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Nonequilibrium solvation is important to describe many chemical processes in solution such as, for example,
reactions involving light atoms or solvatochromic effects on UV spectra. This paper reports on an effective
and general procedure to perform nonequilibrium calculations using continuum solvent models. First, “fast”
dielectric constants are defined for the different processes which take place in solution (depending on their
characteristic times), second, such constants are used in a new approach to separate fast and slow solvation
components, and finally this approach is inserted in the framework of apparent surface charge (ASC) models.
This procedure is applied to some test cases, involving very fast solute transitions which require the treatment
of nonequilibrium effects.

1. Introduction

Solvation models based on the picture of the solvent as a
polarizable continuum have been greatly enhanced in recent
years:1-4 now they are used5-18 to compute molecular energies,
electronic properties, energy gradients, and force constants in
solution at the molecular mechanics, semiempirical, and ab initio
Hatree-Fock (HF) and density functional (DF) levels. The most
recent improvements allow the computation of energies and
gradients at the MP2 level,19 and the study of excited electronic
states in solution using configuration interaction (CI), time-
dependent HF and DF theory, and multi-configurational SCF
(MC-SCF):20 this last approach also provides excited state
geometry optimizations in the presence of the solvent.

Now, a challenging task is to extend the continuum descrip-
tion of solvation effects fromstatic to dynamicevents: among
the numerous interesting processes that would require a dynami-
cal treatment of solvation, one can mention electron transfer
reactions, photon absorption and emission, reactions involving
the transfer of light atoms, molecular vibrations in solution, and
geometry relaxation following an electronic transition.

From another point of view, solvent can play a crucial role
in many chemical processes by providing “random forces” on
reactant atoms or conversely by damping molecular motions
due to friction effects. Sometimes it has been proposed to
introduce one or more “solvation coordinates”, in addition to
the usual internal coordinates of the reactive system.21,22 To
afford these descriptions, one has to deal with nonequilibrium
solvation effects appearing when the solvent polarization, or a
part of it, deviates from the solute-solvent equilibrium char-
acteristic of the static behavior.23

This article reports on a compact and unified treatment of
nonequilibrium solvation in the framework of continuum solvent
models,1 among which the polarizable continuum model (PCM)24

is one of the most flexible and powerful. The PCM formalism

has been extensively discussed elsewhere,12,15,16,25and we shall
recall only a few results here. Nonequilibrium PCM equations
have been derived occasionally,26-30 but always limited to some
of the different PCM approaches, and sometimes with conflict-
ing conclusions: here we shall present a new and effective
treatment, valid for all the PCM versions with perfectly
equivalent results.

We have mentioned the interest of nonequilibrium solvation
for the study of solvatochromic effects, i.e., the solvent influence
on electronic absorption and emission spectra: since the first
works of Lippert, Ooshika, Bayliss, and McRae,31-34 most of
the nonequilibrium models have been proposed to treat this kind
of problem. The approach we want to develop can be directly
applied to the study of solvatochromic effects as well as to the
other dynamical processes cited above.

In many applications, two sources of the solvent polarization
are considered, having very different relaxation times:35-44 one
component of the solvent polarization is expected to relax at
the same speed as electronic motions, and it is considered always
equilibrated to the solute, while the other one remains fixed
during electronic transitions and relaxes with the time scale
typical of nuclear motions. The faster component is usually
attributed to the solvent electronic polarizability (and it is
sometimes referred to as optical, electronic, or noninertial), while
the slower component is due to atomic (vibrational) relaxation
and to molecular reorientations in the solvent (and it is called
orientational, nuclear, or inertial).

However, a more careful analysis shows that the experimental
behavior of most liquids subject to external oscillating fields
(with frequencyω) is better described in terms of three distinct
regimes, each one characterized by typical dielectric con-
stants.21,45Whenω is zero, or very small, the dielectric response
is completely equilibrated to the external perturbation, and it is
described by the static dielectric constant,ε. Another regime is
reached when the external field oscillates in the microwave-
far infrared region: here the liquid molecules are no longer able
to reorient following the perturbation, and the dielectric response* Corresponding author. E-mail: Mau@lsdm.dichi.unina.it.
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is due to atomic and electronic polarizations only. In this case
the proper dielectric constant is often calledε∞ (though the
involved frequencies are not “infinite” at all): for polar solvents
ε∞ is usually much smaller thanε. Finally, when higher
frequencies are involved, only the electronic polarization remains
in equilibrium, and the dielectric response is ruled byεopt ) n2,
wheren is the refractive index at frequencyω. For many pure
liquids and liquid mixturesε∞ ∼ n2 (thus indicating that the
atomic polarization plays a minor role), but in some cases the
difference betweenε∞ andn2 is not negligible at all (in Table
1) three illustrative examples are reported): note that in the
literature these two notations are sometimes confused, andε∞
is used instead ofn2 to indicate the purely electronic dielectric
constant.

