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A log-derivative formulation of the prefactor term appearing in the semiclassical Herman-Kluk propagator
is presented. The resulting new expression is found in practice to avoid the branch cut problem which has
hampered previous formulations. The enhanced performance of the log-derivative version of the prefactor
has been confirmed by testing it on several one- and two-dimensional model problems. This log-derivative
algorithm is also incorporated in the forward-backward initial value representation and applied to a model
of the double-slit diffraction problem.

1. Introduction

Significant effort has been devoted to the development of
new methods for describing quantum effects in the dynamics
of molecular systems.1 Among them, the semiclassical (SC)
approach has undergone a rebirth of interest.2 In particular,
several methods based on initial value representations (IVR)
have been proposed3-14 and shown capable of accurately
describing the dynamics of complex molecular systems, includ-
ing the description of essentially all types of quantum effects,
while being free of the well-known root-search and divergence
at caustics problems. This formulation has given rise to a wealth
of recent applications which focus, for instance, on model bound
state problems, photodissociation, resonance lifetimes and
scattering matrix elements, cumulative reaction probabilities and
Franck-Condon intensities, and the study of hierarchical
spectra.3-14

In complex molecular systems, i.e., those with many degrees
of freedom, the dynamical quantity of interest is typically
expressed in terms of a time correlation function. For such
quantities, the forward-backward (FB) approach described by
Sun and Miller,1,9i based on Makri and Thompson’s15 approach
for dealing with influence functionals, is particularly advanta-
geous since it expresses the SC time correlation function as a
single phase space average over the initial conditions of
trajectories (rather than a double phase space average that would
otherwise be required). It seems to be the simplest of SC-IVR
approaches that is still capable of describing true quantum
coherence effects, and several recent applications to molecular
energy transfer,9j thermal rate constants,9k and simulation of
spectra,9f,l have shown it to do a reasonably good job. The FB
approach has in fact been so effective in simplifying the phase
space average over initial conditions (because it greatly dimin-
ishes the oscillatory character of the integrand) that the
bottleneck in SC-IVR calculations has now become the
evaluation of the “prefactor” in the Herman-Kluk (HK)
propagator. The prefactor involves the monodromy matrix (the
matrix of derivatives of final coordinates and momenta with
respect to their initial values), and two aspects of its calculation
present difficulties: first, it requires the solution of matrix

coupled differential equations, and second, it is given by the
square root of a complex quantity, the absolute phase of which
must therefore be followed along the trajectory (in order to
obtain the correct branch of the complex square root).

The present work proposes an alternate formulation of the
prefactor appearing in the SC-IVR-HK approach which has
advantages with regard to both of these difficulties. Specifically,
we utilize the log-derivative transform18a to integrate the
equations for the monodromy matrix. The log-derivative is
typically more slowly varying than the monodromy matrix itself
and thus easier to integrate, and the resulting expression for
the prefactor also involves the square root in a simpler fashion.

The new formulation for the prefactor is tested herein on a
series of model potentials, having a 2-fold purpose in mind.
First, the branch cut avoidance has been comprehensively
checked, and some formal arguments supporting it are given.
Second, the numerical and computational performance of the
new algorithm has been established. Finally, a complete
semiclassical forward-backward calculation has been carried
out to show its actual potentiality. The system chosen has been
a model for the double-slit diffraction problem. It is provided
here, in addition, as a preliminary check of the semiclassical
methodology on a difficult case, one involving pronounced
quantum interference effects.

The remainder of the paper is organized as follows. Section
2 deals with the theoretical background. In particular, it includes
the general log-derivative formulation of the prefactor, as well
as the specific continuity conditions required for the FB
approximation. Section 3 shows the application to several model
systems, and discusses the results. Finally, section 4 concludes.

2. Theory

We start with the expression for the Herman-Kluk, or
coherent state version, of the SC-IVR approximation for the
quantum mechanical time evolution operator3

whereF is the number of degrees of freedom, (p0,q0) are the
initial momenta and coordinates for classical trajectories, (pt,qt)
are the classical time-evolved phase space variables,St(p0,q0)
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e-iĤt/p )

(2πp)-F ∫ dp0 ∫ dq0Ct(p0, q0)e
iSt(p0,q0)/p|ptqt〉〈p0q0| (1)

10321J. Phys. Chem. A2000,104,10321-10327

10.1021/jp0012451 CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/04/2000



is the classical action integral along the trajectory, andCt is the
Herman-Kluk prefactor

where

are the elements of the monodromy matrix. According to their
definition, eachM-block is anF × F matrix, while the global
M-matrix is 2F × 2F. In practice, the monodromy matrix is
not calculated by performing the derivatives in eq 3 explicitly,
but rather by integrating auxiliary equations simultaneously with
the classical trajectory itself. For a Cartesian Hamiltonian in
mass-weighted coordinates,

for which the trajectory equations are

these auxiliary equations are

whereκt ) ∂2V/∂q∂q.
As the dimensionality of the problem increases, the bottleneck

in a SC-IVR calculation is the prefactorCt. The calculation
overload originates in the square root from eq 2, since it is
performed on a complex quantity. This operation, as it is well-
known, is not unique, and a branch cut problem appears each
time the value of the determinant inside the square root crosses
the negative real axis. As a consequence, one usually proceeds
in practice keeping track of the kernel of the square root along
the trajectory and counting the number of times it crosses the
negative real axis. This feature is usually reflected in the theory
in the form of the Maslov index.16

