Theoretical Study on Structures and Stability of Si₂P₂ Isomers

Xu-ri Huang,* Yi-hong Ding, Ze-sheng Li, and Chia-chung Sun

State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China

Received: March 15, 2000; In Final Form: July 3, 2000

The structures, energetics, spectroscopies, and isomerization of possible low-lying Si_2P_2 isomers in both singlet and triplet states are theoretically investigated at the B3LYP/6-311G(d) and CCSD(T)/6-311+G(2df) (singlepoint) levels. At the final CCSD(T)/6-311+G(2df)//B3LYP/6-311G(d) level, the lowest energy isomer is a singlet butterfly-like SiPSiP structure ¹1 with P–P cross bonding followed by a singlet rhombic SiPSiP isomer ¹2 with Si–Si cross bonding, whereas the cyanogen analogue PSiSiP ¹5 is the highest lying of all the singlet isomers. The singlet potential energy surface of Si_2P_2 indicates that the rhombic isomer ¹2 is kinetically much more stable than the butterfly-like isomer ¹1, although isomer ¹2 is 3.2 kcal/mol higher in energy than isomer ¹1, while other isomers are kinetically unstable toward isomerization to isomer ¹1 or ¹2. It is also shown that the triplet Si_2P_2 isomers and interconversion transition states, the relative energies obtained at the B3LYP/6-311G(d) level are in excellent agreement with the values calculated at the single-point CCSD-(T)/6-311+G(2df) level within 2 kcal/mol. Finally, the structural, energetic and kinetic similarities and discrepancies between the isomers of Si_2P_2 and other analogous molecules C_2N_2 , Si_2N_2 and C_2P_2 are compared and analyzed.

1. Introduction

Recently, the chemistry of silicon-phosphorus bonding has received much interest, though compared with other aspects of silicon chemistry the attention is still very little. Many examples concerning Si-P bonding can been found in various fields such as inorganic, organic, and organometallic chemistry.¹ Up to now, a number of silicon-phosphorus containing species have been prepared and characterized.² Most of these Si-P species involve coordinated organic functional groups, hydrogen or metallic atoms. Many computational studies have been performed on the hydrogenated species with Si-P bonding.³ In addition to, and possibly more importantly, Si-P bonding is relevant to the chemical vapor decomposition (CVD) of phosphorus-doped silicon for semiconducting materials.⁴

It is known that the isolated pure Si_n and P_n clusters have long been the subject of numerous experimental and theoretical studies (see ref 5 for Si_n , ref 6 for P_n , and references therein). However, no experimental studies on the synthesis or characterization of pure mixed gas-phase silicon-phosphorus clusters $Si_m P_n$ with no coordinated atoms or functional groups have been reported, despite that the crystal composition Si₁₂P₅^{4e-g} has been found in Si-P containing alloys. Theoretically, to our best knowledge, only the species SiP,⁷ SiP₂,⁸ Si₂P⁹, and Si₂₄P₄¹⁰ have been studied using ab initio or semiempirical methods. In sharp contrast, other mixed $Si_m X_n$ clusters (X = C, O, N, etc.) (see ref 11 for X = C, ref 12 for X = O, and ref 13 for X =N, and references therein) have been extensively investigated. In addition to the intrinsic value of predicting the structures and spectroscopies for future experimental observation, studies of these mixed clusters may provide helpful information for understanding the interaction of contaminating atoms such as C, O, N, and P with the silicon clusters and may also help us to gain deeper insights into the nature of bonding and the growth mechanism of these clusters. Therefore, a study of Si-P

containing species Si_mP_n with larger size than SiP, SiP₂, and Si₂P may be very useful to understand and enrich the Si-P chemistry related to the silicon-based materials.

In this paper, we choose the tetraatomic species Si_2P_2 for our study. Formally, Si₂P₂ is the intermediate of the other two tetraatomic clusters Si₄ and P₄. It has been well established that the ground state of Si4⁵ is a planar structure while that of P4⁶ is tetrahedral. A study of Si₂P₂ may then be suitable for elucidating the bonding similarities and differences between Si and P elements. Also, although the naked Si₂P₂ cluster is still experimentally unknown, it has already been detected as a unit in several compounds either with interesting SiPSiP butterflylike or planar rhombic structures which are coordinated by organic functional groups, hydrogen or metal atoms.^{2g} Principally, we may expect that such four-membered ring analogous structures also exist for the naked Si₂P₂ cluster. However, caution must be taken because it is not always the case when the stationary properties, energetics, and kinetic stability between the naked and coordinated clusters are compared. For example, cyclic CCPP trapezoidal structures have long been detected as a building unit in organophosphorus compounds.¹⁴ Yet, it is not a minimum isomer at all for the naked C₂P₂ cluster.¹⁵ Thus, without carrying out ab initio calculations, it is not quite safe enough for us to "predict" the structural, energetic and kinetic properties of Si₂P₂. Furthermore, our theoretical investigation on the structural, energetic and kinetic properties of Si₂P₂ is of fundamental importance because Si₂P₂ is chemically isovalent and analogous to the molecules C_2N_2 , Si_2N_2 , and C_2P_2 . The well-known molecule C_2N_2 (see ref 16 and references therein) has been attracting rather extensive experimental and theoretical consideration. Four linear isomers NCCN, CNCN, CNNC, and CCNN as well as a NNC three-membered ring isomer have been theoretically found to be local minima on potential energy surface, and all except the nonlinear form have been calculated to be kinetically very stable. The former three linear isomers have already been synthesized or detected in the laboratory, and the first isomer NCCN has even been detected in interstellar space. The molecule Si₂N₂ has received theoretical investigation very recently.13 Two linear isomers SiNNSi and SiNSiN, one butterfly-like SiNSiN isomer, and one SiNN three-membered ring isomer have been located as stationary points, whereas the linear NSiSiN and SiSiNN isomers are not minima on potential energy surface. It should be pointed out that the butterfly-like SiNSiN isomer is the second low-lying isomer following the lowest energy isomer SiNNSi. In our very recent theoretical study on C₂P₂,¹⁵ seven isomers have been located as local minima among which the lowest lying isomer is a cyanogenlike structure PCCP and the second low-lying isomer is a rhombic CPCP form with C-C cross bonding. However, the linear isomers CPCP and CPPC are not minima. It can be readily seen that from C_2N_2 to Si_2N_2 and C_2P_2 , the structural forms and energetic order of isomers vary much. Because Si and P are of the same group as C and N, respectively, it is very natural for us to ask what will be the structural, energetic and kinetic properties as well as the bonding nature for the molecule Si₂P₂. Are the properties of Si_2P_2 close to or different from those of C₂N₂, C₂P₂, or Si₂N₂? Without detailed ab initio calculations on the whole potential energy surface of Si₂P₂, it is surely difficult to answer this question.

