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Different approaches to the evaluation of the momentum flux integral in classical transition state theory (TST)
with a generalized reaction coordinate (GRC) have yielded superficially contrasting results for the kinematic
factor which must be included in the ensuing configurational integral. In this work, Smith’s recent solution
for the momentum flux integral in TST with a GRC (J. Chem. Phys. 1999, 111, 1830) is rederived and
generalized in order to establish equivalence with several different approaches in the literature: (a) the
pioneering work of Marcus (J. Chem. Phys. 1964, 41, 2624), (b) the reaction path Hamiltonian result of
Miller (in Potential Energy Surfaces and Dynamics Calculations; Truhlar, D. G., Ed.; Plenum: New York,
1981), and (c) the flexible TST expression of Robertson, Wagner, and Wardlaw (Faraday Discuss. 1995,
102, 65). We conclude that, while each of these approaches is distinct, the results are consistent. For the
general case, a coordinate-dependent kinematic factor does arise from the analytical evaluation of the momentum
flux integral, and it is now apparent that this factor can be very simply and efficiently evaluated for incorporation
into the ensuing configurational integral on the dividing surface. The same kinematic factor appears in canonical
and microcanonical TST expressions for the rate constant, even when total angular momentum is explicitly
resolved in the flux integrals.

I. Introduction

Transition state theory (TST) has a long and venerable history,
almost as long as the field of reaction dynamics itself. The theory
bases itself upon the assumption that there exists a region
somewhere along the reaction path at which one may identify
a distinct bottleneck in the quantum or classical flux. This is
an assumption which can now be explicitly verified by exact
quantum scattering calculations for three- or four-atom direct
reactions,1 where not surprisingly the “bottleneck region” is that
part of the potential energy surface (PES) at or close to the
potential barrier. Quantum scattering calculations are expensive
in terms of computer time and memory, however, and often
require a substantial new code to be written for each extra atom
or degree of freedom that is included explicitly into the
calculation. Hence, it is exceedingly important to continue the
development of fast and reliable approximate theories for
chemical rate constants.

In order to develop a good approximate theory, the task is to
find a suitable approximation for the net reactive flux. The
presence of a distinct bottleneck in the flux at some part of the
PES between reactants and products implies that reaction is a
rare event in a molecular history, such that once this region of
the PES is crossed it is unlikely to be recrossed on a short time
scale. In TST this last statement is exploited by approximating
thenet flux with the one-wayflux of an equilibrium canonical
or microcanonical ensemble across a dividing surface positioned
somewhere in the bottleneck region. The transition state dividing
surface (TSDS), defined in configuration space as a hypersurface
associated with a constant value of the reaction coordinate,
completely separates reactant and product regions of configu-
ration space. If the TSDS is placed in the bottleneck region of
the PES where recrossing dynamics is minimal, one should

obtain a good approximation to the classical reactive flux. Thus,
from a conceptual point of view, there are two fundamental
dynamical approximations involved in classical TST: (1) The
assumption that an equilibrium ensemble adequately represents
the real molecular population. For direct bimolecular reactions
this is usually chosen as a canonical ensemble. For unimolecular,
recombination, or chemical activation reactions where the
competition between reaction and collisional relaxation of the
long-lived intermediates must be explicitly incorporated via a
master equation treatment, the microcanonical equilibrium
ensemble (with energyE and preferably also angular momentum
J resolved) should be used. (2) The use of theone-wayflux
across the TSDS to approximate the actual reactive flux implies,
of course, the assumption that trajectories which reach this
surface (from either side) will not recross it. There are a number
of elegant derivations of classical TST and its unimolecular
variant, Rice-Ramsperger-Kassel-Marcus (RRKM) theory,
in the literature (see, e.g.,refs 2-5 and references therein) which
highlight these fundamental dynamical assumptions.

In addition to the two assumptions summarized above, it is
well-known that there is an implementational issue in TST which
relates to the kinematic coupling between the generalized
(curvilinear) reaction coordinate,s, and the remaining degrees
of freedom in the molecular system.6 Consider the standard TST
expression for the thermal rate constantk(T)

HereQ+ is the partition function for the “degrees of freedom
orthogonal to the reaction coordinate”,Q is that for the reactant-
(s),E0 is the classical barrier height and the other symbols carry
their usual meanings. Assuming for the moment thatQ+ is being
evaluated classically, one would naı¨vely write this quantity in
the usual manner
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where q⊥ represents the remaining coordinates andp⊥ their
conjugate momenta,Ek

⊥ is the appropriate kinetic energy for
these degrees of freedom, andV is the potential (ifV is expressed
relative to the barrier height, then the preexponential factor will
not be necessary). Now, if there exist coupling terms in the full
kinetic energy expression,Ek, betweens and the remaining
coordinatesq⊥, how should we write the kinetic energy
expressionEk

⊥ in eq 2sby settings̆ or ratherps to zero? This
question was answered in general terms by Marcus,6 who
concluded that the correct expression for the kinetic energy of
the remaining degrees of freedom in eq 2 is obtained from the
full kinetic energy of the system,Ek, by settings̆ to zero. This
leads to a coordinate-dependent kinematic factor appearing in
the subsequent configurational integrals, which Marcus inter-
preted as a volume element associated with integration over
the TSDS. Furthermore, in general this differs from the
(incorrect) result one would obtain by settingps to zero.

Until recently, Marcus’ interpretation of the meaning ofQ+

in the context of a generalized reaction coordinate has not been
exploited to any significant extent in the calculation of rate
constants via TST. One suspects this has been largely due to
the lack of a compelling application for the theory in which the
kinematic issue discussed above has important consequences.
For a reaction proceeding over a chemical barrier, the common
approach is to place the TSDS at the saddle point, where the
Hamiltonian is locally separable. As Marcus himself noted,6

there is essentially no ambiguity in the definition ofQ+ in this
case, since most of the reactive flux will cross the TSDS close
to the saddle-point where separability of the Hamiltonian makes
the kinematic issue redundant. While a variational approach
would allow the TSDS to move away from the saddle point
(subject to further minimization of the calculated flux), the
enhancement obtained thereby is not large, especially in
comparison with uncertainties introduced by the need for
approximate tunneling corrections.2 Hence, interest in TST for
barrier-crossing reactions has focused rather on the issue of
quantum mechanical extensions to the theory which can better
predict the tunneling contribution to the rate.7-12

