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The pair population analysis developed some time ago as a straightforward link between quantum chemical
and classical picture of bonding was generalized by incorporating its formalism into the framework of AIM
theory. A detailed numerical comparison between the results derived from the original pair population analysis
and those from AIM generalization is reported. On the basis of this comparison, the reliability of both
approaches is evaluated. In addition to this a numerical test of the accuracy of the Lewis electron pair model
is also reported.

Introduction

The empirically known fact that atoms in molecules are held
together by forces displaying both high directionality and
saturation culminated in the last century by the formulation of
the classical structural theory. This theory, based on the concepts
of valence and chemical bond, has proved to be extremely
fruitful and stimulated the development of both organic and
inorganic chemistry for more than 150 years. The first to
correctly recognize the electronic nature of the phenomenon of
chemical bonding was G. N. Lewis,1 and his idea that chemical
bonds are formed by shared electron pairs has become one of
the basic postulates of chemistry. The intuitively discovered
relation of the phenomenon of chemical bonding with the
electronic structure of molecules was placed on safe theoretical
basis with the advent of quantum theory, and it is interesting
that the first method of solving the Schro¨dinger equation, the
so-called VB method,2,3 was also straightforwardly based on
the idea of electron pairing. Since that time, the newly
established field of quantum chemistry has undergone an
enormous progress and there is now no problem to generate
reliable wave functions even for sizable molecules. Unfortu-
nately, the increased sophistication of wave functions brings
one unpleasant side effect. This effect is that these functions
become more and more complex and, consequently, it is more
and more difficult to trace in them anything reminiscent of the
classical chemical bonds of the Lewis model.

Nevertheless, the immense debt which chemistry owes to this
model stimulated and still stimulates the attempts to reconcile
both alternative pictures of bonding.4-21 If we disregard earlier
studies based on the idea of localized orbitals,4-6 the first attempt
to substantiate the electron pair nature of chemical bonding
theoretically is represented by the so-called loge theory.7,8

Closely related to this theory are also more recent studies by

Mel-Levy and Julg,14,15 who proposed to identify chemical
bonds with the regions of small fluctuation of electron pair.
Unfortunately, these early attempts were not entirely convincing
and it was even proposed to abandon the idea of chemical bonds
as the basic building block of molecules.16

Despite these discouraging results, the intuitive belief in
deeper physical meaning of the Lewis structural formulas
survived and still stimulates the attempts at the elucidation of
the role of electron pairing in chemical bonding.17-22 Into the
framework of these efforts can be included the formalism of
so-called pair population analysis23 in terms of which the direct
link between rigorous quantum mechanics and the Lewis
classical model was straightforwardly established.24-26 This
analysis, originally based on the Mulliken-like partitioning of
the pair density matrix, was subsequently generalized27 by
reformulating the whole approach within the framework of AIM
theory.28 Unfortunately, at the time ref 27 was written, we were
not able to perform the calculations at the corresponding level
of the theory and so the tests of the accuracy of the Lewis model
reported therein were only approximate. The first to fully explore
the potential of the AIM generalized pair population analysis
was thus Fradera et al. in a recent study,29 in which the
approximate nature of our calculations was repeatedly empha-
sized. In the meantime, the formalism of AIM theory was
implemented in our laboratories so that the test of the accuracy
of the Lewis model suggested in ref 27 can now be reconsidered.
Our aim in this study is to report the detailed numerical
comparison of the original pair population analysis with the
exact AIM generalization and to evaluate thus the reliability
and eventual shortcomings of previous approximate analyses.

Theoretical

Although the formalism of the pair population analysis is
sufficiently described in the original studies,23-26 we consider
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it worthwhile to review briefly the basic principles of the
approach to the extent necessary for the purpose of this study.
The basic idea of this analysis is the straightforward application
of the Mulliken-like partitioning of the spin-free pair density
F(r1,r2)

whereΓRâ are the elements of the matrix representing the pair
density in the basis of two-electron functionsλR,λâ, the so-called
geminals.

