF) algorithm. The frozen LMOs are strictly localized, i.e.,
truncated to span the basis functions of only two atoms, and
act as a buffer between the QM and MM regions. A direct
comparison to the link atom method by Reuter, Dejagere,
Maigret, and Karplus13 concluded that both methods “give
results of similar accuracy and neither one is systematically
better than the other” when the QM region is treated with a
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semiempirical wave function. Gao, Amara, Alhambra, and
Field,10 have elaborated on the semiempirical implementation
of the LSCF method by specifically parametrizing orbitals
(generalized hybrid orbitals) for the linking bonds.

The LSCF method was initially implemented for semiem-
pirical wave functions but was subsequently extended to ab initio
wave functions by Assfeld and Rivail.12d Very recently, Philipp
and Friesner14 implemented an ab initio/MM version of the
frozen LMO method into the program JAGUAR and performed
extensive tests on the conformational space of alanine di- and
tetra-peptides. In all cases, only RHF wave functions have been
considered.

The results of Assfeld and Rivail as well as Philipp and
Friesner indicate that the use of frozen LMOs to treat covalent
QM/MM boundaries for ab initio wave functions has great
promise. Thus, this paper describes the implementation of a
frozen LMO buffer method for treating ab initio/EFP covalent
boundaries. The following section discusses how the energy and
gradients are computed in the presence of frozen LMOs, as well
as how the LMOs are truncated. Section III describes how the
buffer and EFP regions of a molecule are obtained by two
separate ab initio calculations, using the specific example of
the amino acid lysine. Finally, we utilize the method to calculate
the proton affinity of lysine and the tri-peptide glycine-lysine-
glycine, using several choices of buffer region, buffer size, and
location. In addition, we explore a few other representations of
the electrostatic potential of the MM region, to demonstrate the
utility of the EFP/buffer/ab initio method.

II. Theory

A. General Considerations.A buffer region consisting of
one or several LMOs is defined as the ab initio/EFP boundary.
These LMOs are obtained by an ab initio calculation on all, or
a subset, of the system, projected onto the basis functions on
the buffer atoms, and subsequently frozen in the EFP calcula-
tions. The ab initio/buffer region interactions are calculated by
including the exact quantum mechanical Coulomb and exchange
operator due to the charge distribution of the buffer region, in
the ab initio Hamiltonian. This requires calculation of two-
electron integrals over basis functions in the buffer region. Since
the buffer MOs are frozen, the changes in induction contribu-
tions from the buffer region are neglected during a geometry
optimization of the ab initio region. The effect of this ap-
proximation on the chemical reaction of interest can be
systematically reduced by increasing the size of the ab initio
region.

Variational collapse of the ab initio wave function into the
buffer and EFP regions is avoided by keeping the ab initio MOs
orthogonal to the buffer LMOs by Gramm-Schmidt orthogo-
nalization. The presence of the buffer region provides sufficient
separation between the EFP and the ab initio regions so that
the remaining interactions can be treated as nonbonded interac-
tions via the EFP terms discussed above. The EFP and buffer
regions are always kept in the same relative position, and so

the EFP/buffer interaction energy will remain constant and does
not need to be computed.

In the current implementation, the positions of the buffer and
EFP regions are frozen in space. Thus, only the derivatives of
the total energy with respect to the position of the ab initio atoms
need to be computed.

B. Energy. One of the essential parts of our method is
freezing selected molecular orbitals during the SCF step. There
are two main ways currently in use: (1) Projection operators
pioneered by Huzinaga15 and applied to the QM/MM boundary
problem by Assfeld and Rivail.12d (2) Methods related to the
group function approach due to McWeeny,16 such as the
Reduced Variational Space method of Fink and Stevens17 and
the Constrained Space Orbital Variation method by Bagus and
co-workers.18 We employ the latter approach, and we briefly
outline our implementation here.

(1) Construct the AO coefficient matrixC and identify MO
vectors to be frozen. In our case, these are LMOs.