A significant development in this regard was the introduction
of the reaction path Hamiltonian (RPH) by Miller et al.,13 which
constituted a generalization to the case of polyatomic systems
of the “natural collision coordinates” of Marcus.14 Classical and
quantum mechanical Hamiltonians were formulated with refer-
ence to a set of coordinates comprising of the reaction path,
defined as the minimum energy pathway (MEP) in mass-
weighted Cartesians, and coordinates orthogonal to it which are
specified by diagonalization of the projected force-constant
matrix (this diagonalization being carried out parametrically
along the reaction path).13 The formulation of this exact
Hamiltonian was not only an important conceptual advance but
also allowed the exploration of a range of approximate scattering
methods based on quadratic expansion of the potential about
the MEP.15 In addition, Miller investigated the evaluation of
the microcanonical flux integrals at any position along the
reaction path for zero total angular momentum.16 Regardless
of the fact that coupling terms between the reaction coordinate
and the orthogonal modesdo exist in the RPH kinetic energy,
exact analytical evaluation of the momentum flux integrals
revealed that for this coordinate system the naı¨ve TST expression
for the microcanonical flux (which one might have derived by

setting ps to zero and hence ignoring the coupling) applies
without modification!

In recent years, a “compelling application” which demands
correct kinematic implementation of variational TST has arisen,
accompanied by a renewed focus on the kinematic aspect of
the theory. This has been due to the recognition that several
very important classes of chemical reaction, including radical-
radical recombinations, radical-alkene additions, and ion-
molecule reactions, can occur without any significant potential
energy barrier (in the unimolecular vernacular, these are the
so-called “type II” potentials17). The absence of a barrier has
two important ramifications which favor the application of a
judiciously formulated version of variational TST: (a) tunneling
is unlikely to be important, and (b) with no obvious a priori
location for the transition state, a variational implementation
of the theory (including different possible specifications of the
reaction coordinate itself) is essential. The correct kinematic
implementation of TST for any given definition of the reaction
coordinate (or, equivalently, the TSDS) then becomes a central
issue.

The “judiciously formulated” version of variational TST
referred to above owes many of its features to pioneering work
by Wardlaw and Marcus in the mid-1980s.18-20 It is a hybrid
classical/quantum implementation of TST in which the system
is divided into two groups of modes. First, the internal vibrations
of the two recombining (or dissociating) moieties are labeled
“conserved modes” because their vibrational character is
preserved in the dissociation process. These frequencies ap-
proach their asymptotic values quite soon as the bond length
increases, changing only slowly in the region of separations
where the variational transition states are typically found (usually
with a bond length greater than 2 Å). The second group of
modes are labeled “transitional modes” because they change in
character from vibrations in the unimolecular species to free
rotations and relative translations of the infinitely separated
moieties. The anisotropy in the potential governing these
motions changes dramatically as a function of the bond length,
and it is the interplay between enthalpic and entropic factors in
the transitional modes which has the dominant affect on the
variational location of the transition state and the final value of
the predicted rate coefficient. Since the time scale for internal
vibrations of the moieties is generally much shorter than that
for motions of the “looser” transitional modes, the densities of
states of the former are evaluated quantum mechanically (usually
by direct count of harmonic oscillator states). The flux associated
with the transitional modes is evaluated classically via rigorous
phase space integration, with the moieties being treated as rigid
rotors in formulating the expression for the kinetic energy. In
their pioneering work, Wardlaw and Marcus chose the separation
between the centers of mass of the two moieties,Rcm, as the
reaction coordinate. The advantage of this choice of reaction
coordinate is simplicity: there are no coupling terms between
Rcm and the remaining Jacobi coordinates (angles describing
the rotations of the moieties about their respective centers of
mass and the relative orbital rotation), such that the kinematic
issue discussed above need not be addressed.

The center-of-mass separation is not necessarily the most
intuitive choice of reaction coordinate, however. Klippenstein21

noted that when the bond length is not too great, the transitional
modes take on a more vibrational character, which one typically
describes in terms of bond-length-bond-angle coordinates.
Hence the bond lengthRb may be a more “natural” choice of
reaction coordinate thanRcm at smaller separations. Klippenstein
extended the Wardlaw/Marcus model by developing a phase

Q+ ) eE0/kBT

h(n-1)∫...∫ dq⊥ dp⊥ e-[Ek
⊥+V(q⊥;s)]/kBT (2)
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space integration scheme which explicitly imposes the constraint
s̆ ) 0, wheres is defined as the bond length, or more generally
the separation between any two points fixed in the respective
frames of the two moieties.21-24 This work clearly showed that,
at smaller separations of the moieties, the use of a bond-length
reaction coordinate enables a significant reduction in the
computed flux and hence this is a better choice of reaction
coordinate. Only at energies close to the reaction threshold, in
which case the variational transition state lies at large separa-
tions, isRcm the optimal reaction coordinate.21,22,25It should be
recognized that the testing and refinement of this variational
TST model has hinged on the availability of careful and precise
experimental rate measurements of medium-sized molecules
with well-defined energy and angular momentum, a fundamental
area to which Brad Moore has made seminal contributions.26-31

The variational TST methodology described above has proven
to be a valuable tool for the accurate modeling of chemical
reactions involving “barrierless” channels. These types of
reaction are exceedingly numerous in combustion, atmospheric
and astrophysical fields. Furthermore, they can often involve
very complex PESs which support multiple long-lived inter-
mediate species and multiple dissociation and/or rearrangement
channels. Hence, in order to be able to implement such
calculations on a routine basis, it is essential to strip the
algorithms down and make them fast, efficient, and capable of
making optimal use of expensive ab initio data. Important
advances have been made in this regard with the recognition
that the momentum flux integrals can in fact be carried out
analytically, which halves the dimensionality of the Monte Carlo
integrals and dramatically speeds up the algorithms. That this
ought to be possible was implicit in the generic canonical
treatment of TST by Marcus.6 The fact was recognized and
exploited by Klippenstein, who developed expressions for the
canonical transitional mode (TM) flux integral with a bond-
length reaction coordinate21 and later adapted the approach to
carry out efficientE-resolved microcanonical calculations.32

Robertson et al. have also addressed the analytical evaluation
of canonical andE-resolved microcanonical TM flux integrals,
both whenRcm is the reaction coordinate33 and more gener-
ally.34,35 Our own contribution to this effort has been to
demonstrate that the TM momentum flux integrals can be
evaluated analytically in the more complex case where calcula-
tions must be carried out with explicit resolution of the total
angular momentum. This was shown originally for theRcm

reaction coordinate,36 and more recently for a completely
arbitrary definition of the reaction coordinate.37