On the other hand, our theoretical investigation aims to provide a theoretical prediction for future possible astrophysical detection of the molecule Si_2P_2 . Up to now, the small siliconcontaining and phosphorus-containing molecules such as SiC, SiC_2 (ring), SiC_3 (ring), SiC_4 , SiN, SiO, CP, and PN have been detected in interstellar space.¹⁷ However, the species containing both Si and P atoms (even the simplest SiP radical) have not been detected yet.

In this paper, an attempt is made to investigate the structures, energetics and kinetic stability of possible low-lying Si_2P_2 isomers so as to provide some instructive information for their future laboratory and interstellar detection. Also with the calculated results, we hope to understand the structural, energetic, and kinetic stability discrepancies between Si_2P_2 and its isovalent species such as C_2N_2 , Si_2N_2 , and C_2P_2 .

2. Computational Methods

All calculations are carried out with Gaussian 98 program package. The optimized geometries and vibrational frequencies of the singlet and triplet Si_2P_2 isomers and their interconversion transition states are obtained at the B3LYP/6-311G(d) level. To obtain more reliable energetics, single-point calculations are further performed at the CCSD(T)/6-311+G(2df) level for all singlet and some triplet species. Furthermore, to test whether the transition states connect the correct isomers, the intrinsic reaction coordinate (IRC) calculations are carried out at the B3LYP/6-311G(d) level.

3. Results and Discussions

For such a small tetraatomic molecule Si₂P₂, it is feasible to search for all possible isomeric forms on potential energy surface in both singlet and triplet states. We have performed geometrical surveys on nearly all possible isomers including linear, threemembered ring, four-membered ring, and closed tetrahedrallike structures followed by vibrational analysis to confirm whether the obtained structure is a local minimum or not. Five singlet and nine triplet isomers are found as local minima with all real frequencies. Other structures either possess imaginary frequencies or collapse to the minimum isomers. For simplicity,

Figure 1. Optimized geometries of singlet Si_2P_2 isomers and dissociation products. Bond lengths are in angstroms and angles in degrees. The symbol "X" denotes the dummy atom.

TABLE 1: Harmonic Vibrational Frequencies (in cm⁻¹) and Infrared Intensities in Km/Mol (in parentheses) of Si₂P₂ Isomers at the B3LYP/6-311G(d) Level

species	frequencies	
¹ 1	209 (0) 287 (0) 297 (7) 423 (7) 492 (42) 517 (6)	
¹ 2	202 (3) 257 (0) 320 (0) 395 (0) 511 (0) 569 (25)	
13	220 (1) 248 (10) 299 (1) 433 (1) 495 (4) 538 (4)	
¹ 4	125 (0) 184 (0) 313 (1) 332 (11) 545 (9) 581 (2)	
¹ 5	46 (1) 80 (0) 278 (0) 723 (0) 774 (0)	
¹ TS1/2	309i (1) 241 (0) 300 (1) 337 (0) 519 (0) 534 (1)	
¹ TS1/3	217i (0) 251 (2) 267 (18) 349 (1) 554 (21) 564 (8)	
¹ TS1/4	169i (2) 216 (2) 262 (6) 346 (0) 526 (18) 573 (1)	
¹ TS3/4	342i (11) 191 (7) 233 (3) 351 (2) 474 (12) 608 (3)	
¹ TS2/5	128i (7) 75 (0) 75 (0) 323 (0) 642 (3) 750 (11)	
¹ TS3/3	445i (0) 253 (14) 261 (0) 294 (3) 503 (10) 633 (1)	
¹ TS4/4	218i (13) 121 (5) 169 (3) 296 (1) 475 (4) 681 (7)	
³ 1	124 (1) 231 (2) 364 (3) 366 (0) 395 (2) 497 (0)	
³ 2	172 (3) 290 (2) 321 (0) 394 (0) 438 (1) 475 (2)	
³ 3	177 (0) 202 (0) 268 (4) 302 (6) 423 (4) 539 (5)	
³ 4	169 (1) 294 (1) 315 (7) 385 (1) 440 (5) 493 (5)	
³ 4*	186 (5) 290 (1) 304 (2) 399 (1) 455 (10) 642 (175)	
³ 4**	182 (1) 319 (9) 347 (30) 369 (17) 416 (13) 488 (8)	
³ 5	31 (1) 44 (1) 124 (0) 323 (0) 505 (49) 606 (0)	
³ 6	37 (1) 91 (1) 292 (4) 414 (28) 435 (9) 565 (15)	
³ 7	83 (1) 104 (1) 299 (0) 406 (5) 449 (18) 592 (32)	
3TS1/1	111i (3) 194 (3) 376 (0) 400 (0) 404 (1) 491 (0)	
3TS1/6	175i (5) 81 (2) 276 (3) 365 (7) 414 (43) 531 (20)	
3TS2/7	208i (5) 71 (1) 211 (5) 327 (3) 488 (6) 597 (2)	
3TS3/4	200i (4) 273 (6) 304 (10) 338 (3) 444 (13) 506 (4)	
3TS4/4	256i (3) 208 (3) 354 (5) 403 (13) 456 (0) 50 (1)	
3TS(4/4)'	448i (33) 85 (1) 280 (90) 362 (11) 408 (2) 472 (21)	
3TS4**/4**	172i (0) 188 (2) 251 (0) 391 (0) 523 (0) 557 (11)	
3TS4/6	126i (1) 129 (1) 249 (7) 372 (20) 418 (22) 518 (34)	
3TS4/7	165i (1) 85 (0) 278 (1) 333 (2) 456 (7) 540 (12)	
3TS5/7	52i (1) 48 (0) 122 (1) 325 (0) 540 (1) 626 (48)	

we list only the calculated results of the minimum isomers. For various Si_2P_2 isomers and their interconversion transition states, the harmonic vibrational frequencies are presented in Table 1, while the total and relative energies are given in Table 2. The detailed geometries of the five singlet Si_2P_2 isomers and their interconversion transition states are summarized in Figures 1 and 2, respectively, while those of the nine triplet isomers and transition states are shown in Figures 3 and 4, respectively.

TABLE 2: Total (a.u.) and Relative (kcal/mol) Energies of Si_2P_2 Isomers and Interconversion Transition States at the B3LYP/6-311G(d) and Single-Point CCSD(T)/6-311+G(2df) Levels