The transition from the static to the atomic-electronic
regimes (ε to ε∞) has been carefully studied by many experi-
mentalists. The phenomenological theory of dielectric relaxation
explains the observed trends fairly:45 if the orientational
polariation is composed by one or more components, each
relaxing exponentially with characteristic times{τk, k ) 1, 2,
...}, the overall dielectric response is ruled by a complex
frequency dependent dielectric constant:

with ∑kgk ) 1. By applying the proper boundary conditions, eq
1 becomes

in the case of a single relaxation process

when two relaxation processes exist (the first leading to an
intermediate dielectric constantε1, the second leading fromε1

to ε∞), and so on. We recall thatε∞ is the dielectric constant
observed when only atomic and electronic polarizations are fast
enough to follow the perturbation.

A large body of experimental data provides this theory with
quantitative parameters for most solvents of chemical interest.
For example, water at 25°C is well described46 by a single
relaxation process withε ) 78.4,ε∞ ) 4.2, andτ ) 9 × 10-12

s, while n-butyl alcohol at 155.8 K exhibits47 two processes
with ε ) 49.1,ε1 ) 4.4, ε∞ ) 3.1 andτ1 ) 31.2× 10-6 s, τ2

) 0.08× 10-6 s: in Figure 1 the real part ofε̂ for these two
liquids is reported as a function ofω.

In order to apply this approach to chemical reactions, a
frequencyω must be associated to each of the dynamical
processes we want to study in solution. Then we shall use two
dielectric constants: the static constantε, expressing the
unperturbed solute-solvent equilibrium, and the fast constant
εf(ω) ruling the part of solvation which remains in equilibrium
when the solute undergoes the process of frequencyω. When

electronic state transitions are involved, as in the study of
solvatochromic effects,ω is of the order of 104 cm-1 = 1014

s-1: in this case the assumptionεf ) n2, usually made in this
kind of study, is well justified. When slower solute perturbations
are considered, such as atom displacements, we resort to eq 1:
in this case, the fraction of the solvent polarization which is in
equilibrium with the solute is determined by the real part of

Once the fast dielectric constant has been defined with the
above considerations, the nonequilibrium problem can be
tackled. Despite the apparent simplicity of the two-component
model, different approaches leading to different physical pictures
exist and are still used. In the so-called Pekar partition the optical
and the equilibrium polarizations are respectively proportional
to

so that their ratio is

TABLE 1: Atomic -Electronic and Purely Electronic
Dielectric Constants for Some Liquids (n Extrapolated to
Infinite Frequency)45

T (°C) ε∞ n2

chlorobenzene 20 2.36 2.24
tetrahydrofuran 20 2.20 1.95
water 25 4.2 1.75

ε̂(ω) ) ε∞ + (ε - ε∞) ∑
k

gk

1 + iωτk

(1)

ε̂(ω) ) ε∞ +
(ε - ε∞)

1 + iωτ
(2)

ε̂(ω) ) ε∞ +
(ε - ε1)

1 + iωτ1
+

(ε1 - ε∞)

1 + iωτ2
(3)

Figure 1. Real part of the frequency-dependent dielectric constant for
water at 298 K (a) andn-butyl alcohol at 155.8 K (b). Note the different
x-axis scales.

ε̂: εf(ω) ) R (ε̂) ) ε∞ + (ε - ε∞) ∑
k

gk

1 + ω2τk
2

(4)

n2 - 1

n2
,

ε - 1
ε

(5)

n2 - 1
ε - 1

ε

n2
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In water (ε ) 78.4,n2 ) 1.75) this means that about 45% of
the solvent polarization is of electronic origin. On the other hand,
some authors48,49 pointed out that, taking into account a cross-
term expressing the mutual influence between the electronic and
the nuclear polarization, the contribution from the electronic
source is markedly smaller, and it tends to become negligible
in the limit of very high dielectric constant; very recently a
similar model has been applied also by Truhlar and co-
workers.50 As shown in the following, our model belongs to
this latter approach.