The summary above portrays impressive advances in the
efficient and accurate implementation of variational TST with
a generalized reaction coordinate, and indicates that there are
compelling and immediate applications for such work. However,
despite the fact that the general principles are clear, a cursory
comparison of the analytical results obtained for the momentum
flux integrals by different authors does not indicate any obvious
equivalence. Although it is easy to miss since it is subsumed
into the volume element for the surface integral, Marcus’ work
indicated that there is a coordinate-dependent factor which must
be included in the configurational integral over the TSDS.6

Miller’s result indicated that, at least for the RPH, there is no
special coordinate dependence above and beyond the potential
itself.16 The independent works of Klippenstein,21,32,38of Rob-
ertson et al.34,35and of Smith25,37on the TM flux integrals yield
coordinate-dependent kinematic factors. However, although in
principle their different approaches should lead to the same final
result, the equivalence is not obvious.

The purpose of this paper is to reanalyze our recent treat-
ment37 in a more general manner so that the relationship to
Marcus’ pioneering work, to Miller’s RPH result and also to
the results of Robertson et al. becomes transparent. In section
II below, our derivation is outlined and generalized, highlighting
certain aspects which will enable the equivalence to the other
approaches to be established. In section III we show how
Miller’s RPH result, which yields no special coordinate
dependence in the configurational integral, may be recovered
from the present treatment. In section IV we consider the TM
flux integrals and establish exact equivalence between our
kinematic factor and the recent work of Robertson et al.35

Section V concludes.

II. Flux through a Hypersurface Defined by a
Generalized Reaction Coordinate: Coordinate
Dependence of the Kinematic Factor

In the present section we deal with the canonical version of
TST. It will be apparent that the corresponding microcanonical
version is easily obtained without introducing any fundamentally
new physics, either by recasting the derivation with the
microcanonical density function [δ(E-H)] instead of the
canonical (Boltzmann) function37,36,32 or via inverse Laplace
transform of the canonical result.35,33 Note that evaluation of
the canonical or microcanonical flux integrals with explicit
resolution of the total angular momentum (a very important
feature for correct treatment of multichannel systems)does
involve additional physics to that presented herein. This
development is explicitly laid out in previous publications,36,37

hence in the present work we shall not consider angular
momentum issues further.

In canonical TST, the rate constantk(T) can be formally
expressed as the ratio of the thermal flux through the transition
state dividing surface to the canonical density of states of the
reactant(s)

In eq 3 the reaction coordinates(q) has the values0 on the
TSDS.s̆ is the flux term andΘ(s̆) is a step function with value
0 for s̆ e 0 and 1 fors̆ >0. p(q) is a projector onto the relevant
region of the reactant ensemble (unit volume for a bimolecular
reaction, or the “strongly coupled” region of the molecule’s
configuration space in a unimolecular dissociation). We takeq
to represent a convenient set of coordinates{q1, ..., qn} for the
molecular system andp to represent the set of conjugate
momenta.H(q,p) ) Ek + V is the system Hamiltonian. The
traces of eq 3 are evaluated classically as integrals over the
system phase space

Recognizing that the classical partition function for reactants
Q is simplyh-n times the denominator of eq 4 (h being Planck’s
constant andn the number of degrees of freedom), one writes
k in the standard TST form of eq 1 withQ+ defined as

k(T) )
Trδ(s - s0)s̆Θ(s̆)e-H/kBT

Tr[p(q)e-H/kBT]
(3)

k(T) )
∫...∫dq dp δ(s - s0)s̆Θ(s̆)e-H/kBT

∫...∫ dq dp p(q)e-H/kBT
(4)
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Since our principal focus is the analytic evaluation of the
momentum flux integral, it is useful to write it as follows

so that

The time derivative of the reaction coordinates is written

The canonical momentap in eq 11 are defined in the standard
manner39

whereL ) Ek - V is the Lagrangian. LetA be the kinetic energy
tensor whenEk is expressed in terms of the velocities

Then eqs 12 and 13 imply that

and

The identificationp ) G-1q3 in eq 8 then follows from this.
The traditional approach to the evaluation of the flux integral

in eq 6 is to carry out a canonical transformation so that the
reaction coordinates and its conjugate momentumps become
integration variables.6,35 Our approach focuses rather on an
orthogonal transformation in the momentum space only.37 One
transforms to a new set of momentaV ) {V1, ..., Vn} such that
V1, satisfies the relation

Writing

the kinetic energy now becomes

and the next task is the specification ofV1 so as to satisfy eq
13. This amounts to specifying the first row of the transformation
matrix U. Using eqs 8 and 13-15 one finally concludes that37

The only restriction on the remaining momentaV2, ..., Vn is
that they should be orthonormal toV1 (eq 14b). Thus, virtually
any method of determining a set of (n - 1) vectors inRn

orthonormal to the first row ofU will suffice to define the
remaining rows of the transformation matrix, and thence the
remaining momenta. We use the Lanczos recursion here, since
it has the convenient property that the new kinetic energy tensor
G* is symmetric tridiagonal

It will turn out thatR1 is the only one of these tensor elements
that shows up in the final expression. It has the form

The momentum flux integral in terms of these new momenta is
written

wherev⊥ ) (V2, ..., Vn) and

Recognition of the bounds on theV1 integral imposed by the
Θ(s̆) function, and subsequent evaluation of this integral
proceeds in an established manner,6,32,35,37yielding an integral
over the remaining momenta with a modified kinetic energy
tensor

with

The quantityEk
+ is an expression for the kinetic energy of the

system with the constraints̆ ) 0 imposed. In this sense, the
equivalence of this somewhat different derivation to the more
traditional line of approach based on canonical transforma-
tions6,13,16,21,32,34,35is clear. The contrast is that the momentav
here are not required to be conjugate to a predefined set of
coordinates, but rather have been defined via the orthogonal

Q+ )
h-(n-1)

kBT
eE0/kBT ∫ dq δ(s - s0)e

-V(q)/kBT ∫ dp s̆Θ(s̆)e-Ek/kBT

(5)

Φ(T,q) ) 1
kBT∫ dp s̆Θ(s̆)e-Ek/kBT (6)

