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Different approaches to the evaluation of the momentum flux integral in classical transition state theory (TST)
with a generalized reaction coordinate (GRC) have yielded superficially contrasting results for the kinematic
factor which must be included in the ensuing configurational integral. In this work, Smith’s recent solution
for the momentum flux integral in TST with a GRQ.(Chem Phys 1999 111, 1830) is rederived and
generalized in order to establish equivalence with several different approaches in the literature: (a) the
pioneering work of MarcusJ{ Chem. Phys1964 41, 2624), (b) the reaction path Hamiltonian result of
Miller (in Potential Energy Surfaces and Dynamics Calculatjohsihlar, D. G., Ed.; Plenum: New York,

1981), and (c) the flexible TST expression of Robertson, Wagner, and WarBkaday Discuss1995

102, 65). We conclude that, while each of these approaches is distinct, the results are consistent. For the
general case, a coordinate-dependent kinematic factor does arise from the analytical evaluation of the momentum
flux integral, and it is now apparent that this factor can be very simply and efficiently evaluated for incorporation
into the ensuing configurational integral on the dividing surface. The same kinematic factor appears in canonical
and microcanonical TST expressions for the rate constant, even when total angular momentum is explicitly
resolved in the flux integrals.

I. Introduction obtain a good approximation to the classical reactive flux. Thus,
from a conceptual point of view, there are two fundamental
dynamical approximations involved in classical TST: (1) The
assumption that an equilibrium ensemble adequately represents
the real molecular population. For direct bimolecular reactions
this is usually chosen as a canonical ensemble. For unimolecular,
recombination, or chemical activation reactions where the
competition between reaction and collisional relaxation of the
long-lived intermediates must be explicitly incorporated via a
master equation treatment, the microcanonical equilibrium
ensemble (with enerdy and preferably also angular momentum

J resolved) should be used. (2) The use of dme-wayflux
across the TSDS to approximate the actual reactive flux implies,
of course, the assumption that trajectories which reach this
surface (from either side) will not recross it. There are a number
of elegant derivations of classical TST and its unimolecular
variant, Rice-RamspergerKasset-Marcus (RRKM) theory,

Transition state theory (TST) has a long and venerable history,
almost as long as the field of reaction dynamics itself. The theory
bases itself upon the assumption that there exists a region
somewhere along the reaction path at which one may identify
a distinct bottleneck in the quantum or classical flux. This is
an assumption which can now be explicitly verified by exact
guantum scattering calculations for three- or four-atom direct
reactions, where not surprisingly the “bottleneck region” is that
part of the potential energy surface (PES) at or close to the
potential barrier. Quantum scattering calculations are expensive
in terms of computer time and memory, however, and often
require a substantial new code to be written for each extra atom
or degree of freedom that is included explicitly into the
calculation. Hence, it is exceedingly important to continue the
development of fast and reliable approximate theories for

chemical rate constants. . . in the literature (see, e.g.,refs-8 and references therein) which
In order to develop a good approximate theory, the task is to highlight these fundamental dynamical assumptions.

find a suitable approximation for the net reactive flux. The In addition to the two assumptions summarized above, it is
presence of a distinct bottleneck in the flux at some part of the well-known that there is an implementational issue in TST V\;hiCh
PES betwe_en reactants an_d products implies that (eactic_)n 'S Belates to the kinematic coupling between the generalized
rare event in a molecular history, such that once this region of (curvilinear) reaction coordinats, and the remaining degrees

the IPEIS '_IS_SC_:_OShS,’e? itis unlikely to be r(alcros(js?)d ona shprt time ¢ treedom in the molecular systéhConsider the standard TST
scale. In [ this last statement is exploited by approximating expression for the thermal rate constafi)
the netflux with the one-wayflux of an equilibrium canonical

or microcanonical ensemble across a dividing surface positioned ksT O

somewhere in the bottleneck region. The transition state dividing k(M) =— Q_e*EO’kBT (1)
surface (TSDS), defined in configuration space as a hypersurface h Q

associated with a constant value of the reaction coordinate, ] N ]

completely separates reactant and product regions of configu-HereQ" is the partition function for the “degrees of freedom
ration space. If the TSDS is placed in the bottleneck region of orthogonal to the reaction coordinat€},is that for the reactant-

the PES where recrossing dynamics is minimal, one should (S); Eois the classical barrier height and the other symbols carry
their usual meanings. Assuming for the moment @ats being

T Part of the special issue “C. Bradley Moore Festschrift”. evaluated classically, one would"wely write this quantity in
*E-mail: s.smith@chemistry.ug.edu.au. the usual manner
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Eo/keT i DD setting ps to zero and hence ignoring the coupling) applies
£ J...[ dq”dp”e BVaoleT (2) without modification!

In recent years, a “compelling application” which demands
correct kinematic implementation of variational TST has arisen,
accompanied by a renewed focus on the kinematic aspect of
the theory. This has been due to the recognition that several
very important classes of chemical reaction, including raelical
radical recombinations, radicahlkene additions, and ien
molecule reactions, can occur without any significant potential
X 7 . N energy barrier (in the unimolecular vernacular, these are the
coordmgtesg N how should.we write the kinetic ENergy  so-called “type II" potentials). The absence of a barrier has
expressiorEy in eq 2-by settings or ratherps to zero? This 4 important ramifications which favor the application of a
question was answered in general terms by Mafcusio judiciously formulated version of variational TST: (a) tunneling
concludeq 'that the correct expression for the klngtlc energy of jg unlikely to be important, and (b) with no obvious a priori
the remaining degrees of freedom in eq 2 is obtained from the |ocation for the transition state, a variational implementation
full kinetic energy of the systenty, by settingsto zero. This o the theory (including different possible specifications of the
leads to a coordinate-dependent kinematic factor appearing inreaction coordinate itself) is essential. The correct kinematic
the subsequent configurational integrals, which Marcus inter- jjplementation of TST for any given definition of the reaction
preted as a volume eleme_nt associated _Wlth_ integration overgqordinate (or, equivalently, the TSDS) then becomes a central
the TSDS. Furthermore, in general this differs from the jgq,e.