In the last section, we present some examples referred to very
fast processes in solution, whenεf ) n2: the application to
slower processes, e.g., molecular vibrations, is completely
analogous, provided the properεf is defined, but requires more
technical considerations about the definition of the solute cavity,
and it will be presented in a forthcoming paper.

2. PCM Solvation

In PCM the solute molecule is inserted in a cavity, formed
by interlocking spheres centered on atoms or atomic groups:
51,52 the cavity surface is partitioned into small domains, called
“tesserae”, used to compute the surface integrals as finite sums
(see Figure 2). The solvent polarization is described by means
of a set of apparent charges{qi} placed in the surface tesserae,
determined by the general equation

where vectorq collects the apparent solvation charges, vector
b contains the solute electrostatic potential or the solute normal
electric field on the cavity surface, and square matrixD depends
on the cavity shape and on the solute dielectric constant as
detailed below.

Three different PCM formalisms are currently used,15 based
on different physical models and mathematical treatments: they
are referred to as D-PCM (dielectric version, based on the
original formulation proposed in 1981),12,24C-PCM (conductor,
based on the approach proposed by Klamt and Schu¨ürmann in
19937 and implemented by Cossi and Barone13), and IEF-PCM
(integral equation formalism, based on the mathematical treat-
ment introduced by Cance`s and Mennucci in 1997). Since it is
relevant in the following, we reportD andb elements explicitly
for the three PCM versions.

whereai is the area of tesserai, rbi is the position of its center
(defined as the average of the vertices),n̂i is the unit vector
normal to the surface in theith tessera,Ri is the radius of the
sphere to which the tessera belongs,ε is the solvent dielectric
constant, andI is the unit matrix. Note that in eq 7, referred to
D-PCM, the diagonal elementDii is written in a form slightly
different from that usually adopted:53 in Appendix A this
difference is discussed, showing that expression 7 is equivalent
to the usual one for equilibrium solvation, while it is more suited
to nonequilibrium calculations.

Once solvation charges have been defined through eq 6, they
are used to correct the solute Hamiltonian

Figure 2. GEPOL cavities for acetone (hydrogen atoms are inserted in the same spheres as carbon atoms) covered by tesserae of area of 0.4 and
0.2 Å2, respectively.

Dq ) -b (6)

In D-PCM

Dii ) 1
ai

[ 4π
ε - 1

+ 2π(1 + x ai

4πRi
)]

Dij )
rbi - rbj

|ri - rj|
n̂i

bi ) EB( rbi)‚n̂i (7)

In C-PDM

Dii ) ε

ε - 1
1.07x4π

ai

Dij ) ε

ε - 1
1

|ri - rj|
bi ) V( rbi) (8)

In IEF-PCM

D ) (12I - D̃)-1 ( ε + 1
2(ε - 1)

I - D̃)S
Sii ) 1.07x4π

ai

Sij ) 1
|ri - rj|

D̃ii )
Sii

2Ri

D̃ij )
( rbi - rbj)‚n̂j

|ri - rj|3

bi ) V( rbi) (9)

10616 J. Phys. Chem. A, Vol. 104, No. 46, 2000 Cossi and Barone



Ĥ0 is the Hamiltonian for the solute in vacuo.
Since the solute wave function is modified by the solvation

charges, which in turn depend on the solute electronic distribu-
tion, the charges and the wave function must be determined
self-consistently: very effective procedures have been elaborated
to do that for a large number of chemical systems in solution.
It can be shown that the variational minimization with Hamil-
tonian 10 leads to the quantity (having the status of a free
energy)

Now, let us consider a sudden change in the electronic
distribution (for example a photon absorption or emission), so
that the solute wave function changes fromΨ(1) to Ψ(2). Before
such a transition one can compute equilibrium solvation charges
{qi

(1)}, where index (1) indicates the electronic state to which
the charges are equilibrated. If we split them into fast and slow
components with the technique illustrated in the next section,
we obtain

whereVi is the electrostatic potential due to the solute on tessera
i.