Q+ ) eE0/kBT

h(n-1) ∫ dq δ(s - s0)e
-V(q)/kBTΦ(T,q) (7)

s̆ ) ∑
i)1

n ∂s

∂qi

q̆i ) ∇sTq3 ) ∇sTG(G-1q3 ) ) (∇s)TGp (8)

pi ) ∂L
∂q̆i

)
∂Ek

∂q̆i
(9)

Ek ) 1/2q
TAq3 (10)

p ) Aq3 (11)

Ek ) 1/2p
TA-1p ) 1/2p

TGp (12)

∂Ek

∂V1
) cs̆ (13)

v ) Up (14a)

UTU ) I (14b)

Ek ) 1
2
pTGp ) 1

2
vTUGUTv ) 1

2
vTG*v (15)

V1 ) 1
|∇s|∇sTp (16)

G* ) UGUT ) [R1 â1 0 0 0
â1 R2 • 0 0
0 • • • 0
0 0 • Rn-1 ân-1

0 0 0 ân-1 Rn

] (17)

R1 ) 1

|∇s|2
(∇s)TG∇s (18)

Φ(T,q) )
1

kBT∫dv⊥ e-Ek
⊥/kBT ∫ dV1 s̆Θ(s̆)e-(R1V1

2+2â1V2V1)/2kBT (19)

Ek
⊥ ) 1

2
(v⊥)TG⊥v⊥ (20a)

G⊥ ) [R2 â2 0 0 0
â2 R3 • 0 0
0 • • • 0
0 0 • Rn-1 ân-1

0 0 0 ân-1 Rn

] (20b)

Φ(T,q) ) |∇s| ∫-∞

∞
dv⊥ e-Ek

+/kBT (21)

Ek
+ ) 1/2(v

⊥)TG+v⊥ (22a)

G+ ) G⊥ -
â1

2

R1
e1e1

T (22b)
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transformation of eq 14 to facilitate a minimalist approach to
the final simple result, eq 26 below.

The remaining integrals in eq 21 are evaluated in standard
fashion40 to give the formal result

The remaining issue is to find a simple way to evaluate the
determinant of the (n - 1) × (n - 1) modified kinetic energy
tensorG+. At this stage, some comparison of approaches taken
by different authors to evaluate this determinant is instructive.
Klippenstein21,32adopts a numerical approach to the evaluation
of |G+|. Marcus6 makes general observations which suggest two
possible approaches.

(i) He first notes that the modified kinetic energy tensorG+

is the inverse of the corresponding velocity-referenced kinetic
energy tensorA+. Since, as noted above,Ek

+ gives the kinetic
energy of the system under the constraints̆ ) 0, A+ is obtained
from the full tensorA* by striking out the row and column
corresponding to the reaction coordinate velocitys̆ (whereA*
is the kinetic energy tensor for the set of canonical variables
which includess and ps). A formal proof of the conjugate
relation betweenG+ andA+ is given by Robertson et al.35 Thus,
one can seek to construct the tensorA* and then evaluate the
determinant of its minorA+ by either numerical or analytical
methods. Robertson et al.34,35have pursued this latter analytical
approach to obtain results which will be shown below to be
equivalent to those of Smith.

(ii) Marcus also notes that

The first equality is straightforward to prove using Cramer’s
rule. This provides another avenue for evaluation of the required
determinant, but still requires the construction ofG*.

Returning to the approach of this paper, it will be apparent
that we have made no reference to coordinates or velocities
relating to the momentaV2, ...,Vnsthese were simply chosen to
be orthogonal toV1. Neither is it necessary to do so, since (i)
the fact thatG* is tridiagonal and (ii) the fact thatG* is related
to G by an orthogonal transformation (i.e.,|G* | ) |G|) make
it easy to prove a direct relationship between|G+| and |G|
without reference to the conjugate tensorA+.37 One finds that

Substitution into eq 23, withR1 as given in eq 18, then leads to

and consequently

As a first comment on the very simple result of eq 27, it should
be recalled that, in contrast to the traditional line of approach
based on canonical transformations,6,13,35the reaction coordinate
s is not necessarily one of the coordinatesq. Thus, it becomes
apparent that there is no need to construct a specific canonical

transformation and subsequent kinetic energy tensor in order
to accommodate a given definition of the reaction coordinate
s: all one need do is evaluate the gradients ofs with respect to
a convenient coordinate system in whichG is already known.
This realization represents a substantial simplification over the
pioneering work of Marcus, since it allows one to more easily
envisage the construction of a generic (“black-box”) variational
TST code which could rigorously implement arbitrary GRC
definitions input by the user, always in terms of a common set
of coordinates. For example, if the application is such that a
classical treatment of all rovibrational degrees of freedom is
acceptable, the natural choice of coordinates for the representa-
tion of the kinetic energy is Cartesians. In this case, the result
of eq 27 becomes

[in this labeling scheme, the coordinates (x3r-2, x3r-1, x3r) are
actually the Cartesians (x(r), y(r), z(r)) of the rth atom, andm3r-2

) m3r-1 ) m3r ) m(r), wherem(r) is the mass of therth atom].
A second comment on the result of eq 27 relates to the

identification of the coordinate dependence in the integrand
which one would ascribe to a “kinematic factor” in the spirit of
the title of this work. There are three sources of coordinate
dependence in eq 27: the potentialV(q), |G|, and the factor
(∇sTG∇s). The potential is an expected part of the configura-
tional integral. It is expensive to calculate, but requires no further
comment in the present context. In considering the possible
coordinate dependence of|G|, one notes that there is no such
coordinate dependence in the Cartesian representation of eq 28.
Consider, then, the transformation from the Cartesian coordi-
natesx in eq 28 to the general coordinatesq in eq 27. We write
the differential relation between the two sets of coordinates as

which implies that the Jacobian factor for the coordinate
transformation is|K |-1. The kinetic energy tensorsA and G
for the general coordinate system will be related to those of the
Cartesian system,Ac andGc by the equations

Noting that the mass factor in eq 28 is|Gc|-1/2, and including
the Jacobian factor for the transformation to the general
coordinatesq leads to

which in light of eq 30b is manifestly equivalent to eq 27. Thus,
the factor|G|-1/2 in eq 27 is seen to comprise of a coordinate-
independent mass factor|Gc|-1/2 and a coordinate-dependent
Jacobian factor|K |-1. The Jacobian|K |-1 is merely a product
of the choice of coordinate systemq, which in the present
context need not have anything to do with the choice of reaction

Φ(T,q) )
|∇s|(2πkBT)(n-1)/2

|G+|1/2
(23)

|A+| ) G11
/ |A* | )