		CCSD(T)/6-311+G(2df)//
species	B3LYP/6-311G(d)	B3LYP/6-311G(d)
¹ 1	-1261.7505758 (0.0)	-1259.8956166 (0.0)
¹ 2	-1261.7464450 (2.6)	-1259.8905042 (3.2)
¹ 3	-1261.7410479 (6.0)	-1259.8864082 (5.8)
¹ 4	-1261.7203968 (18.9)	-1259.8637001 (20.0)
¹ 5	-1261.6771442 (46.1)	-1259.8046421 (57.1)
Si ₂ +P ₂	-1261.5937662 (98.4)	-1259.7312640 (103.1)
2SiP	-1261.5986992 (95.3)	-1259.7218280 (109.1)
¹ TS1/2	-1261.7094509 (25.8)	-1259.8524167 (27.1)
¹ TS1/3	-1261.7296198 (13.2)	-1259.8766030 (11.9)
¹ TS1/4	-1261.7148135 (22.4)	-1259.8568062 (24.4)
¹ TS3/4	-1261.6909944 (37.4)	-1259.8360525 (37.4)
¹ TS2/5	-1261.6676324 (52.0)	-1259.7980886 (61.2)
¹ TS3/3	-1261.7008132 (31.2)	-1259.8496957 (28.8)
¹ TS4/4	-1261.6759296 (46.8)	-1259.8131680 (51.7)
³ 1	-1261.7070510 (27.3)	-1259.8466743 (30.7)
³ 2	-1261.7246655 (16.3)	-1259.8617729 (21.2)
³ 3	-1261.7074682 (27.1)	-1259.8547964 (25.6)
³ 4	-1261.7131193 (23.5)	-1259.8514598 (27.7)
³ 4*	-1261.6886226 (38.9)	-1259.8261106 (43.6)
³ 4**	-1261.6737789 (48.2)	-1259.8177378 (48.9)
³ 5	-1259.6517576 (62.0)	-1259.7692559 (79.3)
³ 6	-1261.6848882 (41.2)	-1259.8133031 (51.7)
³ 7	-1261.6942087 (35.4)	-1259.8220777 (46.1)
³ TS1/1	-1261.7052260 (28.5)	
³ TS1/6	-1261.6781678 (45.4)	-1259.8085587 (54.6)
³ TS2/7	-1261.6748254 (47.5)	
³ TS3/4	-1261.6989409 (32.4)	
³ TS4/4	-1261.7004204 (31.5)	
$^{3}TS(4/4)'$	-1261.6777119 (45.7)	
³ TS4**/4**	-1261.6617413 (55.7)	
³ TS4/6	-1261.6783415 (45.3)	-1259.8097089 (53.9)
³ TS4/7	-1261.6828418 (42.5)	
³ TS5/7	-1261.6498280 (63.2)	

Furthermore, a schematic potential energy surface (PES) showing the isomerization between the singlet and triplet Si_2P_2 isomers is plotted in Figure 5. In section 3.1, the structural, energetic and isomerization features of singlet Si_2P_2 isomers are described, and in section 3.2, the corresponding properties of triplet Si_2P_2 isomers are described. Finally, a comparison is made between Si_2P_2 and three analogous molecules C_2N_2 , Si_2N_2 and C_2P_2 in section 3.3.

3.1. Singlet PES of Si₂P₂. *A. Isomers*. There are five singlet Si₂P₂ isomers identified as local minima. Note that in this paper, the number at the top left corner is referred to as the spin state (1 for singlet and 3 for triplet state). For example, the symbol ¹1 means isomer 1 in singlet state. The lowest lying isomer ¹1 is a $C_{2\nu}$ -symmetrized butterfly-like SiPSiP form with P–P cross bonding. The bond length of four identical peripheral Si–P bonds is 2.2425 Å, which is very close to the experimental value 2.25 Å^{2b} of the normal Si–P single bond. The transannular P–P bond length is 2.4690 Å slightly longer than the normal P–P single bond 2.21 Å.¹⁸ The most intense vibrational band of isomer ¹1 is 492 cm⁻¹.

Isomer ¹2 of Si₂P₂ is a rhombic form with a planar SiPSiP four-membered ring. It contains a transannular Si–Si bond with the bond length 2.4005 Å which is very close to the normal Si–Si single bond 2.34 Å.¹⁹ The four identical peripheral SiP bonds of 2.1840 Å are roughly the intermediate between the normal Si–P single bond 2.25 Å^{2b} and normal Si=P double bond 2.09 Å.^{2s} As a result, the four SiP bonds display strong π bonding character. The situation is a little different from the butterfly-like isomer 1 where the four peripheral SiP bonds are all single-bonded. Actually, the rhombic isomer ¹2 may be

Figure 2. Optimized geometries of singlet Si_2P_2 interconversion transition states. Bond lengths are in angstroms and angles in degrees.

described as a four- π -electron, four-center (4 π e-4c) system. The characteristic vibrational band of isomer ¹2 is 569 cm⁻¹.

Isomer ¹3 with C_2 symmetry may be considered as a folded SiSiPP trapezoidal structure along either of the two identical cross SiP bonds. The bond length of two identical peripheral SiP bonds is 2.1949 Å, which is about 0.06 Å shorter than the normal Si-P single bond 2.25 Å^{2b} and is about 0.10 Å longer than the normal Si=P double bond 2.09 Å.^{2s} Also, the peripheral PP bond (2.1624 Å) is 0.05 Å shorter than normal P-P single bond (2.21 Å¹⁸) and is 0.15 Å longer than normal P=P double bond (2.01 Å¹⁸). This indicates that the two SiP bonds and one PP bond possess certain π -bonding characters. However, the peripheral SiSi bond length 2.3968 Å is about 0.06 Å longer than the normal Si-Si single bond length 2.34 Å,¹⁹ indicating that the π electrons contribute little to the Si–Si bonding of isomer ¹3. Then, we may consider the peripheral Si-Si bond as the weakest bond of isomer ¹3 and the cleavage of Si-Si bond may first take place during isomerization or dissociation of isomer ¹3. The bond distance between a set of diagonal Si and P atoms is 2.7720 Å (about 0.52 Å longer than normal Si-P single bond), indicating that the two identical cross SiP bonding of isomer ¹3 is rather weak and almost nonbonding. The strongest infrared vibrational frequency of isomer ¹3 is 248 cm^{-1} . The other two vibration bands at 538 and 495 cm^{-1} are about half as strong.

Isomer ¹4 is a C_s-symmetrized form with a distorted SiSiPP trapezoidal structure. A set of Si and P atoms forms a bridge SiP bond across the four-membered ring. The bridge SiP bond length 2.3336 Å is slightly longer than the normal Si–P single bond length 2.25 Å.^{2b} The two peripheral SiP bond lengths

Figure 3. Optimized geometries of triplet Si_2P_2 isomers. Bond lengths are in angstroms and angles in degrees. The symbol "X" denotes the dummy atom.

Figure 4. Optimized geometries of triplet Si₂P₂ interconversion transition states. Bond lengths are in angstroms and angles in degrees.

2.1238 and 2.1045 Å are close to the normal Si=P double bond length 2.09 Å.^{2s} The bond length of PP bond is 2.2972 Å and is a typical single bond compared to the experimental value 2.21 Å.¹⁸ However, the peripheral SiSi bond length 2.4936 Å is about 0.15 Å longer than the normal Si–Si single bond 2.34 Å,¹⁹ though it is still single-bonding. Thus compared to other bonding of isomer ¹4, the peripheral Si–Si single bond is the weakest and may be easier to be broken. There are two vibrational bands 549 and 332 cm⁻¹ with almost equal infrared intensities for isomer ¹4.