After the transition the fast component of solvation charges
will be in equilibrium with the new wave functionΨ(2), whereas
the slow charges are the same as in eq 14; of course, both sets
of charges perturb the solute wave function. The free energy is

The last two terms in eq 16 express the interaction between
the slow and the fast charges and between the slow charges
and the solute (in state (2)), respectively. The factor 1/2 is
dropped in the last term because now theqs’s are not
self-consistent with the solute: in other words, no work has
been spent in state (2) to create the slow charges. However, as
clearly pointed out, e.g., in ref 29, to compareGnoneq

(2) andGeq
(1)

properly it is necessary to take into account the charging work
spent in state (1) to create theqs’s: this work is equal to half
the interaction of the slow charges with the solute and the fast
charges, so that the expression forGnoneq

(2) becomes

3. Fast and Slow Solvation Components

Now we consider the problem of splitting the solvation
charges into fast and slow components: in the stateΨ(1) we
must solve the two following equations at one time:

Equation 18 is simply eq 6, with the explicit indication of
the dependence on the static dielectric constant. In eq 19 the
fast dielectric constantεf is used instead ofε in the expression
of D; the term bs represents the potential, or the normal
component of the electric field, generated by the slow charges,
and it expresses the relationship between fast and slow solvation
charges. Note that the difference between the Pekar approach
adopted by Bayliss, McRae, and many others and the present
one lies in the cross-termbs added in eq 19. The physical
grounds for taking into account the mutual influence between
the solvent electronic and nuclear polarization have been pointed
out by Marcus:21 from a different point of view, they have been
discussed also by Brady and Carr48 and reconsidered by Klamt.49

In short, it can be shown that, following the Pekar partition, in
the limit of very polar solvents (ε f ∞) the orientational
contribution to the solvent polarization depends on theoptical
dielectric constant only, which is clearly counterintuitive (one
would expect, on the contrary, that in this limit the effect of
the optical polarization becomes negligible). Furthermore,
introducing the cross-termbs in eq 19 is equivalent to consider-
ing the solvent dielectric susceptibilityø ) (ε - 1)/4π as the
linear combination of two components

and

which is also consistent with the phenomenological theory of
frequency-dependent dielectric polarization.45

To solve system (18, 19) we introduce two matrix operators,
ΩV andΩE, expressing the electrostatic potential and the normal
component of the electric field generated by a set of point
charges on the cavity surface:

Ĥ ) Ĥ 0 + Vσ (10)

Vσ( rb) ) ∑
i

tesserae qi

|ri - r|
(11)

G ) 〈Ψ|Ĥ0 +
1

2
V̂σ|Ψ〉 ) 〈Ψ|Ĥ0|Ψ〉 +

1

2
∑

i

qi〈Ψ| 1

r - ri
|Ψ〉 (12)

qi ) qi,f + qi,s (13)

Geq
(1) ) 〈Ψ(1)|Ĥ0|Ψ(1)〉 +

1

2
∑

i

qi,f
(1)Vi

(1) +
1

2
∑

i

qi,s
(1)Vi

(1) (14)

Vi
(1) ) 〈Ψ(1)| 1

r - ri
|Ψ(1)〉 (15)

Gnoneq
(2) ) 〈Ψ(2)|Ĥ0|Ψ(2)〉 +

1

2
∑

i

qi,f
(2)Vi

(2) +
1

2
∑

ij

qi,f
(2)qj,s

(1)

ri - rj

+

∑
i

qi,s
(1)Vi

(2) (16)

Gnoneq
(2) ) 〈Ψ(2)|Ĥ0|Ψ(2)〉 +

1

2
∑

i

qi,f
(2)Vi

(2) +

1

2(∑
ij

qi,f
(2)qj,s

(1)

ri - rj

- ∑
ij

qi,f
(1)qj,s

(1)

ri - rj
) + (∑

i

qi,s
(1)Vi

(2) -
1

2
∑

i

qi,s
(1)Vi

(1))
(17)

D(ε)q ) -b (18)

D(εf)qf ) -(b + bs) (19)

øf ) (εf - 1)/4π (20)

øs ) ø - øf ) (ε - εf)/4π (21)

ΩVqx ) Vx

ΩEqx ) En,x x ) f, s (22)

(ΩV)ii ) 1.07x4π
ai

(ΩV)ij ) 1
|ri - rj|

(23)
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where all the quantities have the same meaning as in eq 7-9.
The diagonal elements (ΩV)ii and (ΩE)ii express the potential
and the normal electric field created by a charge densityqi/ai

on itself: their form can be found by the arguments reported in
refs 7 and 24, respectively.