G11
/

|G* | (24)

|G+| ) |G|/R1 (25)

Φ(T,q) ) (2πkBT)(n-1)/2(∇sTG∇s)1/2

|G|1/2
(26)

Q+ )
(2πkBT)(n-1)/2eE0/kBT

h(n-1) ∫dq δ(s - s0)
(∇sTG∇s)1/2

|G|1/2
e-V(q)/kBT (27)

Q+ )
(2πkBT)(n-1)/2eE0/kBT

h(n-1)
(∏

i)1

n

mi
1/2)∫dx δ(s - s0) ×

[∑i)1

n (∂s

∂xi
)2

mi
-1]1/2

e-V(x)/kBT (28)

q3 ) Kx3 (29)

A ) (K-1)TAcK-1 (30a)

G ) A-1 ) K (Ac)-1KT ) KG cKT (30b)

Q+ )
(2πkBT)(n-1)/2eE0/kBT

h(n-1)
×

∫ dq |K |-1δ(s - s0)
(∇sTG∇s)1/2

|Gc|1/2
e-V(q)/kBT (31)
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coordinate (it might, for instance, be a convenient coordinate
system for the evaluation of the potential energy function). Since
|K |-1 therefore has no intrinsically dynamical origin, one may
reasonably associate a coordinate-dependent “kinematic factor”
associated with kinetic energy coupling to a generalized reaction
coordinate in TST with the term (∇sTG∇s)1/2. Granted this is
simply a question of definition. Marcus6 associated the entire
expression (∇sTG∇s)1/2/|G| with the volume element of integra-
tion on a hypersurface in configuration space with the constraint
ds ) 0 (or, equivalently,s̆ ) 0) imposed. He did not therefore
define a kinematic factor. However, while the Jacobian|K |-1

necessarily gives the correct volume element forany integral
over the coordinatesq, the constraint ds) 0 derives specifically
from the fundamental TST assumption. Since the latter constraint
has no more general meaning outside of TST, subsuming the
factor (∇sTG∇s)1/2 which arises from it into a volume element
is somewhat artificial. Hence, the interpretation of|K |-1 (or
equivalently any coordinate dependence in|G|) as a static
Jacobian factor and of (∇sTG∇s)1/2 as a kinematic factor would
seem more appropriate in the light of this discussion.

Finally in this section, although it is implicit in the derivation
above, it is useful to provide an explicit proof of the fact that
the kinematic factor (∇sTG∇s)1/2 is independent of the particular
representation chosen for the kinetic energy. Let us assume,
then, that the form of the kinetic energy is known in terms of
two different sets of canonical coordinates and momenta (q,p)
and (q′,p′). The differential relationship between the two
coordinate systems is written:

whereKij ) ∂q′i/∂qj. Analogous to eq 30 above, the momentum-
referenced kinetic energy tensors,G and G′, are then related
by the equation

It is now necessary to establish the relationship between∇s
and∇′s. Noting that the absolute time derivatives̆ is independent
of the coordinate system, one has

Substituting eq 32 into the right-hand equality of eq 34 then
gives

with the conclusion that

Using eqs 33 and 35, the invariance of the kinematic factor
with respect to the representation of the kinetic energy follows:

We shall utilize this fact in section IV below to establish the
equivalence of different approaches to the TM flux integral with
a generalized reaction coordinate.

III. Flux through a Hypersurface Defined by the
Reaction Path

The reaction path is a locus in mass-weighted Cartesian space
defined by the minimum energy pathway from reactants to

products. Marcus14,41proposed that the arc length along such a
locus would prove a useful definition for the reaction coordinate
s. He defined the “natural collision coordinates” for a triatomic
system in terms of this definition forsand remaining coordinates
defined as parametrically orthogonal to the locus which defines
s. Miller and co-workers13 developed the multidimensional
generalization of these coordinates and the corresponding
reaction path Hamiltonian (RPH). Miller subsequently examined
the classical flux integral through a TSDS defined as the
hyperplane orthogonal to the reaction path at any given value
of s.16 As discussed in the Introduction, the curious feature of
his result was that, despite the fact that there are coupling terms
in the kinetic energy tensor betweensand the remaining degrees
of freedom, one obtains the same result which would be naı¨vely
derived by neglecting such terms. In this section, we examine
the RPH flux integral in the light of the present discussion of
kinematic factors in TST with a generalized reaction coordinate.
For the sake of brevity, we treat only canonical TST and do
not explicitly consider rotations. The details of microcanonical
implementations with account for angular momentum can be
found elsewhere.13,36,37

We begin by transforming the configurational integral in eq
28 above into mass-weighted Cartesian coordinates

The Jacobian for this transformation is∏i)1
n mi

-1/2, and the
new kinetic energy tensor is the identity matrix; thus

Equation 38 indicates that there is a kinematic factor,|∇s|,
which is associated with the “reaction path” definition fors.
To see why this disappears in Miller’s result,16 one must
transform the configurational integral from mass-weighted
Cartesians to the curvilinear coordinates of the RPH,{Q1, ...,
Qn-1, Qn ) s}. Following the procedure of the previous section,
we write the differential relationship between the two sets of
coordinates as

which implies that the Jacobian factor for the coordinate
transformation is|K |-1

In eq 40 the variableQn ) s has been integrated out with use
of the delta function constraint in eq 38. It remains to show
that |K |-1 and |∇s| cancel to produce a result identical to that
which would be obtained by neglecting coupling betweensand
the remaining degrees of freedom. Now, since at any given value
of s the coordinates{Q1, ..., Qn-1} are by construction
orthogonal tos, in this representation we have∇′s ) en, the
elementary unit vector (0...,0,1). Thus, from eq 35 we have

i.e., ∇s is the bottom row of the transformation matrixK . To
proceed further it is necessary to examine the transformation
to the RPH coordinates in detail. The absolute relation between
the mass-weighted Cartesiansy and the RPH coordinatesQ may

q3 ′ ) Kq3 (32)

G′ ) KGK T (33)

∇sTq3 ) s̆ ) ∇′sTq3 ′ (34)

∇sTq3 ) s̆ ) ∇′sTq3

∇s ) KT∇′s (35)

(∇′sTG′∇′s) ) ∇sTK-1(KGK T)(KT)-1∇s

) (∇sTG∇s) (36)

yi ) mi
1/2xi, i ) 1, n (37)