(2) Truncate the frozen LMOs. See below.
(3) LMOs to be frozen are moved to the front ofC andC is

Gramm-Schmidt orthonormalized starting with the frozen orbit-
als. This ensures that the frozen LMOs are normalized and
remain constant during the SCF process.

(4) During each SCF iteration, the Fock matrix in the AO
basis is transformed into the MO basis:C†FAOC ) FMO.

(5) In the resultingFMO matrix the nondiagonal elements
involving the frozen orbitals are set to zero:Fij ) 0, i * j. This
operation ensures the chosen molecular orbitals remain un-
changed from iteration to iteration. To simplify implementation
into GAMESS the modified MO-Fock matrix is backtrans-
formed to the AO basis.

The SCF iterations are repeated until convergence.
Obviously, since the variational space is reduced, the resulting

Hartree-Fock energy is higher than the energy obtained when
all the orbitals are optimized.

Step (5) is identical for RHF, ROHF and GVB calculations.
In the latter two cases we have restricted our implementation
to frozen doubly occupied MOs, since the MOs to be frozen
are presumed to be chemically inactive.

In the case of MCSCF molecular orbital freezing is already
implemented in GAMESS.19

Once the final AO coefficient matrix is obtained, it can be
used as a starting point for calculating the dynamic electron
correlation energy of the ab initio region, using MP2, CI, or
CASPT2. Since the frozen LMOs are chosen to be chemically
inactive they can be frozen along with the atomic core MOs in
the usual way.20

C. Gradients. We wish to optimize the geometry of the
region of the molecule described by the nonfrozen MOs, in the
presence of the frozen MOs. Thus, we require the analytical
derivative of the energy with respect to the coordinate of select
atoms. Freezing MOs introduces a few complications, which
we discuss here (using the notation of Yamaguchi et al.21).

SCHEME 1: EFP Method at a Glance
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For RHF, the derivative of the electronic energy with respect
to atoma can be written as

Here nf denotes nonfrozen occupied MOs,Ea denotes the
derivative with respect to basis functions centered ona and also
includes the Hellmann-Feynman force, whileUij

a is the orbital
response function defined by

Thus, the latter term accounts for the change in all the nonfrozen
MOs as atoma is moved. It is important to note that the sum
over j includes frozen MOs since the nonfrozen MOs are made
orthogonal to the frozen MOs. So the usual simplification for
converged RHF MOs (d.o.) doubly occupied),

cannot be done sinceFij * 0 wheni is a nonfrozen MO andj
is a frozen MO. Instead we use the fact that, like for ROHF,Fij

) Fji so that

For ROHF, no complications are introduced by freezing LMOs
since it does not affect the symmetry of the Fock matrix.

For GVB and MCSCF even the symmetry of the Fock matrix
(i.e., the Lagrangian) is lost when frozen MOs are introduced,
and we will discuss the gradient of these wave functions in
another paper.

D. LMO Truncation. Though localized, MOs that describe
the buffer region have contributions from all basis functions in
the molecule. Since the objective of a QM/MM method is to
reduce the size of the QM region these “tails” will also have to
be removed in the MM region. Tails that extend into the QM
region will have to be removed as well since otherwise the
frozen density will not remain strictly frozen during the QM
region geometry optimization.

In this study, we explore two methods for removing the LMO
tails. One is simply to set the unwanted MO coefficients to zero
followed by reorthonormalization. In an example of a single
truncated molecular orbital, this procedure is equivalent to a
multiplication of all orbital coefficients by the same normaliza-
tion factor. Another method is to project the LMOs onto a
smaller basis set.

Our projection procedure is based on the corresponding orbital
transformation procedure used by King et al.22 to minimize the
number of integrals between two sets of nonorthogonal MOs.
Here we explore the relation of this method to orbital truncation.