Then eq 19 becomes

where we putΩ generally (it becomesΩE in D-PCM andΩV

in C-PCM and IEF-PCM). Recalling eq 18 and rearranging,
we get

Equations 27 and 28 are valid for all the PCM versions and
allow one to split the solvation charges into slow and fast
components. By substituting the explicit expressions forD and
Ω, a very simple result is obtained for all the PCM versions:

In Appendix B, eqs 29 and 30 are explicitly derived from
eqs 27 and 28 for D-, C-, and IEF-PCM.

We note that eqs 29 and 30 correspond to the result found
with different considerations by Klamt for COSMO49 (analogous
to C-PCM). The present treatment is more general and shows
that this result holds for all the continuum models (provided
that the cross-term in eq 19 is taken into account). Furthermore,
from eqs 29 and 30 the ratio between the fast (slow) and the
total solvation charges can be written in terms of the fast (slow)
dielectric susceptibilities as

resembling Brady and Carr’s equations, obtained by a com-
pletely different approach.

The above treatment refers to finite solvation charges
computed in nonequilibrium conditions. On the other hand, in
many applications one needs to consider the derivatives of the
free energy in solution, or of the molecular Fock operator, with
respect to some parameterλ (nuclear positions, external field
components, etc.). Suitable algorithms have been elaborated to
compute PCM contributions in geometry optimizations, force
constant calculations, and interactions with electric and magnetic
fields: such contributions depend on quantities related to the
solvation charge derivatives,qλ ) ∂q/∂λ, though the actual
expressions are very compact and in general avoid the explicit
use ofqλ. Anyway, we shall examine briefly howqλ has to be

computed in nonequilibrium conditions, deferring more accurate
analyses to further, specific works.

When dynamical processes are considered, the speed of the
variation of λ is of crucial importance. If this variation is
associated to a very slow process, equilibrium solvation can be
used to computeqλ: this is the case, for example, of geometry
optimizations, which follow the potential energy surfaces and
can be thought to be infinitely slow. If, otherwise, the frequency
ω associated to the change ofλ is high enough, a fast dielectric
constantεf can be defined as above: this happens, for example,
when one deals with solute nuclear vibrations or interactions
with external fields. In this case only the fast component changes
following λ, so thatqλ ) qf

λ. Recalling eq 19, we obtain

In eq 32 neitherbs nor D is affected by the derivative, since
the slow charges are fixed by hypothesis and the size of the
cavity is related to the distribution of solvent molecules around
the solute, and we can assume that it changes only in equilibrium
(slow) processes. Note that the independence ofqλ from bs

implies that the same expression could be obtained in the Pekar
approach; moreover, formulations physically analogous to eq
32 have been already used to compute (hyper)polarizabilities
in solution and to add solvent terms to time-dependent HF
expressions.

4. Examples of Applications

The fast/slow partition of eqs 29 and 30 can be simply tested
by imagining an excitation-deexcitation process

so fast that the orientational component of the solvent polariza-
tion and the solute nuclear geometry do not change during the
whole process. Of course one expects the energy computed at
the beginning and at the end to be the same. We applied this
imaginary process to H2CO in chloroform (ε ) 4.9, n2 )
2.085): first, the energy was computed at the Hartree-Fock
level with 6-31G(d,p) basis set and with D-, C-, and IEF-PCM
models. Then the solvation chargesq obtained in this calculation
were split into fast and slow components according to

(ΩE)ii ) 1
ai

2π(1 + x ai

4πRi
)

(ΩE)ij )
( rbi - rbj)‚n̂i

|ri - rj|
(24)

D(εf)qf ) -(b + Ωqs) ) -b - Ω(q - qf) (25)

[D(εf) - Ω]qf ) [D(ε) - Ω]q (26)

qf ) [D(εf) - Ω]-1[D(ε) - Ω]q (27)

qs ) q - qf (28)

qf )
εf - 1

ε - 1
q (29)

qs )
ε - εf

ε - 1
q (30)

qx

q
)