Isomer ¹5, a formal analogue of the well-known cyanogen NCCN, has a linear PSiSiP structure with $P \equiv Si$ triple bonding

Figure 5. Schematic potential energy surface (solid lines for singlet and dotted for triplet) of Si_2P_2 at the CCSD(T)/6-311+G(2df)//B3LYP/6-311G(d) level. The values in () and [] are at the CCSD(T)/6-311+G(2df)//B3LYP/6-311G(d) and B3LYP/6-311G(d) levels, respectively.

as indicated by the natural bond orbital analysis. The bond length of two identical terminal SiP triple bonds is 1.9739 Å. This value is very close to that of the SiP radical 1.9876 Å and is about 0.12 Å shorter than the normal Si=P value.^{2s} The central SiSi bond is just single bonding because the bond length 2.2628 Å is about 0.08 Å shorter than the normal Si–Si single bond 2.34 Å.¹⁹ Thus, isomer ¹⁵ may be considered as a structure formed by two SiP radicals via a Si–Si central single bond. However, as will be discussed in section 3.3, the bonding between PSiSiP and NCCN is actually quite different. Frequency calculations show that isomer ¹⁵ has no strong infrared vibrational bands.

From Table 2 we can easily see that of the five Si_2P_2 isomers, the butterfly-like isomer ¹1 is the lowest lying followed by the rhombic isomer ¹2, whereas the cyanogen-like linear isomer ¹⁵ lies the highest. At the final single-point CCSD(T)/6-311+G-(2df) level, the thermodynamical order of the five Si_2P_2 isomers is isomer ¹¹ (0.0) > isomer ¹² (3.2) > isomer ¹³ (5.8) > isomer ¹⁴ (20.0) > isomer ¹⁵ (57.1). It is interesting to note that the B3LYP/6-311G(d) relative energies of the isomers ¹¹ (0.0), ¹² (2.6), ¹³ (6.0), and ¹⁴ (18.9) are rather close to the single-point CCSD(T)/6-311+G(2df) values within the limit 1.1 kcal/mol. The predicted thermodynamical stability of the linear isomer ¹⁵ (46.1) at the B3LYP/6-311G(d) level is much higher than that at the CCSD(T)/6-311+G(2df) level. Notice that the values in parentheses in kcal/mol are relative energies of Si_2P_2 isomers with reference to the lowest lying isomer ¹1.

B. Isomerization. In addition to the thermodynamical stability of singlet Si_2P_2 isomers discussed in section 3.1 A, the kinetic stability of these isomers may be of particular interest. The kinetic stability of an isomer is usually governed by its isomerization and dissociation barriers. The larger the barrier, the higher kinetic stability of the isomer. In this section, we shall discuss the isomerization and dissociation between the five singlet Si_2P_2 isomers and fragment products by means of the potential energy surface as shown in Figure 5. As shown in Figure 2, there are altogether seven transition states: ${}^{1}TS1/2$, ${}^{1}TS1/3$, ${}^{1}TS1/4$, ${}^{1}TS2/5$, ${}^{1}TS3/4$, ${}^{1}TS3/3$, and ${}^{1}TS4/4$. Note that

¹TSm/n is referred to as the singlet transition state connecting the singlet isomers ¹m and ¹n where m and n are Arabic numbers.

From Figure 5, we can see that the five singlet Si_2P_2 isomers can directly or indirectly be converted to each other. The thermodynamically most stable butterfly-like isomer ¹1 can isomerize to the rhombic isomer ¹2, folded trapezoidal isomer ¹3, and distorted trapezoidal isomer ¹4 via the transition states ¹TS1/2, ¹TS1/3, and ¹TS1/4, respectively. The corresponding conversion barriers are then 27.1 ($^{1}1\rightarrow^{1}2$), 11.9 ($^{1}1\rightarrow^{\overline{1}}3$), and 24.4 ($^{11}\rightarrow^{14}$) kcal/mol. Isomer 12 may isomerize to the lowest energy isomer ¹1 or to the highest energy isomer PSiSiP ¹5 with the respective barriers 23.9 $(^{1}2\rightarrow^{1}1)$ and 58 $(^{1}2\rightarrow^{1}5)$ kcal/mol. Interestingly, although the energy gap between the two lowlying isomers ¹1 and ¹2 is only 3.2 kcal/mol, large barriers separate them from conversion to each other. This is understandable because concerted bond cleavage and formation process of either of the Si-Si and P-P cross bonds must be involved between the isomers ¹1 and ¹2. The conversion barriers of isomer ¹³ are 6.1 ($^{13}\rightarrow^{11}$) and 31.6 ($^{13}\rightarrow^{14}$) kcal/mol. Isomer ¹4 may take two isomerization pathways to the isomers 1 and 4 with respective barriers 4.4 ($4\rightarrow$ 1) and 17.4 ($4\rightarrow$ 3) kcal/mol. For the linear isomer ¹⁵ with the highest energy, we only locate one isomerization pathway from ¹⁵ to ¹² via ¹TS2/5 with the barrier 4.1 kcal/mol. Simply from the structural features of the five singlet Si_2P_2 isomers, we preliminarily expect that there are transition states between the isomers ¹2 and ¹3, ¹2 and ¹4, ¹4 and ¹5. However, despite numerous attempts, such transition states cannot be obtained. Furthermore, we can easily see from Table 2 that the two dissociation products, i.e., two doublet SiP radicals and two singlet molecules Si₂ and P₂, lie high above isomer 1 at 109.1 and 103.1 kcal/mol, respectively. It is worthy of note that for the most important transition states ¹TS1/2, ¹-TS1/3, ¹TS1/4, and ¹TS3/4, the B3LYP/6-311G(d) relative energies are very close to the single-point CCSD(T)/6-311+G-(2df) values, within 2 kcal/mol. Also, though the relative energies for ${}^{1}TS2/5$ and ${}^{1}5$ at the CCSD(T)/6-311+G(2df) level are about 11.0 and 9.2 kcal/mol higher than those at the B3LYP/ 6-311G(d) level, the barriers for $5\rightarrow 2$ conversion at the two levels are very close (4.1 and 6.9 kcal/mol, respectively). The transition states ¹TS3/3 and ¹TS4/4 are associated with the interexchange of the isomers ¹3 and ¹4, i.e., ¹TS3/3 corresponds to the interexchange of either of the two Si-atoms or of the two P-atoms within isomer ¹3 (cSi1Si3P4P1 \leftrightarrow cSi1Si3P1P4 in Figure 2), while ¹TS4/4 corresponds to the wagging of the PSiSi three-membered ring along the PP bond within isomer ¹4 (cP1P2-Si4Si3 \leftrightarrow cP1P2Si3Si4 conversion in Figure 2).