(incorrect) result one would obtain by settipgto zero. The “judiciously formulated” version of variational TST

Until recently, Marcus’ interpretation of the meaning@f referred to above owes many of its features to pioneering work
in the context of a generalized reaction coordinate has not beenby Wardlaw and Marcus in the mid-198852° It is a hybrid
exploited to any significant extent in the calculation of rate ¢|assical/quantum implementation of TST in which the system
constants via TST. One suspects this has been largely due tqg givided into two groups of modes. First, the internal vibrations
the lack of a compelling application for the theory in which the of the two recombining (or dissociating) moieties are labeled
kinematic issue discussed above has important consequencesqonserved modes” because their vibrational character is
For a reaction proceeding over a chemical barrier, the commonpreserved in the dissociation process. These frequencies ap-
approach is to place the TSDS at the saddle point, where theproach their asymptotic values quite soon as the bond length
Hamiltonian is locally separable. As Marcus himself ndted, increases, changing only slowly in the region of separations
there is essentially no ambiguity in the definition@f in this where the variational transition states are typically found (usually
case, since most of the reactive flux will cross the TSDS close with a bond length greater than 2 A). The second group of
to the saddle-point where separability of the Hamiltonian makes modes are labeled “transitional modes” because they change in
the kinematic issue redundant. While a variational approach character from vibrations in the unimolecular species to free
would allow the TSDS to move away from the saddle point rotations and relative translations of the infinitely separated
(subject to further minimization of the calculated flux), the moieties. The anisotropy in the potential governing these
enhancement obtained thereby is not large, especially in motions changes dramatically as a function of the bond length,
comparison with uncertainties introduced by the need for and itis the interplay between enthalpic and entropic factors in
approximate tunneling correctiofgience, interest in TST for  the transitional modes which has the dominant affect on the
barrier-crossing reactions has focused rather on the issue ofariational location of the transition state and the final value of
quantum mechanical extensions to the theory which can betterthe predicted rate coefficient. Since the time scale for internal

+
Q= h-D)

where g” represents the remaining coordinates gAdtheir
conjugate momentaEE is the appropriate kinetic energy for
these degrees of freedom, aviis the potential (ifV is expressed
relative to the barrier height, then the preexponential factor will
not be necessary). Now, if there exist coupling terms in the full
kinetic energy expressiorky, betweens and the remaining

predict the tunneling contribution to the rdte? vibrations of the moieties is generally much shorter than that
A significant development in this regard was the introduction for motions of the “looser” transitional modes, the densities of
of the reaction path Hamiltonian (RPH) by Miller et & which states of the former are evaluated quantum mechanically (usually

constituted a generalization to the case of polyatomic systemsby direct count of harmonic oscillator states). The flux associated
of the “natural collision coordinates” of Marctéi$Classical and with the transitional modes is evaluated classically via rigorous
qguantum mechanical Hamiltonians were formulated with refer- phase space integration, with the moieties being treated as rigid
ence to a set of coordinates comprising of the reaction path, rotors in formulating the expression for the kinetic energy. In
defined as the minimum energy pathway (MEP) in mass- their pioneering work, Wardlaw and Marcus chose the separation
weighted Cartesians, and coordinates orthogonal to it which arebetween the centers of mass of the two moieties, as the
specified by diagonalization of the projected force-constant reaction coordinate. The advantage of this choice of reaction
matrix (this diagonalization being carried out parametrically coordinate is simplicity: there are no coupling terms between
along the reaction path§. The formulation of this exact Rem and the remaining Jacobi coordinates (angles describing
Hamiltonian was not only an important conceptual advance but the rotations of the moieties about their respective centers of
also allowed the exploration of a range of approximate scattering mass and the relative orbital rotation), such that the kinematic
methods based on quadratic expansion of the potential aboutissue discussed above need not be addressed.

the MEP?® In addition, Miller investigated the evaluation of The center-of-mass separation is not necessarily the most
the microcanonical flux integrals at any position along the intuitive choice of reaction coordinate, however. Klippenstein
reaction path for zero total angular momenttihRegardless noted that when the bond length is not too great, the transitional
of the fact that coupling terms between the reaction coordinate modes take on a more vibrational character, which one typically
and the orthogonal modek exist in the RPH kinetic energy,  describes in terms of bond-lengtbond-angle coordinates.
exact analytical evaluation of the momentum flux integrals Hence the bond lengtR, may be a more “natural” choice of
revealed that for this coordinate system th&vediST expression  reaction coordinate thaR., at smaller separations. Klippenstein
for the microcanonical flux (which one might have derived by extended the Wardlaw/Marcus model by developing a phase
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space integration scheme which explicitly imposes the constraint The purpose of this paper is to reanalyze our recent treat-
§=0, wheresis defined as the bond length, or more generally men” in a more general manner so that the relationship to
the separation between any two points fixed in the respective Marcus’ pioneering work, to Miller's RPH result and also to
frames of the two moietie¥: 24 This work clearly showed that,  the results of Robertson et al. becomes transparent. In section
at smaller separations of the moieties, the use of a bond-lengthi| below, our derivation is outlined and generalized, highlighting
reaction coordinate enables a significant reduction in the certain aspects which will enable the equivalence to the other
computed flux and hence this is a better choice of reaction gpproaches to be established. In section Il we show how
coordinate. Only at energies close to the reaction threshold, injijler's RPH result, which yields no special coordinate
which case the variational transition state lies at large separa-gependence in the configurational integral, may be recovered
tions, isR.m the optimal reaction coordinaté??#°It should be 5 the present treatment. In section IV we consider the TM
recognized that the testing and refinement of this variational g integrals and establish exact equivalence between our

TST model has hinged on the availability of careful and precise kinematic factor and the recent work of Robertson e®al
experimental rate measurements of medium-sized moleculesS '

with well-defined energy and angular momentum, a fundamental
area to which Brad Moore has made seminal contribuiéria.