øx

ø
x ) f, s (31)

Figure 3. Energy difference (kcal/mol) in process 33 using different
fast/slow partitions (eq 34).

qλ ) - ∂

∂λ
{D-1(εf)[b + bs]} ) -D-1(εf)b

λ (32)

state 198
hν

some intermediate state98
-hν

state 1 (33)

qf ) λn2 - 1
ε - 1

q; qs ) q - qf (34)
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Our model (eqs 29 and 30) corresponds toλ ) 1, while the
Pekar partition (eq 5) would correspond toλ ) ε/n2 ) 2.35.
The energy at the end of process 33 was computed with eq 17
(in this case of course state (2) is the same as state (1)) using
the slow chargesqs(λ) as given by eq 34. In Figure 3 we report
the difference of energy before and after process 33 for different
values ofλ: one can see that when the mutual influence between
fast and slow polarizations is accounted for, only the fast/slow
partition proposed in the previous section (λ ) 1) is able to
give the same energy in the two calculations. With more polar
solvents, we found larger and larger errors forλ * 1.

The next example is referred to the solvatochromic effect on
H2NO radicaln f π* electronic transition. Recently nitrosyl
residues have been the object of many experimental and
theoretical investigations, mainly for their usefulness in the study
of magnetic and electronic properties of complex biochemical
systems. Indeed, since nitrosyl spectroscopic and spin properties
are very dependent on the local environment, such residues with
suitable side chains can be used to probe the structure (and
sometimes the dynamics) of micelles or membranes to which
they are bonded. One of the properties used for this purpose is
the UV spectrum in the region corresponding to nitrosyln f
π* absorption: it is clearly very important to know accurately
how the environment influences this transition energy. Of
course, as illustrated in ref 30 for the case of acetone S0 f S1

transition, one can compare calculated and experimental sol-
vatochromic effects only if a number of features (such as
nonelectrostatic interactions and discrete solvent molecule
effects) are properly accounted for. However, in the present
example we wish only to show the relative weight of nonequi-
librium electrostatic interactions.

The calculations have been performed with 6-31G(d) basis
set at the complete active space (CAS-SCF) level including
seven electrons and five orbitals in the active space, using the
program recently implemented in the Gaussian99 (development
version) package,54 which allows for CAS-SCF calculations with
PCM.20 The size of the spheres forming the cavity was
determined by a procedure based on the solute topology,52 which
proved very effective in reproducing hydration free energies
for many chemical systems.

The ground state geometry was optimized at the CAS(7,5)
level in vacuo and in benzene, dichloromethane, 1,2-dichloro-
ethane (DCE), acetone, methanol, and water, with the results
reported in Table 2. In all the environments the molecule was
kept planar, though it is known that the real minimum is slightly
bent, because the inversion barrier is so low that the first
vibrational eigenstate lies above it, and it is preferable to use
the planar conformation as reference, as shown, e.g., in ref 55.
In general the solvent has little effect on the geometrical
parameters, the most conspicuous change being in the NO bond
length.

The n f π* transition energy was computed in vacuo
(∆ES0fS1 ) 2.332 eV) 18 810 cm-1) and in all the solvents at
the corresponding ground state geometries. The PCM calcula-
tions were performed with both equilibrium (eq 14 for S0 and
S1 energies) and nonequilibrium (eq 17 for S1) solvation using
the techniques described above. The solvent shifts, i.e., the

differences between the transition energies in solution and in
vacuo, are reported in Figure 4: it is evident that in polar
environments nonequilibrium effects are very important and
cannot be neglected at all.

Now we consider how an energy profile can be drawn taking
into account the finite relaxation time of the surrounding solvent.
For example, an electronic transition from the ground to the
excited state can be seen as composed of two steps: a vertical
transition in which the nuclear geometry remains frozen as in
the excited state minimum. As for the solvent polarization, the
fast component adjusts itself immediately to the wave function
change, whereas the slow component relaxes together with the
nuclear geometry. Indicating withr (1), r (2) the set of internal
coordinates describing the ground and the excited state minima,
respectively, the process can be sketched as

We reproduced this process in the case of S0 f S1(n f π*)
transition of formaldehyde in water: we computed S0 and S1

structures and energies at the CAS-SCF level with 6-31G(d,p)
basis set, including in the active space six electrons and 4
orbitals; the calculations in water were performed with the
C-PCM model.