Now let us discuss the kinetic stability of the five singlet Si₂P₂ isomers. The lowest isomerization or dissociation barriers usually determine the kinetic stability of an isomer. Since the relative energies of the two products 2SiP and Si₂+P₂ are much larger than those of the Si₂P₂ isomers and the corresponding isomerization states, the isomerization barriers mainly govern the kinetic stability of these isomers. From Figure 5, we can obtain the kinetic stability order of the five singlet Si₂P₂ isomers as isomer ¹2 (23.9 for $^{1}2 \rightarrow ^{1}1$) > isomer ¹1 (11.9 for $^{1}1 \rightarrow ^{1}3$) > isomer ¹3 (6.1 for $^{1}3\rightarrow^{1}1$) > isomer ¹4 (4.4 for $^{1}4\rightarrow^{1}1$) > isomer ¹⁵ (4.1 for ${}^{15}\rightarrow{}^{12}$). Notice that the values in parentheses denote the isomerization barrier in kcal/mol of the Si₂P₂ isomers. It should be noted that although the butterfly-like isomer ¹1 is thermodynamically more stable than the second low-lying rhombic isomer ¹2 by 3.2 kcal/mol, the kinetic stability of isomer ¹1 is nearly half of that of isomer ¹2. The remaining isomers ¹3, ¹4, and ¹5 are kinetically even much less stable since they can easily be converted to the lower lying isomer $^{1}1$ or $^{1}2$. Therefore, from the theoretical viewpoint, the rhombic isomer may be the best candidate for future experimental detection. The high kinetic stability of isomer ¹2 relative to other isomers may be ascribed to its delocalized 4π -4c stabilization. Though the kinetic stability of the butterfly-like isomer ¹1 is much less than that of isomer ¹2, it may also be observable due to its high thermodynamical stability. However, observation of the other isomers seems unlikely.

3.2. Triplet PES of Si₂P₂. By considering the weak π interaction present in bonds between the second row elements, it is desirable to calculate the triplet potential energy surface of Si₂P₂ to see if there exist any triplet isomers energetically lower than the five singlet isomers. At the B3LYP/6-311G(d) level, we obtain nine triplet minimum isomers with their structures depicted in Figure 3. As can be seen in Table 2, the nine triplet species lie considerably higher than all four important singlet isomers ¹1, ¹2, ¹3, and ¹4. Thus, we just briefly describe the structural, energetic and stability properties of the triplet isomers.

Isomers. On triplet PES, ³1 and ³2 are two butterfly-like isomers with PP and SiSi cross bonding, respectively. Note that the singlet species ¹2 with SiSi cross bonding is a planar structure. Optimization of structure ¹3 with C_2 symmetry in the triplet state leads to a closed tetrahedral-like isomer ³3 (such a closed structure does not exist on singlet PES). Interestingly, three cyclic SiSiPP isomers with SiP cross bonding (34, 34*, and ³4**) can be found on triplet PES. ³4 and ³4** are distorted trapezoidal structures folded along the SiP cross bond with C_1 symmetry, whereas ${}^{3}4*$ is a planar distorted trapezoidal structure. Isomer ³5 is a zigzag-like PSiSiP form with C_{2h} symmetry. The linear-structure-like ¹⁵ has one imaginary frequency. Unlike the singlet PES, there are two three-membered ring isomers on triplet PES. Isomer ³6 possesses the PPSi three-membered ring with an exocyclic PSi bonding, while isomer ³7 possesses the SiSiP three-membered ring with an exocyclic SiP bonding.

The energetic order of the nine triplet isomers can be obtained from Table 2 as isomer ${}^{3}2(21.2) > \text{isomer} {}^{3}3(25.6) > \text{isomer} {}^{3}4(27.7) > \text{isomer} {}^{3}1(30.7) > \text{isomer} {}^{3}4*(43.6) > \text{isomer} {}^{3}7$ $(46.1) > \text{isomer } {}^{3}4^{**} (48.9) > \text{isomer } {}^{3}6 (51.7) > \text{isomer } {}^{3}5$ (79.3). The values in parentheses are relative energies with respect to the lowest lying isomer ¹1 at the CCSD(T)/6-311+G-(2df)//B3LYP/6-311G(d) level. We can easily find that isomer ³5 with SiP multiple bonding (the bond length 2.0682 Å is very close to the normal Si=P value 2.09 Å^{2s}) is also the highest energy isomer. On the triplet PES, isomer ³2 with SiSi cross bonding is energetically lower than isomer ³1 with PP cross bonding by 9.5 kcal/mol, just the opposite for the singlet PES. Moreover, the species ³3 and ³4 are both lower in energy than ³1 by 5.1 and 3.0 kcal/mol, respectively. It should be pointed out that the relative energy discrepancies predicted at the two levels are larger for triplet species than for singlet species, as can be seen in Table 2. The large differences are for ${}^{3}5$ (17.3) kcal/mol), ³6 (10.5 kcal/mol), and ³7 (10.7 kcal/mol), while for the other isomers the differences are within 5.0 kcal/mol.

Isomerization. The isomerization pathways of various triplet Si_2P_2 isomers are shown in Figure 5. Ten transition states are located including ³TS1/1, ³TS1/6, ³TS2/7, ³TS3/4, ³TS4/4, ³TS(4/4)', ³TS4**/4**, ³TS4/6, ³TS4/7, and ³TS5/7. Note that ³TS1/1, ³TS4/4, ³TS(4/4)', and ³TS4**/4** are associated with the automerization process of the isomers ³1, ³4, and ³4** (these triplet automerization transition states are not shown in Figure 5, yet their structures are described in Figure 4). The species ³TS1/1 correspond to the turning over of ³1 along the PP cross bonding, and ³TS4/4 and ³TS4**/4** correspond to the turning over of ³4 and ³4**, respectively, along the SiP cross bonding. ³TS(4/4)' corresponds to the wringing between cSi1Si2P3P4 with P3Si1 cross bonding and cSi1Si2P3P4 with P4Si2 cross bonding. No isomerization transition states of ³4* and ³4** can be located.

On the B3LYP/6-311G(d) triplet PES of Si₂P₂, the SiPSiP cyclic species ³1 and ³2 also possess much higher kinetic stability than other triplet species. As shown in Table 2, the relative energies for ³TS1/6 and ³TS4/6 at the CCSD(T)/6-311+G(2df) are larger than those at the B3LYP/6-311G(d) level by about 9.2 and 4.7 kcal/mol, respectively. Yet the barriers for ³1 \rightarrow ³6 (18.1, 23.9), ³6 \rightarrow ³1 (4.2, 2.9), ³6 \rightarrow ³4 (4.1, 2.2), and ³4 \rightarrow ³6 (21.8, 26.2) are relatively closer. The values in parentheses are obtained at the B3LYP/6-311G(d) and CCSD(T)/6-311+G(2df) levels, respectively. Due to the computational expense, the energetics of the other triplet transition states are not calculated at the CCSD(T)/6-311+G(2df) level. However, we hope that the conclusion that the triplet species ³1 and ³2 may have higher kinetic stability than other triplet forms will not change.