The variational TST methodology described above has proven!l- Flux through a Hypersurface Defined by a
to be a valuable tool for the accurate modeling of chemical Generalized Reaction Coordinate: Coordinate
reactions involving “barrierless” channels. These types of Dependence of the Kinematic Factor
reaction are exceedingly numerous in combustion, atmospheric ) ) ) )
and astrophysical fields. Furthermore, they can often involve _ !N the present section we deal with the canonical version of
very complex PESs which support multiple long-lived inter- TST_. It WI|| be_ apparent tha_t the qorrespo_ndmg microcanonical
mediate species and multiple dissociation and/or rearrangement/ersion is easily obtained without introducing any fundamentally
channels. Hence, in order to be able to implement such New physics, either by recasting the derivation with the
calculations on a routine basis, it is essential to strip the microcanonical density functiond{(E—H)] instead of the
algorithms down and make them fast, efficient, and capable of canonical (Boltzmann) functidh3¢32or via inverse Laplace
making optimal use of expensive ab initio data. Important transform of the canonical resdft3® Note that evaluation of
advances have been made in this regard with the recognitionthe canonical or microcanonical flux integrals with explicit
that the momentum flux integrals can in fact be carried out resolution of the total angular momentum (a very important
analytically, which halves the dimensionality of the Monte Carlo feature for correct treatment of multichannel systermegs
integrals and dramatically speeds up the algorithms. That thisinvolve additional physics to that presented herein. This
ought to be possible was implicit in the generic canonical development is explicitly laid out in previous publicatics?
treatment of TST by MarcusThe fact was recognized and  hence in the present work we shall not consider angular
exploited by Klippenstein, who developed expressions for the momentum issues further.
canonical transitional mode (TM) flux integral with a bond-

length reaction coordingiand later adapted the approach to expressed as the ratio of the thermal flux through the transition

carry out efficientE-resolved microcanonical calculatiofs. state dividing surface to the canonical density of states of the
Robertson et al. have also addressed the analytical evaluation 9 ty

ection V concludes.

In canonical TST, the rate constak(T) can be formally

of canonical ande-resolved microcanonical TM flux integrals, reactant(s)

both whenR.y, is the reaction coordinateéand more gener-

ally.35 Our own contribution to this effort has been to Trid(s — 5509 Me'D

demonstrate that the TM momentum flux integrals can be k(T) = T 3)
evaluated analytically in the more complex case where calcula- Trip(9)e ]

tions must be carried out with explicit resolution of the total

angular momentum. This was shown originally for tRe, In eq 3 the reaction coordinatg) has the values, on the
reaction coordinaté® and more recently for a completely TSDS.sis the flux term andd(8) is a step function with value
arbitrary definition of the reaction coordinaté. 0 fors < 0 and 1 fors >0.p(q) is a projector onto the relevant

The summary above portrays impressive advances in theregion of the reactant ensemble (unit volume for a bimolecular
efficient and accurate implementation of variational TST with reaction, or the “strongly coupled” region of the molecule’s
a generalized reaction coordinate, and indicates that there areconfiguration space in a unimolecular dissociation). We take
compelling and immediate applications for such work. However, to represent a convenient set of coordindt@s ..., gn} for the
despite the fact that the general principles are clear, a cursorymolecular system ang to represent the set of conjugate
comparison of the analytical results obtained for the momentum momenta.H(q,p) = Ex + V is the system Hamiltonian. The
flux integrals by different authors does not indicate any obvious traces of eq 3 are evaluated classically as integrals over the
equivalence. Although it is easy to miss since it is subsumed system phase space
into the volume element for the surface integral, Marcus’ work
indicated that there is a coordinate-dependent factor which must CHkeT
be included in the configurational integral over the TSDS. KT = f"'qu dp d(s — 5,)sO(5)e N 4
Miller’s result indicated that, at least for the RPH, there is no (M= da d —HikgT )
special coordinate dependence above and beyond the potential ff q dp p(q)e
itself.16 The independent works of Klippenstéih32-38of Rob-
ertson et aP*3%and of SmitR>37on the TM flux integrals yield Recognizing that the classical partition function for reactants
coordinate-dependent kinematic factors. However, although in Q is simplyh™ times the denominator of eq 4 peing Planck’s
principle their different approaches should lead to the same final constant anch the number of degrees of freedom), one writes
result, the equivalence is not obvious. k in the standard TST form of eq 1 wit@* defined as
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Q'=

h™ ™Y et —V(Q)kaT —E/keT

Feﬁ" o7 [ dg o(s — e VT [dp sO(g)e e
(5)

Since our principal focus is the analytic evaluation of the
momentum flux integral, it is useful to write it as follows

_1 _E kT
®(Ta) =i 5 J dp sO(9e (6)
so that
gt ~V(@)keT
Q' =y dads— e e ()

The time derivative of the reaction coordinatés written

n

= Eqi =Vs'q=Vs'G(Gg) = (V9'Gp (8)

The canonical momentain eq 11 are defined in the standard
mannef®

_oL_ &
b g  9g;

wherel = Ex — Vs the Lagrangian. Leh be the kinetic energy
tensor wherky is expressed in terms of the velocities

©)

E.="5a'Aq (10
Then egs 12 and 13 imply that
p=Aq (11)
and
E.=",p'A"'p="1,p'Gp (12)