In Table 3 the optimized geometries are reported for S0 and
S1 in vacuo and in solution. As one can see, the most important
difference involves the carbon atom pyramidalization (i.e., the
out-of-plane angle of the oxygen with respect to the other three
atoms): while in the ground state the molecule is planar, in S1

the minimum corresponds to a strongly bent structure.
Then we choose the out-of-plane angleθ as the leading

coordinate for the excited state geometry relaxation: the
corresponding energy profiles in vacuo and in solution are
reported in Figure 5 (for each value ofθ the other coordinates
were optimized). Different curves can be drawn in solution: one

TABLE 2: H 2NO Ground State Geometrical Parameters (Å
and deg) Optimized in Different Environments at the
CAS(7,5)/6-31G(d) Level (the System Is Always Kept Planar)

vacuum benzene CH2Cl2 DCE acetone methanol water

rNO 1.2986 1.2988 1.2988 1.2988 1.2990 1.2994 1.2995
rNH 0.9949 0.9956 0.9974 0.9974 0.9980 0.9997 1.0023
∠(HNH) 118.82 118.96 118.96 118.97 118.99 118.99 119.03

Figure 4. Solvent shift (cm-1) for H2NO n f π* transition using
equilibrium and nonequilibrium solvation in different solvents.

TABLE 3: H 2CO Geometrical Parameters (Å and deg)
Optimized for the Ground State and for the First Excited
Singlet (n f π*) at the CAS(6,4)/6-31G(d) Level in Water
(Equilibrium Solvation in Both Cases)

S0 S1

rCO 1.2067 1.3521
rCH 1.0870 1.0787
∠(HCH) 116.98 118.22
θ (out of plane) 0.00 40.29

Ψ(1), r (1), qf
(1), qs

(1)98
vert trans

Ψ(2), r (1), qf
(2), qs

(1)98
relax.

Ψ(2), r (2), qf
(2), qs

(2) (35)
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corresponds to fully equilibrated solvent, i.e., for each geometry
both qf andqs are adjusted to the excited state wave function.
Another curve represents nonequilibrium solvation: in each
point theqf are in equilibrium with the excited state but theqs

are generated by the corresponding ground state wave function.
Of course, neither the former nor the latter curve represents a
relaxation process in which the solvent rearranges at a speed
comparable to that of the solute: forθ ) 0 the solvent is not
equilibrated (point A in Figure 5) whereas at the end of the
relaxation process also the solvent is expected to be fully
equilibrated (point B in Figure 5).

We propose to use the energy profile corresponding to the
“relaxing solvent” line in Figure 5: the energies for eachθ can
be computed by allowing theqs to go from the nonequilibrium
to the equilibrium arrangement during the geometry optimiza-
tion. We assume that the nuclear motions involved in solute
and in solvent rearrangement are similar and proceed at the same
speed: then theqs relax exponentially as

whereqs
A are the nonequilibrium slow charges forθ ) 0° and

qs
B the equilibrium slow charges forθ ) 40.29°; in each point

the free energy in solution was computed with eq 17. This
example shows that an effective treatment of nonequilibrium
solvation can help in drawing physically correct energy profiles
in solution.

5. Conclusions

In the past decade continuum solvation models have proven
very useful to describe solute-solvent interactions at quantum
high level. In the effort to extend the applicability of such
models also to dynamical processes in solution, great attention
must be paid to nonequilibrium effects, which arise when the
time scale of the studied processes is comparable with the
relaxation time of the solvent polarization.

In the present work we report on a part of the methodological
grounds needed for the quantum description of dynamics in
solution, a field which, in our opinion, will receive more and
more attention in the near future. We have shown how the PCM,
a well-known, effective, and reliable continuum solvation model,

can be used to describe nonequilibrium effects, for processes
with any characteristic frequency. The key feature of the present
approach is the definition of fast and slow solvation charges,
the former always equilibrated to the solute, the latter delayed
or fixed; of course the extent of such a partition depends on the
frequency of the considered perturbation.