As is well-known, the matrixΓ can be factorized into two
blocks which correspond to the singlet and triplet states of
electron pairs.

and their respective traces are30,31

In these equationsN denotes the number of electrons in the
system andS its spin quantum number.

In the case of singlet states ofN-electron systemsS) 0 and,
consequently, the following holds:

Based on this equation, it is useful to introduce the so-called
effective pair populations as mono- and biatomic contributions
from the Mulliken-like partitioning of eq 6

As has been shown in the studies,23-25 the values of these
effective pair populations are closely related to the Lewis
electron pair model and, based on their values, the classical
Lewis structures can be straightforwardly reproduced. In this
connection it is also worth reminding that at the SCF level the
effective pair populations are equivalent to the well-known
Wiberg or Wiberg-Mayer indices,32,33 which are well-known
to represent the theoretical counterpart of the classical concept
of bond multiplicity. Due to this property, the biatomic effective
pair populations characterize the connectivity between the atoms
(including the multiplicity of the corresponding bonds) while
monatomic populations provide the information about the
eventual presence of free electron pairs on atoms.

The relation between the effective pair populations and
chemical bonds is also underlined by the normalization derived
from eq 6

Another interesting property of effective pair populations is
that the values ofΠAB

(eff) are usually very small for the pairs of
atoms not connected in the classical structural formula by a

bond. As a consequence, the exact normalization (9) can often
be rewritten in the form (10), which can be regarded as a simple
numerical test of how well the molecular structure is described
by a classical Lewis formula.

As demonstrated in the studies,23-25,34 the approximate nor-
malization is usually satisfied by molecules well represented
by a classical model of localized two-center two-electron (2c-
2e) bonds. On the other hand, the deviations from the ap-
proximate normalization are generally observed for molecules
like electron-deficient boranes, metal clusters, etc. containing
multicenter bonds.34,35

Although the pair population analysis was originally formu-
lated only at semiempirical level of the theory, the extension to
ab initio level is quite straightforward. As it was shown in the
study,36 the effective pair populations are usually much less
sensitive to the quality of the basis set than the well-known
Mulliken populations. Despite these favorable findings, it is true,
however, that the dependence on the quality of the basis set
cannot be completely disregarded. Moreover, some systematic
bias of the populations resulting from the artificial Mulliken-
like partitioning of the electron charge between individual atoms
can also be expected. It is generally accepted that most of these
shortcomings of the Mulliken-like partitioning can to a consid-
erable extent be reduced within the AIM theory.28 In view of
this superiority, the extension of the pair population analysis
was proposed some time ago.27 In this study, based on the
revival of the old idea of chemical bond as a region of small
fluctuation of the electron pair,14 it was shown that at SCF level,
the effective pair populations can be regarded as an approxima-
tion to interloge correlation termsF(X,Y) introduced many years
ago by Bader and Stephens.37 [The interloge correlation terms
reduce to effective pair populations if the explicit integration
over the atomic domains is replaced by the Mulliken-like
approximation of the corresponding integrals.27]

The close parallel with the effective pair populations is clearly
seen also from the existence of the general normalization

that is a straightforward counterpart of the formula (9). Based
on this parallel, theF(X,Y) terms can be related to the Lewis
formula in exactly the same way as the effective pair popula-
tions. Moreover, the above originally empirical interpretation
of pair populations24-26 was put on safer theoretical footing in
the study27 in which the interloge correlation termsF(A,A),
F(A,B) were interpreted in terms of fluctuation. Thus, e.g., it
was shown that the necessary condition for minimizing the
fluctuation in a biatomic regionΩAB formed as a union of
individual atomic regionsΩA andΩB is the sufficiently large
value of the termF(A,B). This term can be regarded as a
measure of sharing the electrons between atoms A and B.
Consistent with this interpretation is the identification ofF(A,B)
(and, of course, also ofΠAB

(eff)) with bond order27,38

F(r1,r2) ) ∑
R
∑

â

ΓRâλR(r1,r2)λâ(r1,r2) (1)

Γ ) Γ(s) x Γ(t) (2)