The identificationp = G~1¢ in eq 8 then follows from this.
The traditional approach to the evaluation of the flux integral
in eq 6 is to carry out a canonical transformation so that the
reaction coordinats and its conjugate momentupa become
integration variable$3®> Our approach focuses rather on an
orthogonal transformation in the momentum space éh@ne
transforms to a new set of momenta= { v, ..., vy} such that
v1, satisfies the relation

oo, cs (13)
Writing
v=Up (14a)
u'u=1 (14b)
the kinetic energy now becomes
E = %pTGp = %VTUGUTV = %VTG*V (15)

and the next task is the specification @f so as to satisfy eq
13. This amounts to specifying the first row of the transformation
matrix U. Using eqs 8 and 1315 one finally concludes th#t

Smith

1

:—VT
vs o P

(16)

U1

The only restriction on the remaining momemta ..., v is
that they should be orthonormal te (eq 14b). Thus, virtually
any method of determining a set of ¢ 1) vectors inR"
orthonormal to the first row ofJ will suffice to define the
remaining rows of the transformation matrix, and thence the
remaining momenta. We use the Lanczos recursion here, since
it has the convenient property that the new kinetic energy tensor
G* is symmetric tridiagonal

apf 00 O

Broe 0 O
G*=UGU'=[0 « e 0 (17)

0 0 o O ﬁn—l

0 O Oﬁn—l an

It will turn out thatoy is the only one of these tensor elements
that shows up in the final expression. It has the form

1
Vs|?

(V9)'GVs (18)

oy =
The momentum flux integral in terms of these new momenta is
written
O(T,q) =
1 O ~EksT — (10122810500 2ke T
@fdv e Eclks de]_SQ(S)e (0qv1°+2B10501)/2kg (19)

wherev® = (v, ..., vy) and
E0= %(VD)TGDVD (20a)
a, f, 00 0
B, 03¢ 0 O
G'=[0 ¢« e 0 (20b)
0 0 o Oy ﬁnfl

0 0 Oﬂnfl an

Recognition of the bounds on the integral imposed by the
©(% function, and subsequent evaluation of this integral
proceeds in an established manf&3>37yielding an integral
over the remaining momenta with a modified kinetic energy
tensor

D(T,q) = |Vs| [ dve ST (21)

with
E =", 'GV (22a)
G =G"- i—lf ee’ (22b)

The quantityEc™ is an expression for the kinetic energy of the
system with the constrairt = 0 imposed. In this sense, the
equivalence of this somewhat different derivation to the more
traditional line of approach based on canonical transforma-
tiong?:13.16,21,32.34.3%5 clear. The contrast is that the momenta
here are not required to be conjugate to a predefined set of
coordinates, but rather have been defined via the orthogonal
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transformation of eq 14 to facilitate a minimalist approach to transformation and subsequent kinetic energy tensor in order

the final simple result, eq 26 below. to accommodate a given definition of the reaction coordinate
The remaining integrals in eq 21 are evaluated in standards: all one need do is evaluate the gradients wfith respect to
fashiorf® to give the formal result a convenient coordinate system in whiGhis already known.

This realization represents a substantial simplification over the

| VS| (27tkg T) (12 pioneering work of Marcus, since it allows one to more easily

@(T,q) = W (23) envisage the construction of a generic (“black-box”) variational

TST code which could rigorously implement arbitrary GRC
The remaining issue is to find a simple way to evaluate the definitions input by the user, always in terms of a common set
determinant of ther{ — 1) x (n — 1) modified kinetic energy ~ ©f coordinates. For example, if the application is such that a
tensorG+. At this stage, some comparison of approaches taken ¢lassical treatment of all rovibrational degrees of freedom is
by different authors to evaluate this determinant is instructive. acceptable, the natural choice of coordinates for the representa-
Klippensteif-32adopts a numerical approach to the evaluation tion of the kinetic energy is Cartesians. In this case, the result
of |G*|. Marcu$ makes general observations which suggest two ©f €3 27 becomes
possible approaches. _
(i) He first notes that the modified kinetic energy ten&or . (2ﬂkBT)(n VEgEteT y
is the inverse of the corresponding velocity-referenced kinetic @ = ( fm Z)Idx O(s — ) x
energy tensoA™. Since, as noted abovE,™" gives the kinetic =
energy of the system under the constraint 0, A* is obtained " [0s)? 1
from the full tensorA* by striking out the row and column Z 8_ m;
corresponding to the reaction coordinate velogifyvhere A* =1\9%
is the kinetic energy tensor for the set of canonical variables [in this labeling scheme, the coordinates: (o, X1, Xa) are
actually the Cartesians((, y, zZ0) of therth atom, andng—»
= mg—1 = Mg = M, wherem(® is the mass of theth atom].
A second comment on the result of eq 27 relates to the

which includess and ps). A formal proof of the conjugate
relation betweeiG ™ andA T is given by Robertson et.&t Thus,

identification of the coordinate dependence in the integrand
which one would ascribe to a “kinematic factor” in the spirit of

one can seek to construct the tensédgrand then evaluate the
the title of this work. There are three sources of coordinate

determinant of its minoA™ by either numerical or analytical

methods. Robertson et#t3>have pursued this latter analytical
dependence in eq 27: the potentifly), |G|, and the factor
(Vs'GVs). The potential is an expected part of the configura-

h(—1)
12
e—V(X)/kBT (28)

approach to obtain results which will be shown below to be
equivalent to those of Smith.
(ii) Marcus also notes that

G* tional integral. It is expensive to calculate, but requires no further
AT = FIAY| = 11 (24) comment in the present context. In considering the possible
|G*| coordinate dependence 5|, one notes that there is no such

coordinate dependence in the Cartesian representation of eq 28.
Consider, then, the transformation from the Cartesian coordi-
natesx in eq 28 to the general coordinaigé eq 27. We write

the differential relation between the two sets of coordinates as

The first equality is straightforward to prove using Cramer’s
rule. This provides another avenue for evaluation of the required
determinant, but still requires the constructionG.