Q+ )
(2πkBT)(n-1)/2eE0/kBT

h(n-1) ∫ dy δ(s - s0)|∇s|e-V(y)/kBT (38)

Q4 ) Ky3 (39)

Q+ )
(2πkBT)(n-1)/2eE0/kBT

h(n-1) ∫ dQ1 ... dQn-1|K |-1|∇s|e-V(y)/kBT

(40)

∇s ) KTen (41)
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be expressed as13

Hereai(s) is theith component of the vectora(s) which locates
the reaction path in mass weighted Cartesian space at any given
value of the arc lengths. Differentiation of the vectora(s) with
respect tos yields a unit vectorvn tangential to the reaction
path. This vector is then used to symmetrically deflate the matrix
of second derivatives of the potentialV(y), thereby forming a
projected force constant matrix of rankn - 1.13 The projected
force constant matrix is diagonalized to obtainn - 1 frequencies
for harmonic motion orthogonal tos and a set of eigenvectors
v1(s),...,vn-1(s) which specify the axial directions of the or-
thogonal coordinatesQ1,...,Qn-1. Together, the set of vectors
v1(s),...,vn(s) form a complete orthonormal basis in then-
dimensional mass-weighted Cartesian space, a fact which we
utilize below (of course, their directions change parametrically
with the value ofs). In eq 42, the quantitiesLij(s) are elements
of an orthogonal matrixL (s) whose columns are the vectors
v1(s),...,vn(s). Equation 42 allows us to specify the derivative
matrix K (or rather its inverse) explicitly, since

where we have utilized the fact that∂a/∂s ) vn, which is in
fact the last column ofL (s). In matrix form (recalls ) Q̇n), eq
43 is

with

and

In other words,K-1 is equal to the orthogonal matrixL (s)
except that the vectorη is added to the last column. We now
devise a factorization ofK-1 which will allow us to identify its
determinant. First, define{cj, j)1,n} as the projection coef-
ficients of η onto the orthogonal columns ofL

The following factorization ofK-1 then holds

where

I is then × n identity matrix, and the product of the canonical
vectors ej and en

T is an n × n matrix with zero elements
everywhere except thejnth, which is unity. Thus,C(j) differs
from the identity matrix only in that thejnth element takes the
valuecj. The effect of this sequence of multiplications ontoL
from the right is to add the different components ofη in eq 45
one at a time onto the last column of the matrix. The
determinants of theC(j) matrices are as follows:

while the determinant of the orthogonal matrixL is unity. Hence,
from eqs 46a and 47, the product rule for determinants gives
us

and we now have an explicit expression for the Jacobian in eq
40. It will be apparent from the last equality in eq 48 that we
have defined the quantityBm,n(s) in a manner consistent with
Miller et al.13 in order to facilitate comparison. To prove that
this Jacobian factor cancels against|∇s| in eq 40, it is necessary
to examine the last row of the matrixK , since this is the vector
∇s (eq 41). The tensorK is easily constructed by inversion of
eq 46a. First, note that

so that

Examination of the sequence of multiplications in eq 50 leads
to the conclusion that the last row ofK is actually the last
column ofL , rescaled by the factor (1+ cn)-1

Finally, sincevn is normalized, we have

Equations 40, 48, and 52 then lead to the result

Assuming, in the spirit of the RPH, that the potential is
harmonic about the minimum energy pathway

|C(j)| ) 1, j ) 1, n - 1

) 1 + cn, j ) n (47)

|K |-1 ) |C(n)| ) 1 + cn

) 1 + ∑
i)1

n

Lin(s) ∑
m)1

n-1 ∂Lim(s)

∂s
Qm

) 1 + ∑
m)1

n-1

QmBm,n(s) (48)

[C(j)]-1 ) I - cj ej en
T, j ) 1, n - 1 (49a)

[C(n)]-1 ) I + [(1 + cn)
-1 - 1]enen

T (49b)

K ) [C(1)]-1[C(2)]-1 ... [C(n)]-1LT (50)

∇s ) (1 + cn)
-1vn ) (1 + cn)

-1 ∂a(s)
∂s

(51)

|∇s| ) (1 + cn)
-1

) [1 + ∑
m)1

n-1

QmBm,n(s)]
-1 (52)

Q+ )
(2πkBT)(n-1)/2eE0/kBT

h(n-1) ∫ dQ1 ... dQn-1e
-V(y)/kBT (53)

yi ) ai(s) + ∑
j)1

n-1

Lij(s)Qj (42)

y̆i ) ∑
j)1

n-1

Lij(s)Q̇j + [∂ai(s)

∂s
+ ∑

m)1

n-1 ∂Lim(s)

∂s
Qm]s̆

) ∑
j)1

n-1

Lij(s)Q̇j + [Lin(s) + ∑
m)1

n-1 ∂Lim(s)

∂s
Qm]s̆ (43)

y3 ) K-1Q4 (44a)

Kij
-1 ) Lij, i ) 1, n; j ) 1, n - 1

) Lij + ηi, i ) 1, n; j ) n (44b)

ηi ) ∑
m)1

n-1 ∂Lim(s)

∂s
Qm (44c)

η ) ∑
j)1

n

cjvj ) ∑
j)1

n

(vj
Tη)vj (45)

K-1 ) LC (n)C(n-1)...C(1) (46a)

C(j) ) I + cjejen
T (46b)
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it is then clear that evaluation of the coordinate integrals in eq
53 gives the standard harmonic oscillator result for the partition
function of the orthogonal modes

whereVi ) wi/2π. Equation 55 is the canonical equivalent of
Miller’s microcanonical result.16

In conclusion, the reaction path Hamiltonian has the interest-
ing feature that a rigorous evaluation of the flux integral through
the TSDS leads to the same result which one would obtain with
a naı¨ve approach that neglected kinetic coupling between the
reaction coordinate and the orthogonal modes. This is a
consequence of the cancellation of the kinematic factor (eq 52)
against the Jacobian factor for transformation to the RPH
coordinate system (eq 48). We also note in passing that eq 33
(where in the present caseG ) I for the mass-weighted
Cartesians) in conjunction with eqs 49 and 50 provides an
alternative route to the RPH from that used by Miller et al.13

IV. Flux Integrals for a Generalized Reaction Coordinate
in a Subspace of Transitional Modes

As indicated in the Introduction, a powerful motivation for
exploring and extending methodologies of variational TST with
a generalized reaction coordinate (GRC) has arisen in recent
years. This came with the realization that rate constants for a
large and very important class of reactions involving barrierless
formation (or the reverse dissociation) of collision complexes
can be accurately modeled with a judiciously formulated
variational TST model.20,24,42 Crucially, work to date has
indicated that the transitional modes (TM) forming the space
within which the GRC is defined can be acceptably treated
classically. The important ramification of this is that a classical
analysis of the effect of a generalized definition for the reaction
coordinate on the resulting flux integrals is pertinent, and indeed
vital for enhancing the efficiency of the calculations.