Consider a set of molecular orbitals{ψA} expanded in terms
of K orthogonalbasis functions{φi},

where

We wish to project these orbitals ontoL < K orthogonal basis
functions{φ′i}

where

such that

Thus, substituting eq D3 into eq D2 the new expansion
coefficients are given by,

If more than one orbital is projected it is necessary to enforce
orthogonality,

by determining the matrixX such that

Thus,

This results in the following projection algorithm which
transforms orthonormal MO vectors extending over the entire
molecule [Cbig whereψA ) ∑µ

K(Cbig)µAøµ andøµ is an atomic
basis function] to orthonormal MO vectors extending over part
of the molecule:

(1) FormSsmall, a square overlap matrix in the reduced atomic
basis set (formed by excluding select atomic centers).

(2) Form an orthonormal set of basis functionsQ by
diagonalizingSsmall, so thatφ′i ) ∑µ

LQµiøµ.
(3)Form the rectangular overlap matrixSsb with the rows

corresponding to the reduced basis set and columns correspond-
ing to the full basis set.

(4) FormD ) Q†SsbCbig [cf. eq D4].

∂Eelec

∂a
) Ea + 4∑

i

all

∑
j

nf

Uij
a Fij (C1)

∂Cµi

∂a
) ∑

j

all

Uji
aCµj (C2)

4∑
i

all

∑
j

d.o.

Uij
aFij ) 4∑

i

d.o.

Uii
aFii

) -2∑
i

d.o.

Sii
aFii (C3)

4∑
i
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∑
j

d.o.

Uij
aFij ) 2∑

i
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∑
j
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(Uij
a + Uji

a)Fij

) -2∑
i
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∑
j
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Sij
aFij (C4)

ψA(r ) ) ∑
i

K

ciAφi(r )

ciA ) 〈φi|ψA〉 (D1)

ψ′A(r ) ) ∑
i

L

c′iAφ′i(r )

c′iA ) 〈φ′i|ψ′A〉 (D2)

ψA(r ) ≈ ψ′A(r ) (D3)

c′iA ≈ 〈φ′i|ψA〉 ≡ DiA (D4)

〈ψ′A|ψ′B〉 ) ∑
i

L

∑
j

L

DiADjBSij

) ∑
i

L

DiADiB

) δAB

X†D†DX ) 1 (D5)

c′iA ) ∑
q

MO

XqADiq (D6)

6658 J. Phys. Chem. A, Vol. 104, No. 28, 2000 Kairys and Jensen



(5) DiagonalizeD†D to obtain a set of eigenvectorsV and
eigenvaluesΛ [cf. eq D5].

(6) Rearrange the eigenvalues in a descending order.

(7) FormU ) DVΛ-1/2V† [)DX, cf. eq D6].

(8) Form the projected atomic orbital coefficient matrixCsmall

) QU of orthonormal MOs.

In step (7), a symmetric transformation is employed, rather
than canonical transformation (U ) DVΛ-1/2) as in reference
22, since the former yields orbitals that are more similar to the
original LMOs. Both transformations yield identical frozen

densities, but individual MO-dependent properties such as
exchange and orthogonality are affected.

III. Computational Methodology

In this paper we demonstrate the utility of our method by
calculating the proton affinity of theε-NH2 group in the amino
acid lysine and the Gly-Lys-Gly tripeptide. These molecules
are small enough to make full ab initio calculations feasible,
but large enough to allow for several different choices of buffer
region. Figure 1 depicts the general scheme of our method using

Figure 1. Schematical representation of the steps involved in buffer and EFP generation. See section III for more information.
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lysine, divided into the following EFP/buffer/ab initio regions
(CO2H)(NH2)CH-/CH2CH2/-CH2CH2NH2, as an example.

A. Construction of the Buffer Region. The RHF/6-31G*
optimized structure of protonated lysine (LysH+) is obtained
and the MOs are localized using the Edmiston-Ruedenberg
localization scheme.23 The LMOs that will comprise the buffer
are selected and projected, using the corresponding orbital
method, so that they only span basis functions on the atoms in
the buffer region.