Tr Γ ) N(N - 1)/2 (3)

Tr Γ(s) ) N(N + 2)/8 - S(S+ 1)/2 (4)

Tr Γ(t) ) 3N(N - 2)/8 + S(S+ 1)/2 (5)

Tr Γ(s) - 1
3
Tr Γ(t) ) N/2 (6)

ΠAA
(s) - 1

3
ΠAA

(t) ) ΠAA
(eff) (7)

ΠAB
(s) - 1

3
ΠAB

(t) ) ΠAB
(eff) (8)

∑
A

ΠAA
(eff) + ∑

A<B

ΠAB
(eff) ) N/2 (9)

∑
A

ΠA
(eff) + ∑

A<B

bonded

ΠAB
(eff) ≈ N/2 (10)

F(X,Y) ) 2∫ΩX
dr1∫ΩY

F(r1,r2) dr2 - N(X)N(Y) ≈ -ΠXY
(eff)

(11)

∑
A

F(A,A) + ∑
A < B

2F(A,B) ) -N (12)

BAB ) -2F(A,B) (13)
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In addition, this interpretation can simply be put into a
quantitative mathematical form which, for example, was recently
used for the formulation of the localization procedure yielding
the orbitals (chemical bonds) which satisfy the condition of the
minimal fluctuation of electron pair.39

The close relation of interloge correlation termsF(X,Y) to
the effective pair populations and, consequently, to the classical
Lewis model finds its reflection also in the existence of
approximate normalization (14), which can be regarded as a
counterpart of the formula (10)

One of the aims of this study is to show that, contrary to what
was claimed in ref 29, the approximate normalization retains
its validity also if the original pair populations are replaced by
their exact equivalents within AIM theory.

Computations

The above-reported formalism was applied to a series of
simple molecules ranging from ideally nonpolar homoatomic
systems to highly polar molecules (H2. N2, F2, HF, H2O, NH3,
CH4, C2H6, C2H4, C2H2, LiH, LiF, CO2, N2O, N3

(-), SO2, SO3).
The calculations at ab initio SCF level were performed using
the Gaussian 94 series of programs.40 The calculations were
performed in most cases using the Dunning-Huzinaga DZVP
basis set41 implicitly incorporated in the Gaussian program. The
only exception was the molecule of LiF for which it was not
possible to perform the virial partitioning of the electron density
in this basis. In this case, Bader’s analysis was performed using
a 6-31G basis set. Similar complications with the virial
partitioning were observed also for the molecule of C2H2, where
in addition to four nuclear attractors, coinciding with individual
C and H atoms, another fifth nonnuclear attractor was localized
in the middle of the CC bond. This of course complicates the
interpretation of the AIM generalized pair population analysis
and so the molecule of acetylene was not further considered.

The geometries of all the molecules were completely opti-
mized at each particular level and the resulting geometrical
parameters are summarized in Table 1.

The wave functions generated in the first step were subse-
quently subjected to the formalism of both Mulliken-like and

AIM generalized pair population analysis using our own codes
interfaced with the Gaussian. The results of the calculations are
summarized in Tables 2 and 3.

Results and Discussion

Having reviewed the basic theoretical background, let us
confront the results of the original Mulliken-like pair population
analysis with the exact AIM based generalization and let us
start first by comparing of both approaches at the HF level of
the theory. The simplest situation is for ideally nonpolar
homoatomic systems (H2, N2, etc.) where it is easy to understand
not only the calculated values qualitatively, but also the values
from both approaches are closely related quantitatively. The
qualitative interpretation of the pair populations can be best
demonstrated by the simplest case of H2 molecule and arises
from the well-known result of the expansion of MO wave
function in terms of VB structures [In the ground state of H2

TABLE 1: Calculated Values of Geometrical Parameters of
the Studied Moleculesa

molecule parameter value molecule parameter value

H2 RHH 0.733 C2H4 RCC 1.325
F2 RFF 1.350 RCH 1.077
N2 RNN 1.083 ∠HCH 116.8
HF RHF 1.10 C2H2 RCC 1.191
H2O ROH 0.944 RCH 1.060