Klippenstein has demonstrated the importance of the defini-
tion of the reaction coordinate to obtaining accurate results.21,22,38

The sensitivity of calculated rate constants to the definition of
a GRC has prompted work in recent years to explore this effect.
Independent approaches by Smith25 and by Robertson et al.34

lead to simple expressions for kinematic factors associated with
a generalized definition of the reaction coordinate in the TM
flux integrals. Their results, however, were superficially very
different in nature and both treatments involved ad hoc
assumptions. More recently, both groups have established
rigorous foundations for their respective approaches,37,35 with
the favorable conclusion that the earlier results, while derived
approximately, were correct. Another outcome of the recent
works is that the respective expressions for the kinematic factor
in the TM flux integral now bear a much closer similarity to
each other. In the developments of section II above, we have
generalized certain aspects of our derivation which will allow
us in this section to establish complete equivalence between
this approach and that of Robertson et al.

A brief outline of our approach to the TM flux integrals serves
to establish notation.37 The reasoning behind the assumed

separability of the Hamiltonian intoHC for the conserved modes
and HTM for the transitional modes has been summarized in
the Introduction. Equation 1 then becomes

whereQc is the partition function for the conserved modes at
the given value ofs, andQTM

+ is that for the transitional modes
at the same value ofs. The analysis focuses on the quantity
QTM

+

In eq 57,Rcm is the center-of-mass separation,φ andθ are the
spatially referenced Euler angles which locate the orientation
of the line joining the centers of mass,(φ1,θ1,ψ1) are the spatially
referenced Euler angles locating the orientation of the rigid-
body frame of fragment 1 and (φ2,θ2,ψ2) are those for fragment
2. PR and the Euler momenta are conjugate toR and the Euler
angles as indicated. The symmetry numbers of the fragments
are specified byσ1 andσ2 respectively.

Some preliminary transformations, which have been described
in detail previously,43 are now carried out. First, the Euler
momenta of the fragments and the orbital rotation are trans-
formed to the corresponding principal-axis angular momentum
components in units ofh with JacobianJc as indicated

The componentslx and ly of the orbital angular momentum
vector l are its projections onto the “body-fixed”x andy axes
perpendicular to the line joining the centers of mass of the two
fragments, which defines the body-fixedzaxis. In terms of these
principal-axis momenta, eq 57 becomes

and the transitional-mode Hamiltonian is

Some unit-related transformations forRcm, µ, and pRcm allow
the kinetic energy tensor for the transitional modes can be

V(y) ) E0 + ∑
i)1

n-1 1

2
wiQi

2 (54)

Q+ ) ∏
i)1

n-1(kBT

hVi
) (55)

k(T) )
kBT

h

QcQTM
+

Q
e-E0/kBT (56)

QTM
+ ) 1

σ1σ2
(kBT

h )-1 ∫ ×

dRcm dφ dθ dφ1 dθ1 dψ1 dφ2 dθ2 dψ2 δ(s - s0)
1

h9 ∫ ×

dpRcm dpφ dpθ dpφ1
dpθ1

dpψ1
dpφ2

dpθ2
dpψ2

s̆Θ(s̆)e-HTM/kBT

(57)

(pφ1
, pθ1

, pψ1
, pφ2

, pθ2
, pψ2

, pφ, pθ)98
Jc ) h8 sin θ1 sin θ2 sin θ

(j1A, j1B, j1C, j2A, j2B, j2C, lx, ly) (58)

QTM
+ )

1
σ1σ2

1
kBT

1

(2π)8∫ dRcm dφ dθ dφ1 dθ1 dψ1 dφ2 dθ2 dψ2 δ

(s - s0) sin θ sin θ1 sin θ2
1

π3 ∫ ×

dpRcm
dj1 dj2 dl s̆Θ(s̆)e-HTM/kBT (59)

HTM )
pRcm

2

2µ
+ A1j1A

2 + B1j1B
2 + C1j1C

2 + A2j2A
2 + B2j2B

2 +

C2j2C
2 + B0(lx

2 + ly
2) + VTM(q) ) TTM + VTM(q) (60)
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defined with common units (i.e., Joules) for all of its elements37

Thus,R̃cm andp̃Rcm are dimensionless, andµ̃ carries units of kg
m2 (their numerical values are unchanged). The kinetic energy
for the transitional modes is now written in compact tensor form

where w ) (p̃Rcm, lx, ly, j1A, j1B, j1C, j2A, j2B, j2C). GTM is a
diagonal matrix with diagonal elements{(p2/2µ̃), B0, B0, A1,
B1, C1, A2, B2, C2}. B0 here is the rotational constant for the
orbital rotation of the fragment centers of mass about the overall
center of mass, i.e.,B0 ) p2/2µRcm

2. The determinant ofGTM

is then given by

Analogous to section II, we define the canonical momentum
flux integral as

so that

The factorN in eq 65 is the normalizing constant for the
angular integrals (28π5). Next, one transforms from the spatially
fixed Euler angles to a set of external angles{φ,θ,ψ} and body-
fixed internal angles{Γint} ) {φ′,θ′1,ψ′1,θ′2,ψ′2}.18,19,43Here,
φ andθ are unchanged (i.e., the orbital Euler angles), andψ is
a third Euler angle necessary to specify the overall orientation
of the body.φ′ is the torsional angle between the two fragments,
and {θ′1,ψ′1,θ′2,ψ′2} are body-fixed Euler angles for the
fragments. The Jacobian for this transformation is sinθ′1 sin
θ′2/sin θ1 sin θ2. Invariance of the Hamiltonian with respect to
overall rotation then allows analytic integration overφ, θ, and
ψ

whereN′ is the normalizing factor for integration over the five
internal angles (25π3). Evaluation of the integral overRcm then
leaves a configurational integral over at most five dimensions

Thus, QTM
+ can be calculated either by direct quadrature for

specific cases of reduced dimension or by computing the average
value of the integrand using Monte Carlo sampling.