The best source of buffer LMOs is presumably LMOs
calculated for the entire molecule. In section IV, we will also
consider a case where the buffer was taken fromn-butane.

B. Construction of the EFP. The density of the molecular
region that will be described by the EFP is re-optimized in the
presence of the buffer region but in the absence of the ab initio
region. The electrostatic potential of the re-optimized density,
but not the buffer density, is expanded in terms of multipoles
through octupoles centered at all atomic and bond midpoint
centers using Stone’s Distributed Multipole Analysis.3 Calcu-
lated in this way, these multipoles do not account for polarization
of the EFP region due to the ab initio region, so that this effect
is not double counted when dipole polarizabilities are added.
Furthermore, the multipoles describe a charge distribution with

net integer charge, so that the entire EFP/buffer/ab initio
description has a net integer charge as well.

The dipole polarizability due to each LMO in the re-optimized
EFP region is calculated analytically. The use of dipole
polarizability tensors calculated using finite difference24 and the
complete neglect of this term are also tested.

In this study we do not include any short-range interactions,
such as exchange repulsion or charge penetration, between the
ab initio and EFP regions. This allows us to focus on the role
of the electrostatic potential on the proton affinity.

C. Calculation of the Proton Affinity. The EFP, buffer, and
ab initio regions are combined for LysH+ and the geometry of
the ab initio region is re-optimized. In a second calculation the
proton is removed and the ab initio region geometry is
re-optimized. The energy difference between these two systems
is taken to be the proton affinity.

Restricted Hartree-Fock and MP2 calculations on lysine and
Gly-Lys-Gly were performed using the 6-31G* basis set25 with
a locally modified version of GAMESS.19 The Edmiston-
Ruedenberg procedure was largely used throughout this work
to generate localized orbitals.23 The Foster-Boys localization
was also tested.26 The core orbitals were included into the orbital
localization.

TABLE 1: Proton Affinities of Lysine (kcal/mol) a

a The upper number is the absolute proton affinity; the lower one is the error relative to the reference ab initio calculation in column 1. The
proton affinity of the fully relaxed lysine is 236.6 kcal/mol.
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IV. Applications

A. Proton Affinity of Lysine. As an initial application of
our method, we calculate the proton affinity (PA) of theε-N in
the amino acid lysine. The addition or removal of a full charge
is a relatively large perturbation on the whole system, and the
accurate representation of the environmental effects on this
reaction should provide a stringent test of the accuracy of our
approach.

Table 1 lists the PAs calculated with buffer regions (con-
structed as outlined in section III) at increasingly larger distances
from theε-N. The buffer regions, in bold and boxed in Table
1, represent LMOs calculated for the RHF/6-31G* optimized
structure of protonated lysine, and truncated by projection. The
buffer region in the first row of the table, for example, consists
of four CH bonds, one CC bond, and two C 1s core MOs. The
geometry of the buffer and EFP regions (always to the left of
the buffer region) is thus taken from the RHF/6-31G* optimized
geometry of protonated lysine.

The target value is the PA calculated using fully relaxed RHF/
6-31G* wave functions and geometries of the protonated and
unprotonated form for lysine, 236.6 kcal/mol. It is important to
separate the error introduced by approximating part of the
electronic charge distribution with an EFP and buffer, from the
error introduced by the geometric constraints on those regions.
This is accomplished by calculating the PA using RHF/6-31G*
for the entire molecule, but only partial geometry optimization
with the same geometrical constraints as in the EFP calculations.
The values are listed in the first column of Table 1, and shows
that the geometrical constraints introduce an error of 0.6 kcal/
mol. In the subsequent discussion, we take these constrained
all-ab initio calculations as our reference for the corresponding
EFP calculations.