∠HOH 106.6 CO2 RCO 1.145
NH3 RNH 1.000 N3

(-) RNN 1.160
∠HNH 108.2 N2O RNN 1.096

CH4 RCH 1.085 RNO 1.187
∠HCH 109.5 SO2 RSO 1.423

LiH RLiH 1.624 ∠OSO 118.1
LiF RLiF 1.572 SO3 RSO 1.412
C2H6 RCC 1.544 ∠OSO 120.0

RCH 1.085
∠CCH 111.6

a Bond lengths are in angstro¨ms, bond angles in degrees.

∑
A

F(A,A) + ∑
A<B

bonded

2F(A,B) ≈ -N (14)

TABLE 2: Calculated Values of Effective Pair Populations
and Their AIM Generalized Counterparts for a Series of
Nonpolar Molecules

molecule type
2ΠXX

(eff)

ΠXY
(eff)

idealized
limit

-F(X,X)
-F(X,Y)

idealized
limit

H2 H 0.50 0.50 0.50 0.50
H-H 0.50 0.50 0.50 0.50

N2 N 5.558 5.50 5.482 5.50
NtN 1.441 1.50 1.518 1.50

F2 F 8.524 8.50 8.346 8.50
F-F 0.474 0.50 0.635 0.50

CH4 C 4.600 4.00 3.789 4.00
HH 0.386 0.50 0.503 0.50
C-H 0.486 0.50 0.490 0.50

C2H6 C 4.474 4.00 3.758 4.00
H 0.414 0.50 0.517 0.50
C-C 0.451 0.50 0.490 0.50
C-H 0.493 0.50 0.484 0.50

C2H4 C 4.328 4.00 3.940 4.00
H 0.388 0.50 0.477 0.50
CdC 0.976 1.00 0.941 1.00
C-H 0.499 0.50 0.492 0.50

TABLE 3: Calculated Values of SCF Effective Pair
Populations and Their AIM Generalized Counterparts for a
Series of Polar Molecules

molecule type
2ΠXX

(eff)

ΠXY
(eff)

idealized
limit

-F(X,X)
-F(X,Y)

idealized
limit

CH4 C 4.600 4.00 3.789 4.00
H 0.386 0.50 0.503 0.50
C-H 0.486 0.50 0.490 0.50
H...H -0.003 0.00 0.045 0.00

NH3 N 6.330 5.50 6.898 5.50
H 0.288 0.50 0.164 0.50
N-H 0.469 0.50 0.426 0.50
H...H -0.002 0.00 0.001 0.00

H2O O 7.756 7.00 8.604 7.00
H 0.218 0.50 0.066 0.50
O-H 0.451 0.50 0.314 0.50
H...H 0.000 0.00 0.007 0.00

HF F 9.052 8.50 9.441 8.50
H 0.144 0.50 0.042 0.50
H-F 0.401 0.50 0.258 0.50

LiH Li 2.368 2.50 1.988 2.00a

HH 0.648 0.50 1.841 2.00a

Li-H 0.490 0.50 0.086 0.00a

LiF Li 2.012 2.50 1.972 2.00a

F 9.500 8.50 9.818 10.00a

LiF 0.245 0.50 0.104 0.00a

a The values correspond to the limit of complete ionization
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only one singlet and no triplet pair can be formed so that the
effective pair populations are identical to pure singlet popula-
tions.]

According to this expansion, the bonding electron pair is 1:1
distributed between ionic (monatomic) and covalent (biatomic)
contributions. As a consequence, each of the monatomic pair
populations attains the value 0.25 (1/2 × 1/2), while the biatomic
pair population is equal to 0.5 which corresponds to the classical
bond orderBAB ) 2ΠAB