Returning to the approach of this paper, it will be apparent
that we have made no reference to coordinates or velocities g =Kx (29)
relating to the momentay, ..., un—these were simply chosen to
be orthogonal ta1. Neither is it necessary to do so, since (i) which implies that the Jacobian factor for the coordinate
the fact thatG* is tridiagonal and (ii) the fact thag* is related transformation igK|~1. The kinetic energy tensos and G
to G by an orthogonal transformation (i.6G*| = |G|) make for the general coordinate system will be related to those of the
it easy to prove a direct relationship betwegi"| and |G| Cartesian systenA° and G by the equations
without reference to the conjugate tengor.3” One finds that

A=K HAK™? (30a)
IG"| = IGllay (25) . .
G=A1=KA) K =KGK' (30b)
Substitution into eq 23, withy; as given in eq 18, then leads to Noting that the mass factor in eq 28|&°| 2, and including
- (VSTGVS)”Z the Jacobian factor for the transformation to the general
O(T,q) = (kg ) D22 (26) coordinatesy leads to

|G|1/2
(n—1)/2,Eo/kaT
and consequently ot = (27ksT) €
h—1)
Q= (Vs'Gvs)*?
(n—1)/2,EokaT 1 —V(Q)kaT
(27kgT)"™ e (VSTGVS)llze—V(q)/kBT 27) f dq [K|70(s ~ &) G2 € (31)

D) qu o(s ~ %) G| 2
which in light of eq 30b is manifestly equivalent to eq 27. Thus,
As a first comment on the very simple result of eq 27, it should the factor|G|-2in eq 27 is seen to comprise of a coordinate-
be recalled that, in contrast to the traditional line of approach independent mass fact¢@°| 2 and a coordinate-dependent
based on canonical transformatiérig;35the reaction coordinate ~ Jacobian factofK |~1. The JacobianK |~! is merely a product
sis not necessarily one of the coordinatpsThus, it becomes  of the choice of coordinate systeq) which in the present

apparent that there is no need to construct a specific canonicalcontext need not have anything to do with the choice of reaction
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coordinate (it might, for instance, be a convenient coordinate products. Marcus-# proposed that the arc length along such a
system for the evaluation of the potential energy function). Since locus would prove a useful definition for the reaction coordinate
|K|~1 therefore has no intrinsically dynamical origin, one may s. He defined the “natural collision coordinates” for a triatomic
reasonably associate a coordinate-dependent “kinematic factor’system in terms of this definition f@and remaining coordinates
associated with kinetic energy coupling to a generalized reaction defined as parametrically orthogonal to the locus which defines

coordinate in TST with the ternVs'GVs)2 Granted this is
simply a question of definition. MarcBisssociated the entire
expressionYs'GVs)Y4/|G| with the volume element of integra-

s. Miller and co-worker¥® developed the multidimensional
generalization of these coordinates and the corresponding
reaction path Hamiltonian (RPH). Miller subsequently examined

tion on a hypersurface in configuration space with the constraint the classical flux integral through a TSDS defined as the

ds = 0 (or, equivalentlys = 0) imposed. He did not therefore
define a kinematic factor. However, while the Jacobiiifi
necessarily gives the correct volume elementdoy integral
over the coordinates, the constraint = 0 derives specifically

hyperplane orthogonal to the reaction path at any given value
of s.16 As discussed in the Introduction, the curious feature of
his result was that, despite the fact that there are coupling terms
in the kinetic energy tensor betwegsand the remaining degrees

from the fundamental TST assumption. Since the latter constraintof freedom, one obtains the same result which would Beehal
has no more general meaning outside of TST, subsuming thederived by neglecting such terms. In this section, we examine

factor (VsTGVs)2 which arises from it into a volume element
is somewhat artificial. Hence, the interpretation|ifi~ (or
equivalently any coordinate dependence|®]) as a static
Jacobian factor and of"GVs)¥2 as a kinematic factor would
seem more appropriate in the light of this discussion.
Finally in this section, although it is implicit in the derivation
above, it is useful to provide an explicit proof of the fact that
the kinematic factor{s'Gvs)2is independent of the particular

the RPH flux integral in the light of the present discussion of
kinematic factors in TST with a generalized reaction coordinate.
For the sake of brevity, we treat only canonical TST and do
not explicitly consider rotations. The details of microcanonical
implementations with account for angular momentum can be
found elsewheré336.37
We begin by transforming the configurational integral in eq

28 above into mass-weighted Cartesian coordinates

representation chosen for the kinetic energy. Let us assume,

then, that the form of the kinetic energy is known in terms of
two different sets of canonical coordinates and momemia) (
and @',p'). The differential relationship between the two
coordinate systems is written:

4 =Kdq

whereKj = dq'i/dg;. Analogous to eq 30 above, the momentum-
referenced kinetic energy tensofs,and G', are then related
by the equation

(32)

G' =KGK ' (33)

It is now necessary to establish the relationship betweégn

andV's. Noting that the absolute time derivatigé independent

of the coordinate system, one has
Vs’ =56=V's'q (34)

Substituting eq 32 into the right-hand equality of eq 34 then
gives

Vs'g=s=V's'q
with the conclusion that
Vs=K'V's (35)

Using egs 33 and 35, the invariance of the kinematic factor
with respect to the representation of the kinetic energy follows:

(V'S'G'V's) = Vs'K H(KGK ) (KT) 'vsD
= (Vs'GVs) (36)

We shall utilize this fact in section IV below to establish the
equivalence of different approaches to the TM flux integral with
a generalized reaction coordinate.

lll. Flux through a Hypersurface Defined by the
Reaction Path

y=m", i=1n (37)

The Jacobian for this transformation 3L, m~2, and the
new kinetic energy tensor is the identity matrix; thus

(ZJTkBT) (nfl)/ZeE()/kBT
B HD)