Column 3 of Table 1 lists the results obtained for the EFP/
buffer/ab initio calculation. It is evident that the PA converges
relatively quickly to within 0.2 kcal/mol of the all-ab initio
reference value. Column 2 lists the corresponding PA values
without the EFP to isolate the effect of the EFP region of the
molecule on the PA, which can be as large as 2.6 kcal/mol for
this system. The CR-Câ bond and the associated CH and core
LMOs ([Râ]-buffer) appear to be the optimum choice for the
buffer region since this region is relatively nonpolarizable and
far from the protonation site.

The last entry in Table 1 indicates a structural collapse of
the ab initio region onto the EFP region. This is presumably
due to the lack of a repulsive potential combined with a rather
unphysical division of the molecule into EFP/buffer/ab initio
regions, due to the small size of the molecule. Next, we consider
a larger system.

B. Proton Affinity of the Tripeptide Gly-Lys-Gly. Further
tests of the EFP/buffer/ab initio method were performed by
computing theε-N PAs of two different conformations of the
Gly-Lys-Gly tripeptide: one with an intramolecular hydrogen
bond and one without (Figure 2). The latter undergoes a larger
conformational change in the EFP region and is therefore a more
stringent test. The results are summarized in Tables 2 and 3,
respectively.

The first columns of both Tables show that the presence of
the intermolecular hydrogen bond reduces the effect of confor-
mational rearrangement on the PA by 60-70%. This is a
promising result, given the large number of intermolecular
hydrogen bonds in proteins.

The second columns of both Tables demonstrate that molec-
ular environment can have a significant effect (up to 7.2 kcal/

mol) on the PA of lysine. The effect is larger for the hydrogen-
bonded conformation, despite the fact that it undergoes a smaller
conformational change. The environmental effects are largely
captured by the EFP representation, as shown by the data in
the last columns. Again, the optimum choice of buffer region
is the [Râ]-buffer, which for both conformations reduces the
error to below 0.5 kcal/mol relative to the constrained all-ab
initio calculation. Moving the buffer region further out on the
backbone increases the absolute error to 0.8-2.0 kcal/mol,
presumably since that region is more polarizable. Thus, since
the EFP region is polarizable, it is not necessarily as worse
representation of the charge density than the all-ab initio buffer
region.

C. Construction of Buffer Region and EFP Regions.
Several relatively arbitrary choices went into the construction
of the buffer and EFP region. This is not necessarily a problem
provided that the results are insensitive to these choices, and in
section we explore this issue for the PA of the hydrogen bonded
Gly-Lys-Gly tripeptide calculated with the [Râ]-buffer. The
results are displayed in Table 4.

The first row of Table 4 represents the same calculation as
the third row in Table 2, and outlines some of the choices made
for this particular calculation in the columns. The source of the
buffer region is the protonated form of the tripeptide calculated
using RHF/6-31G*. The multipoles expansion was performed
at each atom and bond midpoint and truncated after octupoles.
The dipole polarizability tensors were calculated analytically
for each LMO. The LMOs were calculated using the Edmiston-
Ruedenberg scheme, and projected using the corresponding
orbital method.

Obtaining the buffer region and the EFP from the unproto-
nated form of the tripeptide has a small (0.2 kcal/mol) effect
on the PA as shown in the second row. However, obtaining the
buffer LMOs from a calculation of butane, increases the absolute
error by 0.4 kcal/mol. Thus, deriving the buffer MOs from a

Figure 2. Structures of the two Gly-Lys-Gly tripeptide conformations
used in this study: (a) one with an intramolecular hydrogen bond and
(b) one without.
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system that most closely resembles the system of interest is a
worthwhile investment of computer time. The PA is relatively
insensitive to numerical calculation of the dipole polarizability
tensors and switching the localization scheme to Boys, or
truncation by simply zeroing out of unwanted AO coefficients
followed by renormalization. The largest change is for the latter
scheme and actually reduces the error slightly (by 0.2 kcal/
mol). Thus, the methodology used in the previous sections is
relatively insensitive to choices of to calculate the buffer and
EFP regions, as long as the source of buffer MOs is not too
different from the system of interest.