(eff) ) 1.0. Assuming now that the same
partitioning of bonding electron pair also applies to the case of
multiple bonded systems, the values of 1.0 and 1.5 can be
expected for biatomic pair populations of nonpolar double and
triple bonds, respectively. As it is possible to see in Table 2,
the actual values of biatomic pair populations of H-H, F-F,
C-C, CdC, and NtN bonds very closely approach these
idealized limits. Similarly, it is also possible to interpret the
values of monatomic pair populations. In this case, however, it
is necessary to be aware of the fact that in addition to ionic
contribution of 0.25 per each ideally shared electron pair, the
eventual presence of core or free electron pairs on the atom
contributes to the corresponding atomic term by one unit per
pair. As a consequence, the monatomic pair population of
nitrogen in N2 and fluorine in F2 can be expected to be equal to
2.75 (2 × 1 + 3 × 0.25) and 4.25 (4× 1 + 1 × 0.25),
respectively. As can be seen in the Table 2, the actual values
of atomic pair populations are again very close to these idealized
limits. The close parallel of idealized and actual pair populations
is not restricted only to the case of ideally nonpolar systems,
but as it is possible to see from the Table 2, the close coincidence
is observed also for heteropolar bonds of low polarity. Consistent
with the above-introduced interpretation, the values of biatomic
pair populations of C-H bond in various hydrocarbons are again
close to 0.5 while the atomic population on C is close to 2 (1
× 1 + 4 × 0.25).

The above-discussed nonpolar or low polar systems are also
interesting because of the especially simple relation between
effective pair populations and their exact AIM-based counter-
parts. This is due to the fact that the electron pairs in these
systems are nearly ideally shared so that the artificial 1:1
Mulliken-like partitioning of electron or pair density, charac-
teristic of the original pair population analysis, still represents
a reasonable and realistic enough approximation to the exact
virial partitioning. As a consequence, the values of effective
pair populations and interloge correlation terms are related by
a simple proportionality

where the factor of 2 appears as a consequence of the differences
in normalization between (9) and (12). As it is possible to see
in Table 2, the actual values of AIM pair populations are not
very different from the values expected on the basis of relation
16. We can thus see that the picture of bonding suggested for
nonpolar systems by original pair population analysis is practi-
cally equivalent to the picture resulting from the exact AIM-
based reformulation of the theory.

The only exception that apparently seems to contradict the
simple proportionality (20) is the molecule of F2, for which the

AIM bond order slightly exceeds the idealized value of unity
expected on the basis of the Lewis model. The reasons for this
interesting discrepancy are not completely clear at this moment
but it is likely that they are related to the specific nature of
bonding in the F2 molecule which, for example, differs from
other single bonds by an exceptionally low bond energy.42 In
this connection it is also interesting to remark that the specific
nature of F-F bond was discussed some time ago in a study.43

It was proposed that in addition to the ordinary MO picture of
bonding, an alternative model can also be proposed, according
to which the increase of the F-F bond order can be admitted,
although the corresponding mechanism of bonding apparently
participates only marginally.

Having demonstrated the close parallel of effective pair
populations and their exact AIM-based counterparts for nonpolar
systems, let us confront, in a similar way, the results of both
approaches for heteropolar systems. The calculated values of
effective pair populations and interloge correlation terms
F(A,A), F(A,B) for systems containing bonds of gradually
increasing polarity are summarized in Table 3. As it is possible
to see in the table, the situation here is slightly more complex
and the deviations from the simple picture observed for nonpolar
systems become apparent. The general feature straightforwardly
evident from the table is that the deviations from the idealized
values systematically increase with increasing polarity of the
bonds and predominantly concern the values ofF(A,A) and
F(A,B) resulting from AIM-based generalization of the pair
population analysis. The polarity of the bond can straightfor-
wardly be measured by the values of the monatomic terms
F(A,A) for which the exaltation over the idealized limits (Table
3) is observed for the most electronegative atom in the bond
while for its electropositive partner the values are accordingly
lower. As it is also possible to see in Table 3, the extent of
these deviations systematically increases with increasing polarity
of the bond and in the limiting case of LiF molecule, the values
of F(Li,Li) and F(F,F) are close to the expectation for the limit
of the completely ionic bond (-F(X,X) ) N(X)).