With the preliminary transformations complete and notation
established, the analytical evaluation of the momentum flux
integralΦ(T,q) proceeds as discussed in detail previously.37 The
result for two asymmetric-top moieties is

and consequently

The kinetic energy tensor is most simply expressed in terms of
the radial momentumpRcm and the principal axial angular
momenta, in which caseGTM is diagonal (eq 62 above).
However, one is not restricted to this representation. Robertson
et al. construct kinetic energy tensorsA0 andG0 associated with
the set of coordinates{Rcm, φ, θ, ψ, Γint} in their approach.33-35

The result of their recent analysis of the TM flux integral,
expressed in terms of the present notation, is

Some explanation of terms is necessary here. The (n - 1) × (n
- 1) tensorGr

0 is obtained fromG0 by eliminating the row and
column associated withpRcm. We have taken the liberty of
attributing units of energy to these tensors for consistency with
our definition ofGTM above (eqs 61 and 62). For the purposes
of evaluating the gradient vector in eq 70,Rcm ) Rcm(s,φ,θ,ψ,Γint)
(i.e., s takes the place ofRcm as an independent variable) and
the (n - 1) elements of∇Rcm are gradients taken with respect
to the angles. Sinceθ, φ, and ψ are external angles, the
corresponding elements of the gradient vector are zero, so that
only the last five elements associated with the anglesΓint are
nonzero.

It is necessary to establish the equivalence of eqs 69 and 70.
In section II the invariance of the kinematic factor (∇sTG∇s)
with respect to different representations of the kinetic energy
was established. Thus, we can rewrite this factor in terms of
the coordinates{Rcm, φ, θ, ψ, Γint} and their conjugate momenta.
Equation 69 becomes

Φ(T,q) )
π(kBT)4

B0∏
i)1

2

(AiBiCi)
1/2

(2µ̃

p2)1/2

(∇sTGTM∇s)1/2 (68)

QTM
+ )

1

σ1σ2

1

N′

π(kBT)4

B0∏
i)1

2

(AiBiCi)
1/2

∫ dΓint sin θ′1 sin θ′2 e-VTM(q)/kBT ×

(2µ̃

p2)1/2

(∂s/∂Rcm)-1(∇sTGTM∇s)1/2|s)s0
(69)

QTM
+ )

1

σ1σ2

1

N′

π(kBT)4

B0∏
i)1

2

(AiBiCi)
1/2

∫ dΓint sin θ′1 sin θ′2 e-VTM(q)/kBT ×

[1 + (2µ̃

p2)(∇Rcm
TGr

0∇Rcm)]1/2

|s)s0
(70)

R̃cm ) Rcm/1m

µ̃ ) µ × 1m2

p̃Rcm ) µ̃Ṙ̃cm/p (61)

TTM ) wTGTMw (62)

|GTM| ) (p2

2µ̃)B0
2 ∏

i)1

2

AiBiCi (63)

Φ(T,q) ) p
kBT

1

π3∫ dj1 dj2 dl dp̃Rcm
s̆ Θ(s̆)e-TTM/kBT

(64)

QTM
+ ) 1

σ1σ2

1
N∫ dφ dθ dφ1 dθ1 dψ1 dφ2 dθ2 dψ2 dRcm ×

δ(s - s0) sin θ sin θ1 sin θ2 e-VTM(q)/kBT Φ(T,q) (65)

QTM
+ ) 1

σ1σ2

1
N′ ∫ dΓint dRcm δ(s - s0) ×

sin θ′1 sin θ′2 e-VTM(q)/kBT Φ(T,q) (66)

QTM
+ ) 1

σ1σ2

1
N′ ∫ dΓint sin θ′1 sin θ′2e

-VTM(q)/kBT ×

(∂s/∂Rcm)-1Φ(T,q)|s)s0

) 1
σ1σ2

〈e-VTM(q)/kBT(∂s/∂Rcm)-1 Φ(T,q)〉s)s0
(67)
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Bringing (∂s/∂Rcm)-1 inside the latter set of parentheses yields

where the elements of the gradient vector∇′′shave the following
form

Noting that G11
0 ) p2/2µ̃, one then moves the factor

(2µ̃/p2)1/2 inside the latter parentheses in eq 72 which, together
with eq 73, leads directly to the result of Robertson et al. in eq
70. Thus, the equivalence of the expressions derived by
Smith25,37 and by Robertson et al.34,35 for the TM flux integral
is proven.

V. Conclusion

In this article we have explored the classical evaluation of
the flux integral appearing in transition state theory with a
generalized reaction coordinate. This is an integration in phase
space which computes the exact classical one-way flux of an
equilibrium ensemble across the chosen TSDS. One can
analytically evaluate the momentum flux integrals for canonical,
E-resolved microcanonical, andE,J-resolved microcanonical
versions of the theory. It has become apparent that the presence
of coupling terms in the kinetic energy between the GRC and
the remaining degrees of freedom generally leads to a coordinate-
dependent kinematic factor appearing in the configurational
integral after the momentum integrals have been evaluated. We
choose to distinguish between the kinematic factor and coordinate-
dependent Jacobian factors which arise because of the choice
of coordinates for the configurational integration. The kinematic
factor, (∇sTG∇s)1/2, is independent of the particular set of
coordinates and conjugate momenta used to represent the kinetic
energy. This fact is very important from an implementational
perspective, since it allows the kinematic factor to be routinely
evaluated in terms of a convenient coordinate system in which
the form of theG tensor is already known. It completely avoids
the necessity for explicitly constructing a kinetic energy tensor

in terms of the GRC and remaining coordinatessa feature which
appeared unavoidable prior to our recent recasting of the
theory.37

We have examined the intriguing result of Miller for the
reaction path Hamiltonian flux integral,16 which showed that
rigorous evaluation of the momentum flux integrals leads to
the same result which one would have obtained naı¨vely by
neglecting coupling terms between the reaction coordinate the
orthogonal modes. Miller’s result is verified by our investigation,
with the additional conclusion that this feature is the result of
a fortunate cancellation between the coordinate-dependent
kinematic factor and the coordinate-dependent Jacobian factor
for configurational integration in the RPH coordinates. Our
analysis also provides a novel alternative route to the derivation
of the RPH.

Our result for the transitional-mode flux integral with a
generalized reaction coordinate37 has been compared with the
later result of Robertson et al.,35 with the conclusion that both
groups have converged to equivalent results, albeit via quite
distinct approaches.
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