The fact that the dipole polarizabilities can be calculated
numerically or analytically without affecting the PA could derive
from the fact that they make a negligible contribution to the
PA. However, if the polarizabilities are removed completely
the absolute error increases by 1.3 kcal/mol as evidenced by
the data in the sixth row of Table 4. Furthermore, truncating
the multipole expansion after monopoles, increases the absolute
error further, to 3.1 kcal/mol. When the multipole expansion is
redone using only atomic centers (to approximate current force
field representation of the electrostatic potential) the error
decreases to 1.1 kcal/mol. This is presumably due to a

cancellation of errors since the use of more expansion points
should give a more accurate representation of the ab initio
electrostatic potential.

The best possible atomic centered monopole expansion is
presumably that obtained by the Potential Derived Charges
(PDCs) method,27 since they are fit to the electrostatic potential.
Row nine of Table 4 shows that these charges actually increase
the error further (to 2.4 kcal/mol). These charges are calculated
for the entire molecule, and therefore reflect the polarization of
the EFP region by the ab initio region. However, they cannot
describe thechangein polarization upon deprotonation, and this
is presumably the source of the increase in error. Furthermore,
using polarizability tensors in conjunction with the (polarized)
PDC charges (row ten) increases the error because the polariza-
tion effect is double counted.

The effect of using charges from standard force fields could
not be tested for this molecule since charges for the neutral C
and N termini are were unavailable. However, we did test a set
of empirical charges due to Gasteiger and Marsili,28 where the
charges are assigned based solely on atomic number and
connectivity. The resulting PA, however, is now in error by
6.3 kcal/mol (row 11).

TABLE 2: Same as In Table 1, for H-bonded Gly-Lys-Gly Tripeptide in kcal/mola

a The proton affinity of the fully relaxed tripeptide is 231.0 kcal/mol.
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The data discussed in the preceding paragraphs suggest that
great care must be taken when constructing a multipole
representation of a molecular electrostatic potential. Furthermore,
an atom centered monopole expansion may not be sufficient if
an accuracy of less than 1 kcal/mol is required.

Finally, the last entry in Table 4 demonstrates that the MP2/
6-31G* correlation correction to the PA can be calculated with
similar accuracy. As mentioned previously, this is accomplished
simply by excluding excitations from the chemically inert buffer
region. The result can be compared to all-MP2/6-31G* single

TABLE 3: Same as In Tables 1 and 2, but for Non-H-bonded Gly-Lys-Gly Tripeptidea

a The proton affinity of the fully relaxed tripeptide is 235.2 kcal/mol.

TABLE 4: Comparison of PA Errors Obtained Using Different MM Schemes, for the Hydrogen-Bonded Gly-Lys-Gly
Tripeptide Using the [râ]-Buffer

source of
buffer & geometrya electrostatics

analytical or
numeric

polarizabilities truncationf localizationg
error

(kcal/mol)

1 RNH3
+ q - Ωb analytical projection Rued. +0.4

2 RNH2 q - Ωb analytical projection Rued. +0.6
3 butane, RNH3+ h q - Ωb analytical projection Rued. -0.8
4 RNH3

+ q - Ωb numeric projection Boys +0.3
5 RNH3

+ q - Ωb numeric zeroing Boys +0.2
6 RNH3

+ q - Ωb none projection Rued. -1.3
7 RNH3

+ qc none projection Rued. +3.1
8 RNH3

+ qc (no bond
midpoints)