3.3. Experimental and Astrophysical Implications. From the preceding discussions, we know that the cyclic SiPSiP species with both PP cross bonding (11, 31) and SiSi cross bonding (12, 32) may possess either high thermodynamical or high kinetic stability. Despite the theoretical stability of the isomers ¹1 and ¹2, both have not been experimentally characterized heretofore. However, both have been detected as building units in several organic or organometallic compounds.^{2g} These units are usually coordinated by the organic functional groups, hydrogen or metal atoms. In one experiment, the X-ray determined structures of the isomer ¹1 unit are about r(SiP) =2.267 Å, r(PP) = 2.342 Å, and r(SiSi) = 3.244 Å. Other experimentally determined values are about r(SiP) = 2.228 Å, r(PP) = 2.384 Å, and r(SiSi) = 3.050 Å. These bond lengths are close to the corresponding values r(SiP) = 2.2425 Å, r(PP)= 2.4690 Å, and r(SiSi) = 3.0746 Å in pure isomer ¹1 calculated in the present work. These data indicate that the butterfly-like structure with a P-P cross bond is well retained in such compounds. If the coordinated groups, hydrogen or metal atoms can be effectively removed, the butterfly-like isomer ¹1 may then be formed. The experimental values of the isomer ¹2 unit are roughly r(SiP) = 2.28 Å and r(SiSi) = 3.07 Å. By comparing with the corresponding bond lengths of pure isomer 2, i.e., r(SiP) = 2.1840 Å and r(SiSi) = 2.4005 Å, we can easily find that a distinct difference is that no cross Si-Si bonding is formed within the coordinated isomer 2. Also different from the situation in pure isomer $^{1}2$, the bond length of the four peripheral SiP bond of the coordinated isomer ¹2 is very close to the normal Si-P and 2.25 Å.^{2b} Thus, the planar SiPSiP fourmembered ring bears no π bonding character within the coordinated isomer ¹2. A theoretical study on the mixed Si_2P_2 cluster coordinated by hydrogen atoms, i.e., $H_n Si_2 P_2$ (n = 2, 4, 4) and 6), is now underway to investigate the influence of substituent groups on the structures, energetics, and kinetic stability of Si₂P₂ skeleton.

Up to now, more than one hundred molecules have been detected in interstellar space among which small silicon or phosphorus containing molecules such as SiC, SiC₂, SiC₃, SiC₄, SiN, SiO, SiO, CP, and PN are included.¹⁷ Unfortunately, the molecules containing both Si and P have not been found. Our calculation may provide a useful basis for future interstellar detection of the two cyclic low-lying Si₂P₂ isomers. Note that the already detected SiC₂ and SiC₃ molecules possess cyclic structures. Because the dipole moments of the isomers ¹¹ and ¹² calculated at the B3LYP level are rather small, their microwave detection seems unlikely. Yet, both can be identified with the aid of their infrared vibrational frequencies.

3.4. Comparison with Other Molecules. Usually, isovalent or analogous molecules are expected to possess similar chemical properties. Yet, many discrepancies have been disclosed between the first-row and second-row elements (especially between C and Si, N and P). It is then interesting and useful to make comparisons of the structural, energetic, and kinetic properties between Si_2P_2 and other tetraatomic species such as C_2N_2 , Si_2N_2 , and C_2P_2 .

The C₂N₂ molecule has been extensively studied both experimentally and theoretically (see ref 16 and references therein). Theoretical calculations have concluded that there are four kinetically stable linear isomers NCCN, CNCN, CNNC, and CCNN, and one NNC three-membered ring isomer with much lower thermodynamical and kinetic stability. The first three linear isomers have been experimentally characterized, and NCCN has even been detected in interstellar space. For the presently studied Si₂P₂ cluster, among the four supposed linear isomers PSiSiP, SiPSiP, SiPPSi, and SiSiPP, only the isomer PSiSiP ¹⁵, which is analogous to NCCN, is identified as a local minimum and its energy is the highest. Also, PSiSiP ¹5 is kinetically quite unstable toward isomerization to the much lower isomer ¹2. It should be pointed out that the bonding nature in isomer ¹⁵ is quite different from that in NCCN. It is known that NCCN can be considered as a dimeric isomer formed by two CN radicals through a C-C single bond. Due to the existence of strong delocalization of π electrons (super conjugation), the central C-C bond length is significantly shortened to 1.37 Å. Unfortunately, such an effect does not exist in PSiSiP due to the poor overlap of π orbitals between the second-row elements. As shown in Figure 1, the central SiSi bond 2.3562 Å is characteristic of normal single bonding.

For Si₂P₂, the four-membered ring isomers ¹1, ¹2, ¹3, and ¹4 are not only thermodynamically much more stable, but also are kinetically more stable than the linear isomer ¹5. However, the analogues of these four-membered ring structures do not exist

for C₂N₂. An inspection on the bonding types of the Si₂P₂ and C₂N₂ isomers may help us to understand the large structural and energetic discrepancies. For C₂N₂, all four linear isomers contain conjugate triple bonds (two C \equiv N bonds in NCCN. CNCN, and CNNC, and one C=C and one N=N bond in CCNN), and the highest energy three-membered ring isomer contains N=N and C=C double bonds. The existence of super conjugate effect greatly strengthens the central CC, CN, or NN bonds. As a result, all four linear isomers of C₂N₂ are both thermodynamically and kinetically lower than the nonlinear isomer. Furthermore, the discrepancies can be simply illustrated by the difference between silicon-phosphorus and carbonnitrogen bonding energies. The respective bonding energies of Si-P, Si=P, and Si=P are 55, 69, and 86 kcal/mol,³¹ which do not differ very much from each other. Then, two Si-P single bonds are energetically more favored than one Si=P double bond, whereas three Si-P single bonds or one Si-P single and one Si=P double bonds are more favored than one Si≡P triple bond. As a result, the bonding between Si and P favors Si-P single and Si=P double more than Si≡P triple. On the other hand, the bonding energies of C−N, C=N, and C=N bonds are 70, 147, and 210 kcal/mol, respectively.²⁰ The strength of a C=N triple bond is three times that of a C-N single bond and is the sum of one C-N single and C=N double bond strength, while the C=N strength is twice the C-N strength. Therefore, the bonding between C and N favors $C \equiv N$ triple and C=N double more than C-N single.

Very recently, the analogous Si₂N₂ cluster has been theoretically investigated by Ornellas and Iwata.¹³ The lowest lying isomer was found to be a linear CNNC-like structure SiNNSi instead of a NCCN-like structure NSiSiN. Actually, NSiSiN is energetically very high lying. Furthermore, it is not a local minimum at all on PES. Another linear CCNN-like isomer SiSiNN is not a minimum, either. The second low-lying isomer of Si₂N₂ is a rhombic SiNSiN structure. Yet the NN and SiSi bond lengths are much longer than the corresponding normal single bonds. The linear isomer SiNSiN is the third low-lying isomer. However, the two linear isomers NSiSiN and SiSiNN, which are the respective analogues of NCCN and CCNN, are not local minima at all. Also, a SiNN three-membered ring isomer is a minimum following SiNSiN. The calculation by Ornellas and Iwata¹³ has indicated that the formation of Si-Si bonding is unfavorable for Si_2N_2 . Similar to Si_2N_2 , the Si_2P_2 molecule has a butterfly-like SiPSiP structure ¹1 and has no CCNN-like isomer SiSiPP. However, unlike Si_2N_2 , the Si_2P_2 molecule has a NCCN-like isomer PSiSiP 15 and has no CNNClike isomer SiPPSi and no SiPP three-membered ring isomer. Also, there are planar rhombic SiPSiP ¹2, folded trapezoidal SiSiPP ¹3, and distorted trapezoidal SiSiPP ¹4 isomers for Si₂P₂, whereas the analogous structures do not exist for Si₂N₂. Notice that the isomers ¹2, ¹3, and ¹4 contain appreciable amount of Si-Si single bonding. Because the kinetic stability of Si₂N₂ isomers has not been discussed by Ornellas and Iwata,¹³ we will make no comparison on such aspects.