Unlike other nonequilibrium PCM descriptions, the present
one can be applied to all the variants of the method (in fact,
this fast/slow partition is general for any ASC method), and
the partition is particularly simple and effective. The procedure
has been implemented in the development version of the
Gaussian package, and some tests have been reported and
discussed, to illustrate some of the possible applications. Of
course the chemical interest for such a technique is very wide,
ranging from the study of electronic transitions and vibrational
motions to the description of proton transfer reactions and time-
resolved geometry relaxations.

Appendix A

In D-PCM we use for theD matrix diagonal element the
expression (eq 7)

instead of the usual form53

One can easily verify that these expressions are identical,
provided the value ofε is the same at the numerator and at the
denominator of eq 38. The quantity 4π/(ε - 1) expresses the
proportionality between the solvation charges and the normal
field on the outer side of the surface; theε at the numerator of
eq 38 appears when the field is taken inside the cavity, according
to

where (En)i is the normal component of the electric field in
tesserai.

Then the solvation chargeqi is

In terms of the quantities defined above we have

We recall thatbi is the normal component of the solute electric
field, and that the last term in the right-hand side of eqs 41 and
42 is the contribution from the other solvation charges: these
two terms do not meet any discontinuity crossing the surface.
On the other hand,(2π(1 ( ηi)(qi/ai) is called the self-

Figure 5. H2CO S1 energy (au) with respect to the out-of-plane angle
in vacuo and in water, using equilibrium, nonequilibrium, and relaxing
solvation.

qs(θ) ) qs
A exp{-

θ - θ1

θ2 - θ1
(ln qs

A - ln qs
B)} (36)

θ1 ) 0°; θ2 ) 40.29°

Dii ) 1
ai

[ 4π
ε - 1

+ 2π(1 + ηi)], ηi ) x ai

4πRi
(37)

Dii ) 1
ai

[ 4πε

ε - 1
- 2π(1 - ηi)] (38)

(En)i,in ) ε(En)i,out (39)

qi ) - ε - 1
4π

(En)i,out ) - ε - 1
4πε

(En)i,in (40)

qi ) -
1

ai

ε - 1

4π [bi + 2π(1 + ηi)qi + ∑
j*i

ai

( rbi - rbj)‚n̂i

|ri - rj|3
qj]

outside (41)

qi ) -
1

ai

ε - 1

4πε [bi - 2π(1 - ηi)qi + ∑
j*i

ai

( rbi - rbj)‚n̂i

|ri - rj|3
qj]

inside (42)
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polarization term and it expresses the normal field created by
the charge densityqi/ai on itself; this contribution is the source
of the electric field discontinuity across the surface. In the case
of a planar surface the self-polarization field is-2π(qi/ai) inside
the cavity and+2π(qi/ai) outside. As shown in Figure 6, its
effect is to strengthen the field inside the cavity and to weaken
it outside. As our cavities are not planar but spherical, a
correctionηi ) (ai/4πRi)1/2 is added to take into account the
curvature effect; this correction has a positive sign for concave
surfaces (outside the cavity) and a negative sign for convex
surfaces (inside).

Traditionally eq 38 (field inside the cavity) is used in
D-PCM: however in the case of nonequilibrium solvation it
cannot be used because the relationship

holds only in the equilibrium case. If a part of the solvation
charge density is not equilibrated to the solute, the field
discontinuity is no longer proportional toε: such a problem
can be avoided by using eq 37 (field outside the cavity). In
equilibrium conditions the two approaches are perfectly equiva-
lent; on the other hand, only eq 37 is able to provide the correct
result in nonequilibrium calculations (for example in the
excitation-deexcitation process considered at the beginning of
section 4). Then, to avoid confusion, we propose to adopt eq
37 for all the D-PCM calculations, both in the equilibrium case
and in the nonequilibrium case.

Appendix B

C-PCM. This is the simplest case. Recalling eqs 8 and 23, it
is clear that

so that the general expressions 27 and 28 become

D-PCM. Comparing eqs 7 and 24, one obtains

Then

whereA is a diagonal matrix collecting the areas of surface-
tesserae.

Equations 27 and 28 become

i.e., the same result as for C-PCM.
IEF-PCM. Comparing eqs 9 and 23, one can easily see that

S ) ΩV, so that eq 27 becomes in this case

which corresponds once again to the result found for C- and
D-PCM.
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