none projection Rued. +1.1

9 RNH3
+ PDCd none projection Boys +2.4

10 RNH3
+ PDCd analytical projection Boys +4.3

11 RNH3
+ Gasteiger-Marsilie none projection Boys +6.3

12 RNH3
+ (MP2)i q - Ωb analytical projection Rued. -0.4

a The buffer LMOs and MM region geometry can be taken either from protonated or unprotonated form.b Charges, dipoles, quadrupoles and
octupoles generated by Stone distributed multipole analysis located at atomic centers and bond midpoints.c Same asa, but only monopoles (charges)
are included.d Potential determined charges (atomic charges fitted to electrostatic potential) calculated using GAMESS.e Gasteiger-Marsili empirical
charges.f Truncation of LMO tails when forming buffer: projection or plain zeroing out.g Localization procedure: Edmiston-Ruedenberg or Boys.
h The buffer was taken from butane, CH3-CH2CH2-CH3, the ab initio and EFP regions taken from line 1.i Single point MP2 calculation at the
HF geometry; the frozen orbitals were excluded from the excitation space.
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point calculation of the reference system’s PA (230.3 kcal/mol),
and the resulting error of 0.4 kcal/mol is essentially equal to
that of the underlying RHF calculation (0.3 kcal/mol).

D. Test of Single-LMO Buffer. Previous implementations
of the LMO buffer boundary method have all been tested for
systems where the buffer is a single CC bond.12,14In this section,
we test the use of several representations of the Gly-Lys-Gly
system used in the previous section but with a buffer consisting
only of the truncated LMO connecting CR and Câ. The results
are presented in Table 5.

The first row of Table 5 reflects the intrinsic PA of the buffer/
ab initio system and indicates that the EFP region shifts the PA
by 6.5 kcal/mol, compared to 6.0 kcal/mol when the CRH bond
is included in the buffer. However, upon inclusion of our default
EFP representation, the PA diverges by several thousand kcal/
mol. In fact this value could only be obtained by computing
single point energiesof the structures obtained by the larger
[Râ]-buffer. Any geometry optimization resulted in structural
collapse. The source of the divergence is easily attributed to
the polarizability terms by removing them and recalculating the
PA-shift (again via single point energy calculations), which
drops to 23.9 kcal/mol.

We note that since both values are obtained by single point
energy calculations, they likely result from electron density
“being pulled” toward the EFP region by the induced dipoles
and higher order multipoles. This is evidenced by a very large
(|-21.6|) Mulliken charge on the CR buffer-atom compared to
the value from the larger buffer region (0.1). Thus, introducing
repulsive potentials that only depend on internuclear distances
(such as the 1/r12 atom-pair potentials) is unlikely to prevent
these large errors. Rather a potential that keeps the electron
density out of the EFP region is needed if dipole polarizabilities
and higher order multipoles are to be used in conjunction with
a single-LMO buffer.29

The 23.9 kcal/mol error can be reduced by eliminating the
higher order multipoles and, further, by redoing the multipole
expansion only at the atomic centers. The final error of 0.4 kcal/
mol is roughly the same as with the larger [Râ]-buffer. However,
decreasing the error by using less accurate representations of
the electrostatic potential is likely a result of fortuitous error
cancellation. Indeed, similar calculations on lysine and the non-
hydrogen bonded tri-peptide conformation yield errors of 1.9
and 3.4 kcal/mol, respectively. Finally, the use of PDCs
increases the error by 0.6 kcal/mol relative the atom-centered
charges from the Distributed Multipole Analysis. As with the
[Râ]-buffer this is presumably due to the use of charges that
were polarized by the ab initio charge distribution of the

protonated form of the lysine side chain. In the calculations
described in this paragraph, the positions of the three hydrogens
attached to Câ and Câ were constrained to avoid structural
collapse of the ab initio region, while the position of the rest of
the ab initio atoms were optimized.

V. Conclusions and Future Directions

A frozen localized molecular orbital-based approach for
treating boundaries between molecular regions described by ab
initio electronic structure and effective fragment potentials
(EFPs) is presented. The approach has been implemented for
RHF, ROHF, GVB, and MP2 energies as well as RHF and
ROHF gradients.