Although the same general trend is also detectable in the
values of pair populationsΠAA

(eff), the variation is in this case
much less pronounced. Moreover, the artificial 1:1 distribution
of the bonding electron pair into covalent and ionic contributions
resulting from the Mulliken-like partitioning of the pair density
is still apparent. Consistent with this systematic bias, the values
of biatomic pair populationsΠAB

(eff) are in all cases not too much
different from the idealized value of 0.5. This systematic bias
of pair populations is again remedied within the AIM approach
and consistent with the expectation, the increased ionicity of
the bond is accompanied by a deep complementary decrease of
the covalent bond orderF(A,B) and in the limit of practically
ionic bond (LiH, LiF), the values of AIM covalent bond orders
F(Li,H) or F(Li,F) dramatically decrease.

Another interesting application of the pair population analysis
concerns the evaluation of the accuracy of the classical Lewis
structural formula. As already mentioned above, this accuracy
can simply be evaluated by comparing the actual value of the
approximate normalization sum (10) or (14) with the exact limit.
This quantitative criterion was used in the study,27 but as the
actual values were obtained only for approximate pair popula-
tions based on Mulliken-like partitioning, we would like to show
that the picture of bonding does not change qualitatively when
upgrading from approximate to exact description. This can best
be demonstrated by the series of simple molecules H2O, NH3,
CH4, C2H6, C2H4, whose structures can be expected to be well
described by the single Lewis formula. The values of the

|æ1æ1| ) 1
2
|øaøa| + 1

2
|øbøb| + 1

x2{ 1

x2
(|øaøb| + |øbøa|)}

(15)

-F(A,A) ≈ 2Π(eff)(A,A)

-F(A,B) ≈ Π(eff)(A,B) (16)
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approximate normalization sums (10) and (14) for all the above
molecules are summarized in Table 4. From this table it is
evident that although the deviations between the approximate
normalization and the exact limit are less for the sum (10), the
accuracy of the approximate sum (14) is also very satisfactory
and even in the case of most deviating systems, the error does
not exceed 3-4%.

Such a situation is not, however, absolutely general and as
already observed by us in previous studies,27,34,35 there are
molecules for which the accuracy of the approximate normaliza-
tion is indeed much less. Such is, for example, the case of
electron-deficient boranes, metal clusters,34,35,44or some other
molecules like N2O, N3

(-) etc., whose common structural feature
is the presence of multicenter bonds. This is also the case of
CO2, SO2, and SO3 molecules, discussed in ref 29 as an example
questioning the approximate normalization. The origin of these
deviations is evidentsit is the existence of nonnegligible
bonding interaction between classically nonbonded atoms in
these molecules. This is clearly demonstrated by the data in
Table 5. As it is possible to see in this table, the values of
populations between nonbonded terminal atoms are indeed
considerably greater than in the case of “normal” molecules
like H2O, NH3, etc. (Table 3). According to our experience,
the failure of the approximate normalization is typical for
molecules containing multicenter bonding and the existence of
these nonclassical bonds was indeed detected in many sys-
tems.34,35,44,45This detection is based on the values of the so-
called multicenter bond indices46-53 which are defined as mono-,
bi-, and generallyk-atomic contributions resulting from the
Mulliken-like partitioning of the multiple product of the (PS)
matrix whereP is the charge density bond order matrix andS
the overlap one.

In the particular case of the most common three-center bonding,
the values of three-center bond index∆ABC

(3) are defined as

As repeatedly demonstrated by various authors,44-53 the presence

of three-center bond in a molecule can reliably be detected by
the nonnegligible value of the above index for certain well-
localized triads of atom. Such is just the case of CO2, N2O,
N3

(-), SO2, and SO3 molecules whose values of multicenter bond
indices resulting from the partitioning (17) fork ) 3 are
summarized in Table 6.

In addition to allowing the detection of the presence of three-
center bonding, another interesting information about the nature
of these bonds can also be deduced from the sign of the
corresponding indices. Thus, while the positive value of the
three-center bond index is typical for three-center two-electron
bonds (characteristic especially for electron-deficient boranes),
the negative value of this index means a three-center four-
electron (3c-4e) bond.45 As it is possible to see in Table 6, the
values of three-center indices are in all cases negative, which
implies that three-center bonds in the corresponding molecules
are of 3c-4e nature.