+

[ dy 6(s — sp)| vsle "OVeT (38)

Equation 38 indicates that there is a kinematic factasg|,
which is associated with the “reaction path” definition ®r
To see why this disappears in Miller's restfitone must
transform the configurational integral from mass-weighted
Cartesians to the curvilinear coordinates of the RP®, ...,
Qn-1, Qn = s}. Following the procedure of the previous section,
we write the differential relationship between the two sets of
coordinates as

Q=Ky

which implies that the Jacobian factor for the coordinate
transformation igK |1

(39)

(anBT)(“*l)/ZeEolkBT ) )
= [ f dQ; ... dQ, (K] L ysleVOkeT

(40)

Q

In eq 40 the variabl®, = s has been integrated out with use
of the delta function constraint in eq 38. It remains to show
that|K|~t and|Vs| cancel to produce a result identical to that
which would be obtained by neglecting coupling betwsand
the remaining degrees of freedom. Now, since at any given value
of s the coordinates{Q, ..., Qu-1} are by construction
orthogonal tos, in this representation we hawés = e, the
elementary unit vector (0...,0,1). Thus, from eq 35 we have
Vs=K'e, (41)
i.e., Vsis the bottom row of the transformation matx To
proceed further it is necessary to examine the transformation

The reaction path is a locus in mass-weighted Cartesian spacdo the RPH coordinates in detail. The absolute relation between

defined by the minimum energy pathway from reactants to

the mass-weighted Cartesianand the RPH coordinat€® may
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be expressed &s

n—1

i=a@+ ) LieQ (42)
JZ N

Herea(s) is theith component of the vect@(s) which locates
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| is then x nidentity matrix, and the product of the canonical
vectorsg and € is ann x n matrix with zero elements
everywhere except thiath, which is unity. ThusC0 differs
from the identity matrix only in that thpgth element takes the
valuec;. The effect of this sequence of multiplications oito
from the right is to add the different componentsyoin eq 45

the reaction path in mass weighted Cartesian space at any giverPn€ at a time onto the last column of the matrix. The

value of the arc length. Differentiation of the vectoa(s) with

respect tos yields a unit vectow, tangential to the reaction
path. This vector is then used to symmetrically deflate the matrix

of second derivatives of the potentid(y), thereby forming a
projected force constant matrix of rank— 1.13 The projected
force constant matrix is diagonalized to obtair 1 frequencies

for harmonic motion orthogonal teand a set of eigenvectors
vi(S),...¥n-1(S) which specify the axial directions of the or-
thogonal coordinate®s,...Qn-1. Together, the set of vectors

v1(9),...vn(S) form a complete orthonormal basis in thme

dimensional mass-weighted Cartesian space, a fact which we
utilize below (of course, their directions change parametrically

with the value ofs). In eq 42, the quantitiels;(s) are elements

of an orthogonal matrit (s) whose columns are the vectors
v1(9),...¥n(S). Equation 42 allows us to specify the derivative

matrix K (or rather its inverse) explicitly, since

da(9) L iLy(9) l
+ MBS

0s &= 0s

Yi

n—-1
ZLij (Q +
£

n—1 8L|m S,

(9
Lin(s) + n; 9s (gmlS (43)

n-1
ZLij(S)Qj +
£

where we have utilized the fact tha&/os = vn, which is in
fact the last column of (s). In matrix form (recalls = Qy), eq
43 is

y=K™Q (442)

with
Ki ‘=L, i=Lmj=1n-1

=L+, i=1nj=n (44b)

and
n1 aI—im(s)
m= Z Qn (44c)
f=1 0S

In other words K1 is equal to the orthogonal matrix(s)

except that the vectay is added to the last column. We now

devise a factorization df ~* which will allow us to identify its
determinant. First, defin¢c;, j=1,n} as the projection coef-
ficients of » onto the orthogonal columns af

n= icjvj = i(VjTﬂ)Vj (45)
i= =
The following factorization oK ~1 then holds
K*=Lchch c® (46a)
where
CV=1+ceel (46b)

determinants of th€® matrices are as follows:

IcY =1, j=1,n—-1

=14+c, j=n 47

while the determinant of the orthogonal matixs unity. Hence,
from eqs 46a and 47, the product rule for determinants gives
us

K|t =1c"=1+g,

n n-1 aI—im(s)
+ 2 in(S) n; o Qnm
n—1
=1+ ZQmBm,n(S) (48)

and we now have an explicit expression for the Jacobian in eq
40. It will be apparent from the last equality in eq 48 that we
have defined the quantitBmn(s) in @ manner consistent with
Miller et al.'® in order to facilitate comparison. To prove that
this Jacobian factor cancels agaif\é$| in eq 40, it is necessary

to examine the last row of the matti, since this is the vector
Vs (eq 41). The tensdK is easily constructed by inversion of
eq 46a. First, note that

[C " =1-¢qgel, j=1n-1 (49a)
[CY ™ =1+[1+c) " —1ee  (49b)

so that
K=[c® c® ... c " (50)

Examination of the sequence of multiplications in eq 50 leads
to the conclusion that the last row &f is actually the last
column ofL, rescaled by the factor ( ¢;)™?®

_ _,0a(s
Vs=(1+¢) v,=(1+c,) 1% (51)
Finally, sincev, is normalized, we have
Vs|=(1+¢c)"
n—1
(52)

=[1+ ZQmBm,n(s)]‘l

Equations 40, 48, and 52 then lead to the result

(ZﬂkBT) (n— 1)/2eEolkBT
- D

QF JdQ, ... Qe (53)