In our very recent theoretical study on the potential energy surface of C_2P_2 ,¹⁵ we have identified seven isomeric forms as local minima on PES involving two linear (PCCP and CCPP), three four-membered ring (rhombic CPCP, butterfly-like CPCP, and folded trapezoidal CCPP), one PPC three-membered ring, and one closed tetrahedral-like structures. The NCCN-like isomer PCCP has the lowest energy and the second low-lying isomer is the rhombic CPCP structure with C–C cross bonding. By inspecting the isomerization of the C_2P_2 isomers, we have also found that the linear isomer PCCP is kinetically the most stable, while the rhombic isomer and the linear isomer CCPP reside in moderate potential wells and may also be kinetically stable. However, other isomers are kinetically much less stable. Compared with C_2P_2 and Si_2P_2 species, the structural similarities are that there are also butterfly-like SiPSiP isomer ¹1, rhombic SiPSiP isomer ¹2, folded trapezoidal SiSiPP isomer ¹3, distorted trapezoidal SiSiPP isomer ¹4, and NCCN-like linear PSiSiP isomer ¹⁵ for Si₂P₂ molecule. Also, both C_2P_2 and Si₂P₂ have no CNCN and CNNC analogues. The structural discrepancies are that the three-membered ring isomer and the closed tetrahedral-like isomer cannot be obtained for Si₂P₂. Considering the energetic properties, we can find that for C₂P₂, the NCCNlike isomer PCCP is thermodynamically the most stable and the butterfly-like isomer is the highest lying except for the tetrahedral-like isomer. However, the thermodynamical stability order is completely reversed for Si₂P₂, i.e., the linear PSiSiP is the highest lying and the butterfly-like isomer is the lowest lying. It should be noted that for both C_2P_2 and Si_2P_2 species, the planar rhombic isomer has considerable kinetic stability possibly due to the 4π e-4c stabilization.

4. Conclusions

The potential energy surface of Si₂P₂ in both singlet and triplet states is theoretically investigated by means of the B3LYP/6-311G(d) and single-point CCSD(T)/6-311+G(2df) methods to determine the structures, energetics, vibrational frequencies and kinetic stability of possible low-lying isomers. It is shown that the singlet butterfly-like SiPSiP isomer ¹1 with P–P cross bonding is the lowest lying followed by the singlet rhombic SiPSiP isomer ¹2 with Si-Si cross bonding at 3.2 kcal/mol, whereas the cyanogen-like isomer PSiSiP ¹⁵ at 57.1 kcal/mol is the highest lying. It is also shown that isomer $^{1}2$ is kinetically the most stable followed by isomer ¹1 with nearly half the kinetic stability of isomer ¹2. Due to the high thermodynamical or kinetic stability, both the isomers ¹1 and ¹2 may be experimentally observable. The calculated results also show that the B3LYP/6-311G(d) energetics for the singlet PES of Si_2P_2 agree excellently with the single-point CCSD(T)/6-311+G(2df) values, within 2 kcal/mol except for the linear isomer ¹⁵ and related transition states. Finally, the similarities and discrepancies between Si₂P₂ and three analogous molecules C₂N₂, Si₂N₂ and C_2P_2 concerning the structures, energetics, and kinetic stability of various isomers are compared and discussed. We hope our calculations may be useful for future laboratory and interstellar detection of the two cyclic Si_2P_2 isomers ¹1 and ¹2.

Acknowledgment. This work is supported by the National Natural Science Foundation of China (G29892168).

References and Notes

(1) Armitage, D. A. In *The Silicon-Hetoroatom Bond*; Patai, S.; Rappoport, Z., Eds.; J. Wiley: New York, 1989; p151; 1991; p183.

(2) Cradock, S.; Ebsworth, E. A. V.; Savage, W. J.; Whiteford, R. A. J. Chem. Soc., Faraday Trans. 2 1972, 68, 934. (b) Varma, R.; Ramaprasad, K. R.; Nelson, J. F.; J. Chem. Phys. 1975, 63, 915. (c) Beagley, B.; Robiette, A. G.; Sheldrick, G. M. J. Chem. Soc. A 1968, 3002. (d) Blake, A. J. Ebsworth, E. A. V.; Henderson, S. G. D. Acta Crystallogr. 1991, C47, 486. (e) Cambridge crystal structure database: Allen F. H.; Davies, J. E.; Galloy, J. J.; Johnson, O.; Kennard, O.; Macrae, C. F.; Mitchell, E. M.; Mitchell, G. F.; Smith, J. M.; Waltson, D. G. J. Chem. Inf. Comput. Sci. 1991, 31, 187. (f) Clegg, W.; Hassae, M.; Klingebiel, U. K.; Sherldrick, G. M. Chem. Ber. 1983, 116, 146. (g) Dress, M.; Fanta, A. D.; Powell, D. R.; West, R. Angew. Chem., Int. Ed. Engl. 1989, 28, 1038. Dress, M.; Pritzkow, H.; Reisgys, M. Chem. Ber. 1991, 124, 1931. (h) Dress, M. Angew. Chem., Int. Ed.

Engl. 1991, 30, 1022. (i) Schäfer, A.; Weidenbruch, M.; Saak, W.; Pohl, S. Angew. Chem., Int. Ed. Engl. 1987, 26, 776. (j) Tebbe, K.-F.; Heinlein, T. Z. Anorg. Allg. Chem. 1984, 515, 7. (k) Dress, M.; Reisgys, M.; Pritzkow, H. Angew. Chem., Int. Ed. Engl. 1992, 31, 1510. (l) Honle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1978, 442, 107. Honle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1978, 442, 91. (m) Baudler, M.; Oehlert, W.; Tebbe, K.-F. Z. Anorg. Allg. Chem. 1978, 442, 91. (m) Baudler, M.; Oehlert, W.; Tebbe, K.-F. Z. Anorg. Allg. Chem. 1991, 5982, 9. (n) Baudler, M.; Scholz, G. Tebbe, K.-F.; Feher, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 339. (o) Couret, C.; Escudie, J.; Satge, J.; Andriamizaka, J. D.; Saint-Roche, B. J. Organomet. Chem. 1979, 182, 9. (p) Smith, C. N.; Bickelhaupt, F. Tetrahdoron Lett. 1984, 25, 301. Smith, C. N.; Bickelhaupt, F. Organometallics 1987, 6, 1156. (q) Dress, M.; Pritzkow, H. J. Chem. Soc., Chem. Commun. 1993, 1585. (r) Dress, M.; Grützmacher, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 828. (s) Bender, H. R. G.; Niecke, E.; Nieger, M. J. Am. Chem. Soc. 1993, 115, 3314. (t) Dreiss, M.; Rell, S.; Pritzkow, H. J. Chem. Soc., Chem. Soc., Chem. Commun. 1995, 253.