Although the existence of three-center bonds in these
molecules is widely accepted, one can certainly ask whether or
to what extent the values of multicenter indices are biased by
the use of artificial Mulliken-like partitioning in (21). With this
in mind, we have studied the possibilities of formulating the
generalized population analysis within the AIM theory similar
to previously reported generalization of Mulliken-like pair
population analysis.27 We have found that such a generalization
is indeed possible and the detailed study of the phenomenon of
multicenter bonding will be published elsewhere.54 Without
going into unnecessary details, we present in Table 6 the
preliminary results of our calculations for the particular case of
the N2O, N3

(-), CO2, SO2, and SO3 molecules. Although the
values of AIM generalized three-center bond indices in CO2,
SO2, and SO3 are slightly lower than in remaining cases, the
presence of 3c-4e bond is still strongly supported even in these
molecules. Similar lowering of AIM generalized three-center
bond index was observed also in the case of diborane.54 As the
existence of 3c-2e bonds is in this case beyond any doubts,
the reasons for the reported lowering of three-center bond index
have still to be clarified and additional studies are certainly
required to elucidate the manifestations of the phenomenon of
multicenter bonding within AIM theory.

TABLE 4: Calculated Values of Approximate Normalization
Sums (10) and (14) for a Series of Molecules Well Described
by Lewis Structural Formula

molecule sum (10) SCF exact sum (14) SCF exact

CH4 5.016 5.000 -9.725 -10.00
NH3 5.004 5.000 -9.949 -10.00
H2O 4.999 5.000 -9.992 -10.00
C2H6 9.125 9.000 -17.407 -18.00
C2H4 8.067 8.000 -15.610 -16.00

TABLE 5: Calculated Values of Pair Populations for
Molecules Containing Multicenter Bonds

molecule type ΠAB
(eff) -F(A,B)

N2O N‚‚‚O 0.139 0.376
N3

(-) N‚‚‚N 0.929 0.600
CO2 O‚‚‚O 0.109 0.386
SO2 O‚‚‚O 0.052 0.562
SO3 O‚‚‚O 0.024 0.438

1

2k - 1
Tr(PS)k ) N ) ∑

A

∆A
(k) + ∑

A<B

∆AB
(k) +

... ∑
A<B<...<K

∆ABC...K
(k) (17)

∆ABC
(3) )

3

2
∑

R

A

∑
â

B

∑
γ

C

(PS)Râ(PS)âγ(PS)γR (18)

TABLE 6: Calculated Values of Three-Center Bond Indices
from Mulliken-like Partitioning and the Corresponding AIM
Generalization for Molecules Containing Three-Center
Bonds

molecule type ∆ABC
(3)

AIM generalized
indexa

N2O NNO -0.527 -0.208
N3

(-) NNN -0.804b -0.361
CO2 OCO -0.267 -0.048
SO2 OSO -0.311 -0.068
SO3 OSO -0.189 -0.023

a Similar to what was reported for biatomic indicesF(X,Y) and
ΠXY

(eff), also the AIM generalized three-cemter bond indices reduce to
(18) if the explicit integration over atomic domains is replaced by the
Mulliken-like approximation of the corresponding integrals.b Mulliken-
like bond indices in this anionic system were found to be very sensitive
to the quality of the basis set. The value presented in the table was
obtained in 6-31G** basis. In the case of more flexible 6-31G++ basis
the value is-1.079, which is still consistent, at least qualitatively, with
the 3c-4e nature of the NNN bond. In the case of DH++ basis
containing additional diffuse functions, the value is surprisingly positive
(0.518). The fact that this is an artifact of the Mulliken-like partitioning
is clearly demonstrated on the value of AIM generalized three-center
bond index whose value in DH++ basis is-0.361 compared to-0.367
in 6-31G** and 6-31G++ bases.
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