Assuming, in the spirit of the RPH, that the potential is
harmonic about the minimum energy pathway
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n—11 ) separability of the Hamiltonian intidc for the conserved modes
V(y) =E, + -WQ; (54) and Hry for the transitional modes has been summarized in
=12 the Introduction. Equation 1 then becomes
it is then clear that evaluation of the coordinate integrals in eq kT Q Qt
53 gives the standard harmonic oscillator result for the partition k(T)=—— SCXTM o ~EokeT (56)
function of the orthogonal modes h Q
n-1[k,T whereQ. is the partition function for the conserved modes at
Q' = I‘l R (55) the given value 0§, andQ?M is that for the transitional modes
=1\ hy, at the same value . The analysis focuses on the quantity

Qru

wherewy; = wi/2. Equation 55 is the canonical equivalent of
Miller's microcanonical resuft® N 1 (kT 7t

In conclusion, the reaction path Hamiltonian has the interest- <™ — 0_02 h f x
ing feature that a rigorous evaluation of the flux integral through 1
the TSDS leads to the same result which one would obtain with  dR,, d¢ df d¢, d6; dy; dg, db, dy, 6(s — s) — f X
a nave approach that neglected kinetic coupling between the h
reaction coordinate and the orthogonal modes. This is a  dpgydp, dp, dp, dp, dp, dp, dp,, dp,, s0(g)e Hmikel
consequence of the cancellation of the kinematic factor (eq 52) (57)
against the Jacobian factor for transformation to the RPH
coordinate system (eq 48). We also note in passing that eq 33
(where in the present casé = | for the mass-weighted
Cartesians) in conjunction with egs 49 and 50 provides an
alternative route to the RPH from that used by Miller et3al

In eq 57,R.m is the center-of-mass separatignand 6 are the
spatially referenced Euler angles which locate the orientation
of the line joining the centers of magg;,01,31) are the spatially
referenced Euler angles locating the orientation of the rigid-
body frame of fragment 1 ane4,6,,12) are those for fragment
IV. Flux Integrals for a Generalized Reaction Coordinate 2. Pr and the Euler momenta are conjugatértand the Euler
in a Subspace of Transitional Modes angles as indicated. The symmetry numbers of the fragments
are specified by, and g, respectively.

As indicated in the Introduction, a powerful motivation for  gome preliminary transformations, which have been described
exploring and extending methodologies of variational TST with in detail previously’® are now carried out. First, the Euler
a generalized reaction coordinate (GRC) has arisen in recentmomenta of the fragments and the orbital rotation are trans-
years. This came with the realization that rate constants for aformed to the corresponding principal-axis angular momentum

large and very important class of reactions involving barrierless components in units dfi with JacobianJ. as indicated
formation (or the reverse dissociation) of collision complexes

can be accurately modeled with a judiciously formulated J,=hBsin6, sin6,sin6

variational TST modet?2442 Crucially, work to date has  (Py: Py Pys Py, Po,s Pys Pgs Py)

indicated that the transitional modes (TM) forming the space (imo T16s s Foms o Jocs s 1) (58)

within which the GRC is defined can be acceptably treated 1A 118 J1Cr 120 128 1201 e Ty,

classically. The important ramification of this is that a classical .

analysis of the effect of a generalized definition for the reaction Th€ components, and ly of the orbital angular momentum

coordinate on the resulting flux integrals is pertinent, and indeed Vector! are its projections onto the “body-fixed’andy axes

vital for enhancing the efficiency of the calculations. perpendlcular.to the .Ilne joining the_ centgrs of mass of the two
Klippenstein has demonstrated the importance of the defini- fragments, which defines the body-fixedxis. In terms of these

tion of the reaction coordinate to obtaining accurate redt#ss principal-axis momenta, eq 57 becomes

The sensitivity of calculated rate constants to the definition of

a GRC has prompted work in recent years to explore this effect. Q?M =

Independent approaches by Sriitand by Robertson et &t 1 1 1

lead to simple expressions for kinematic factors associated with 7 5 T (Zn)gf dR;,, dg dO d¢, d6, dy, dgp, d6), dyp, O
a generalized definition of the reaction coordinate in the TM e

flux integrals. Their results, however, were superficially very (s— ) sin@sin6, sin 92% f x

different in nature and both treatments involved ad hoc 4

assumptions. More recently, both groups have established dpRc dj, dj,dl S@(S)eiHTM/kBT (59)

rigorous foundations for their respective approactiéswith
the favorable conclusion that the earlier results, while derived - S
approximately, were correct. Another outcome of the recent @nd the transitional-mode Hamiltonian is

works is that the respective expressions for the kinematic factor )

in the TM flux integral now bear a much closer similarity to Pr,

each other. In the developments of section Il above, we have Hpy, = —— + Ajj2, + Byj%s + Cijic + Ajon + Bojos +
generalized certain aspects of our derivation which will allow 2'”.2 5

us in this section to establish complete equivalence between Clac + Byl + 15) + Vau(Q) = Ty + Veu(@) (60)

this approach and that of Robertson et al
A brief outline of our approach to the TM flux integrals serves Some unit-related transformations fBgm, «, and pr,, allow
to establish notatio®’ The reasoning behind the assumed the kinetic energy tensor for the transitional modes can be
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defined with common units (i.e., Joules) for all of its eleméhts

Rom = Ren/1m
ji=u x 1n?
bRcm = ﬂﬁcm/h (61)

Thus,R.m andpr,,, are dimensionless, aridcarries units of kg

m? (their numerical values are unchanged). The kinetic energy

for the transitional modes is now written in compact tensor form

Trw =W Gryw (62)
wherew = (Prem Ix ly, j1ar J18, jic, joas 2B, joc). GTwm IS a
diagonal matrix with diagonal elemenf§h?/2ii), Bo, Bo, A,
B1, C1, Az, By, Co}. Bp here is the rotational constant for the
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specific cases of reduced dimension or by computing the average
value of the integrand using Monte Carlo sampling.