We test our approach by calculating the proton affinity (PA)
of the ε-N of lysine and the tripeptide Gly-Lys-Gly using the
hybrid EFP/buffer/ab initio method for a variety of buffer sizes
and positions. Comparison to all-ab initio calculations reveal
that the optimum buffer consists of the bond LMO connecting
the CR and Câ plus the associated CH and core LMOs ([Râ]-
buffer). This buffer in combination with an ab initio description
of the lysine side chain and an EFP description of the rest, results
in PAs that are consistently within 0.4 kcal/mol of the all ab
initio reference value. Since the internal geometry of the EFP
is fixed, the ab initio reference values are obtained from all ab
initio calculations with the same geometrical constraints as in
the EFP calculations. For the [Râ]-buffer the PA shift induced
by geometrical rearrangements range between 0.6 and 1.8 kcal/
mol and is always larger than the errors due to the approximate
treatment of part of the charge density.

The EFP representation of the electrostatic potential consists
of multipole expansions at each atom and bond midpoints
truncated after octupoles, plus induced dipole LMO-polariz-
abilities centered at the centroid of charge of each LMO. The
expansions are obtained from a separate ab initio calculation
on a system in which the ab initio region has been removed.
This is done in order to avoid a prepolarization of the EFP
multipole expansion, which would be double counted by the
induced polarizabilities. This representation is shown to be
essential to consistently obtain a 0.4 kcal/mol accuracy.

The results are relatively insensitive to the choice of localiza-
tion procedure, truncation method, analytical versus numerical
calculation of the polarizability tensors, and source of buffer
LMOs. The latter assumes that the buffer LMOs derive from a
source that relatively closely resembles the system of interest.
Furthermore, smaller buffer regions such as a single bond-LMO,
does not provide adequate separation between the EFP and ab

TABLE 5: Comparison of PA Errors Obtained Using Different MM Schemes, for the Hydrogen-Bonded Gly-Lys-Gly
Tripeptide Where the Buffer Is a Single Cr-Câ Bonda

source of
buffer & geometryb electrostatics

analytical or
numeric

polarizabilities truncatione localizationf
error

(kcal/mol)

1 RNH3
+ none none zeroing Boys +6.5

2 RNH3
+ q - Ωc numeric zeroing Boys -2096g

3 RNH3
+ q - Ωc none zeroing Boys +23.9g

4 RNH3
+ q none zeroing Boys +1.9

5 RNH3
+ q (no bond

midpoints)
none zeroing Boys +0.4

6 RNH3
+ PDCd none zeroing Boys +1.1

a Positions of the same atoms as in the [Râ]-buffer case were constrained.b The buffer LMOs and MM region geometry can be taken either from
protonated or unprotonated form.c Charges, dipoles, quadrupoles and octupoles generated by Stone distributed multipole analysis located at atomic
centers and bond midpoints.d Potential determined charges (atomic charges fitted to electrostatic potential) calculated using GAMESS, charges
scaled to make the total charge of the MM region to be equal to 0.e Truncation of LMO tails when forming buffer: projection or plain zeroing out.
f Localization procedure: Edmiston-Ruedenberg or Boys.g Error in proton affinity from single point energy calculation using the optimized geometry
of row 4, column 3, Table 2.
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initio regions and can lead to a large influx of electron density
into the buffer region.

It is important to note that the current implementation of the
LMO buffer method does not contain any adjustable parameters.
Rather the buffer is derivedautomaticallyfrom a single ab initio
calculation (see Figure 1), and it does not take significantly more
human effort to compute the buffer LMOs from a tripeptide
than from n-butane (for example). Thus, we advocate the
construction of a buffer region (and EFP region) for each
problem of interest rather than establishing a library of such
buffer LMOs.

All molecules in the present study are small enough to allow
full ab initio calculations, to gauge the accuracy of the new
methodology. This also eased the construction of the EFPs since
they could be derived from a single ab initio calculation. We
are currently applying the EFP/buffer method to larger proteins
(Turkey ovomucoid third domain andR-chymotrypsin) where
the EFPs must be constructed from a series of ab initio
calculations on smaller overlapping pieces. We will report on
these first principles hybrid calculations on proteins in a future
paper.
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