(3) Raghavachari, K.; Chandrasekhar, J.; Gordon, M. S.; Dykema, K. J. J. Am. Chem. Soc. 1984, 106, 5853. (b) Dykema, K. J.; Truong, T. N.; Gordon, M. S. J. Am. Chem. Soc. 1985, 107, 4535. (c) Lee, J.-G.; Boggs, J. E.; Cowley, A. H. J. Chem. Soc., Chem. Commun. 1985, 773. (d) Schleyer, P. v. R.; Kost, D. J. Am. Chem. Soc. 1988, 110, 2105. (e) Grev, R. S.; Schaefer, H. F.; J. Am. Chem. Soc. 1987, 109, 6577. (f) Cremer, D.; Gauss, J.; Cremer, E.; Theochem. 1988, 169, 531. (g) Boatz, J. A.; Gordon, M. S. J. Phys. Chem. 1989, 93, 3025. (h) Maines, G. J.; Trachtman, M.; Bock, C. W. Theochem. 1991, 231, 125. (i) Nyulászi. L.; Belghazi, A.; Szétsi, S. K. Veszprémi, T.; Heinicke, J. J. Mol. Struct. (THEOCHEM) 1994, 313, 27. (k) Driess, M.; Janoschek, R. J. Mol. Struct. (THEOCHEM) 1994, 313, 129. (l) Baboul, A. G.; Schlegel, H. B. J. Am. Chem. Soc. 1986, 118, 8444. (m) Nguyen, M. T.; Creve, S.; Vanquickenborne, L. G. J. Chem. Phys. 1996, 105, 1922. (n) Zachariah, M. R.; Melius. C. F. J. Phys. Chem. A 1997, 101, 913.

(4) Jasinski, J. M.; Meyerson, B. S.; Scott, B. A. Annu. Rev. Phys. Chem. 1987, 38, 109. (b) Perrier, C.; Vincent, H.; Chaudouët, P.; Chenevuer, B.; Madar, R. Mater. Res. Bull. 1995, 30, 357. (c) Correia, A.; Pichaud, B.; Lhorte, A.; Quoirin, J. B. Mater. Sci. Technol. 1995, 11, 691. (d) Correia, A.; Pichaud, B.; Lhorte, A.; Quoirin, J. B. J. Appl. Phys. 1996, 79, 2145. (e) Li, X.-H.; Carlsson, J. R. A.; Gong, S. F.; Hentzell, H. T. G. J. Appl. Phys. 1994, 76, 5179. (f) Carlsson, J. R. A.; Madsen, L. D.; Johansson, M. P.; Hultman, L.; Li, X.-H.; Hentzel, H. T. G.; Wallenberg, L. R. J. Vac. Sci. Technol. A 1997, 15, 394. (g) Carlsson, J. R. A.; Clevenger, L.; Hultman, L.; Li, X.-H.; Jordan-Sweet, J.; Lavoie, C.; Roy, R. A., Cabral, C., Jr.; Morals, G.; Ludwig, K. L.; Stephenson, G. B.; Hentzell, H. T. G. Philos. Mag. B 1997, 75, 363.

(5) von Niessen, W.; Zakrzewsju, V. G. J. Chem. Phys. 1993, 98, 1271.
(6) Häser, M.; Schneider, U.; Ahlrichs, R. J. Am. Chem. Soc. 1992, 114, 9551.

(7) Boldyrev, A. I.; Simons, J. J. Phys. Chem. **1993**, 97, 6149. (b) Chong, D. P. Chem. Phys. Lett. **1994**, 220, 102.

(8) Davy, R. D.; Schaefer, H. F. Chem. Phys. Lett. 1996, 255, 171.

(9) Elorza, J. M.; Ugalde, J. M. Can. J. Chem. 1996, 74, 2476.

(10) Zhong, S -J.; Liu, C -W. J. J. Mol. Struct. (THEOCHEM) 1997, 392. 125.

(11) Kishi, R.; Gomei, M.; Nakajima, A.; Iwata, S.; Kaya, K. J. Chem. Phys. **1996**, 104, 8593.

(12) Sommerfeld, T.; Scheller, M. K.; Cederbaum, L. S. J. Chem. Phys. 1996, 104, 1464.

(13) Ornellas, F. R.; Iwata, S. J. Phys. Chem. 1996, 100, 16155.

(14) Mahler, W. J. Am. Chem. Soc. 1964, 86, 2306. (b) Ecker, A.;
Schmidt, U. Chem. Ber. 1973, 106, 1453. (c) Appel, R.; Knoll, F.; Ruppert, I. Angew. Chem., Int. Ed. Engl. 1981, 20, 731. (d) Charrier, C.; Guilhem, J.; Mathey, F. J. Org. Chem. 1981, 46, 3. (e) Charrier, C.; Maigrot, N.; Mathey, F.; Robert, F.; Jeannin, Y. Organometallics 1986, 5, 623. (f) Armbrust, R.; Sanchez, M.; Réau, R.; Bergsträsser, U.; Regitz, M.; Bertrand, G. J. Am. Chem. Soc. 1995, 117, 10785. (g) Sanchez, M.; Réau, R.; Dahan, F.; Regitz, M.; Bertrand, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 2228.
(h) Schmidt, O.; Fuchs, A.; Gudat, D.; Nieger, M.; Hoffbauer, W.; Niecke, E.; Schoeller, W. W. Angew. Chem., Int. Ed. Engl. 1998, 37, 949.

(15) Ding, Y. H.; Li Z. S.; Huang, X. R.; Sun, C. C., submitted to J. Phys. Chem. A

(16) Ding, Y. H.; Huang, X. R.; Li Z. S.; Sun, C. C. J. Chem. Phys. 1998, 108, 2024.

(17) Winnewisser, G. J. Mol. Struct. 1997, 408/409, 1. (b) McCarthy,
M. C.; Apponi, A. J.; Thaddeus, P. J. Chem. Phys. 1999, 110, 10645. (c)
Apponi, A. J.; McCarthy, M. C.; Gottlieb, C. A.; Thaddeus, P. J. Chem. Phys. 1999, 111, 3911.

(18) Gimarc, B. M.; Warren, D. S.; *Molecules In Science and Medicine*, Maksic, Z. B.; Eckert-Maksic, M., Eds.; Ellis Horwood: Chichester, 1991; p 327.

(19) Berthou, J. M.; Pascat, B.; Guenebaut, H.; Ramsay, D. A. Can. J. Phys. **1972**, *50*, 2265.

(20) Steudel, R. Chemistry of the Non-Metals, 1977.