With the preliminary transformations complete and notation
established, the analytical evaluation of the momentum flux
integral®(T,q) proceeds as discussed in detail previodéiyhe
result for two asymmetric-top moieties is

6D (2
(1) = 2—(2“

1/2
E) (VS'Gyy V92 (68)
Bo[ J(ABC)™

and consequently

orbital rotation of the fragment centers of mass about the overall Q'I_"—M =

center of mass, i.eBy = h%2uR:. The determinant oGy
is then given by

K2 2
Gl = (i) Bo2 ABC (63)

Analogous to section I, we define the canonical momentum
flux integral as

O(T,q) = % ﬂig S diidi,dldpe_sO(g)e ™
(64)
so that

1 1
Qv = 0,0,N f dep d6 dgp, d6, dy, dgp, dB, dy, AR, x
3(s— ) sin@ sin, sin, e "™ o(T,q) (65)

The factorN in eq 65 is the normalizing constant for the
angular integrals €°). Next, one transforms from the spatially
fixed Euler angles to a set of external andleést,y} and body-
fixed internal angle§Tin = {¢',0'1,9'1,0'2,y'2} 181243 Here,
¢ and@ are unchanged (i.e., the orbital Euler angles), @rid

a third Euler angle necessary to specify the overall orientation

of the body ¢' is the torsional angle between the two fragments,
and {0'1,y'1,0'2,y'2} are body-fixed Euler angles for the
fragments. The Jacobian for this transformation is @&insin
0',/sin 61 sin 6. Invariance of the Hamiltonian with respect to
overall rotation then allows analytic integration ovgré, and

4

11
Q;rM = Ulazﬁ f dl R, O(s — ) X
sin@' sin@', e ™" o(T,q) (66)

whereN' is the normalizing factor for integration over the five
internal angles (2:). Evaluation of the integral ovéR, then
leaves a configurational integral over at most five dimensions

11 o
Q:I':M = ;ozﬁ f dr,, sin®’; sin¢',e Vin@/keT o
(05/0R.) " @(T.0)l o=,
= L vm@kT(gR )t PTAL, (67)
010,

Thus, Q;,, can be calculated either by direct quadrature for

11 kel
0,0, N' B, 2 (AiBiCi)l/Z
- 2ii\12 T 2

(E) (05/0R ) (VS Gy V9) s, (69)

.f dri, sin®'; sin¢’, g Vm@/keT o

The kinetic energy tensor is most simply expressed in terms of
the radial momentunpg,, and the principal axial angular
momenta, in which casé&ry is diagonal (eq 62 above).
However, one is not restricted to this representation. Robertson
et al. construct kinetic energy tenséy$andG° associated with

the set of coordinateRem, ¢, 6, ¥, Tint in their approach3~3%

The result of their recent analysis of the TM flux integral,
expressed in terms of the present notation, is

Q;M =
4
11 alkeT)
E 2 f dry, sin6'; sin¢', g Vm(@/keT o
0,0, N

B[ ](ABC)™

1=
1/2

x s, (70)

1+ (—|(VRoy G/ VRer)
hZ

Some explanation of terms is necessary here. ke {) x (n
-1 tensorG? is obtained fronG° by eliminating the row and
column associated witlpr,,. We have taken the liberty of
attributing units of energy to these tensors for consistency with
our definition of Gty above (egs 61 and 62). For the purposes
of evaluating the gradient vector in eq Fm = Rem(S¢,0,1.Tint)

(i.e., s takes the place dR;y, as an independent variable) and
the (h — 1) elements oiVR;, are gradients taken with respect
to the angles. Sincé®, ¢, and y are external angles, the
corresponding elements of the gradient vector are zero, so that
only the last five elements associated with the andigsare
nonzero.

It is necessary to establish the equivalence of eqs 69 and 70.
In section Il the invariance of the kinematic factors{GVs)
with respect to different representations of the kinetic energy
was established. Thus, we can rewrite this factor in terms of
the coordinate$§Rem, ¢, 0, v, I'ind and their conjugate momenta.
Equation 69 becomes
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QWTM =
4
11 alk?)
N f dr, sin6'; sin6', e Ym@hkeT o
02l - 1/2
Bo[ ] (ABC)

2i\1/2 L T 12
(ﬁ) (O5/0R;y) (V'S G"V'9)Heg (71)

Bringing (0s/0R:m) ! inside the latter set of parentheses yields

Q%LM =
4
11 kg
N .f dr, sin6'; sin6', e Ym@hkeT o
0,0, N' 2

Bo[ (ABC)™
-
7\1/2
(% (VHSTGOV”S)l/ZlFSO (72)

hZ

where the elements of the gradient vedts have the following
form

5 R s
(V"9 =5 Ry
m
. _8Rcm35_8Rcm_ _
(V S)i_ Js a,}/l_ a,yl _0’ Vi_(p! 0’1/)
T _aRcm as_aRcm —_— U U I U I
(V S)i—ga—yi—a—yi, Vi=¢, 0,9, 059, (73)

Noting that G}, = h22ii, one then moves the factor

(2a/h?)Y2 inside the latter parentheses in eq 72 which, together

Smith

in terms of the GRC and remaining coordinatesfeature which
appeared unavoidable prior to our recent recasting of the
theory3”

We have examined the intriguing result of Miller for the
reaction path Hamiltonian flux integréft,which showed that
rigorous evaluation of the momentum flux integrals leads to
the same result which one would have obtainedselsu by
neglecting coupling terms between the reaction coordinate the
orthogonal modes. Miller’s result is verified by our investigation,
with the additional conclusion that this feature is the result of
a fortunate cancellation between the coordinate-dependent
kinematic factor and the coordinate-dependent Jacobian factor
for configurational integration in the RPH coordinates. Our
analysis also provides a novel alternative route to the derivation
of the RPH.

Our result for the transitional-mode flux integral with a
generalized reaction coordindtdas been compared with the
later result of Robertson et & with the conclusion that both
groups have converged to equivalent results, albeit via quite
distinct approaches.
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