Keeping track of the square root kernel means calculating a
determinant, as shown in eq 2, for each integration step. It is a
complexF × F determinant, which has to be computed at every
time step, small enough to ensure convergence along each
trajectory. This determinant evaluation represents a significant
part of the SC-IVR calculation. To proceed with the present
development, we note that the prefactor in eq 3 can be written
as

where the new matrixQ is defined by

Furthermore, it is not hard to show from eq 6 thatQt satisfies
the following linear second-order differential equation

which we observe is equivalent in form to the coupled-channel
Schrödinger equation (witht being the “scattering coordinate”
andF the number of channels). Much experience in molecular
scattering applications over the last three decades has shown
that one of the most effective ways of integrating such equations
is the log-derivative algorithm (and its close relative, the
renormalized Numerov algorithm). The log-derivative matrix
Rt is defined by

and it is straightforward to show that eq 9 implies the following
equation forRt,

with the initial condition

Using the definition of the log-derivative, eq 10, eq 7 for the
prefactor can be factored as

but it is still necessary to express det(Qt) in terms of the log-
derivative. This turns out to be quite fascile by noting that

whereT is the time-ordering operator. It then follows (see also
ref 19) that

so that the final (exact) expression for the prefactor in terms of
the log-derivative is

Equation 15, together with eq 11 for the log-derivative, is the
primary formal result of the present development.

It is important to note that it has been demonstrated that the
determinant of a matrix of the form ofQ is never zero,5a so
that a proper numerical behavior is expected for theR-matrix.
Now we turn our attention to the branch cut problem. A branch
cut discontinuity appears in eq 7 whenever its imaginary part
goes to zero while the real part is negative. In one dimension,
one readily shows that, from eq 7, this case implies

The branch cut condition for the prefactor, in terms of the log-
derivative R-matrix, can be obtained from eq 15 taking the real
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and imaginary part of the square root kernel. In one dimension,
the branch cut condition becomes

Condition 17a never holds in the one-dimensional case because
the real part is always positive, and therefore, no branch cut
occurs. In the multidimensional case, the real part can have a
negative value. However, as it will be shown below, none of
the tests performed here led to a simultaneous occurrence of a
negative real part and null imaginary part. Thus, for practical
purposes, the branch cut problem appears to be avoided.

The form of eq 15 also suggests an approximate treatment
that eliminates the square root entirely. It can be easily shown
that if we assume that the force constant matrixκt is slowly
varying, i.e.,

then eq 15 reduces to

whereR̃t is a complex matrix that obeys the same differential
equation as theRt matrix, but with the initial condition

It is obvious that this approximation eliminates the need of
calculating any determinant. An even simpler (but less accurate)
approximation is Johnson’s “multichannel WKB” approxima-
tion: here one setsR4 t ) 0 in eq 11a, so that

thus giving the prefactor as

where{ωj(t)2} are the eigenvalues of the force constant matrix
κt; i.e., in this approximation the prefactor is the phase arising
from the local zero-point energy along the trajectory. The
accuracy of eqs 19 and 20 will be examined in the next section.

Finally, it is interesting to note that the equations which define
the log derivative matrixRt, eq 10, and give its time evolution,
eq 11a, are essentially the same as those for the matrixA in
Heller’s “thawed” Gaussian wave packet approximation (TGA)20

(A is the coefficient matrix of the quadratic part of the Gaussian,
which characterizes its spreading in coordinate space); cf. eqs
2.5 and 2.4a of ref 20. The matrixesR and A are therefore
(apart from constants) the same quantity, but they appear in
the TGA and the coherent state IVR expressions for the
propagator quite differently. Though it is now well-recognized
that the HK-IVR is much more accurate than the earlier TGA,
it is interesting to see that the same quantity appears in both.

2.1. The Log-Derivative Prefactor within the FB-IVR.
So far, the above derivation for this new way of computing the
Herman-Kluk prefactor is general. Thus, it can be applied, in
principle, to whichever formulation the prefactor is present in.
One specific variant, which is being extensively used in our
group, is the forward-backward version of the SC-IVR-HK
theory.1,9i-k The FB methodology avoids the double phase space
average required in the HK-IVR by using trajectories that go
forward and backward in time, and may have an instantaneous
momentum and position “jump” at an intermediate point. Full
details of this formulation have been given elsewhere.1,9i,k

The relevance to the present case is that one needs to know
how to integrate the log-derivativeR-matrix across the “jump”
section of the trajectory, since it is governed by a different kind
of dynamics. Thus, our purpose here is to derive the new
equations satisfied by theR-matrix along the jump. We start
by noting that the FB-IVR can be viewed as a SC-IVR for a
combination of three time propagators:

where Ĥ is the standard Hamiltonian for the system under
consideration andH̃ is the jump Hamiltonian. Its original time
independence is equivalently transformed to an evolution along
a time variable, here denoted byτ, and then settingτ(initial) )
0 andτ(final) ) 1. Thus, the instantaneous jump can be inter-
preted, without loss of generality, as an evolution in time from
τ ) 0 f 1. Most of the cases considered so far correspond to

i.e., a function of coordinates only. In this case, the equations
of motion for the coordinates and momenta are

and one has the trivial solution

wherept andqt are the position and momenta at the end of the
forward trajectory, acting as the initial conditions for the jump
trajectory. According to eq 26, the expressions for the mono-
dromy matrix elements for this time increment can be written
as

which, according to the chain rule, leads to the following relation
between the “in” (i.e., before the jump) and “out” (after the
jump) monodromy matrix elements
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Ĥ(-t)} exp{- i

p
H̃τ} exp{- i

p
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Equation 28 can be used to derive the corresponding in-out
relationship for theQ andQ4 matrixes. We first have

and, after a small amount of algebra,

Then, from the definition of the log-derivativeR-matrix, the
above equations yield

so that

which is the desired result. This expression directly connects
the R-matrix right before the jump segment of the trajectory
with the one right after, i.e., the initialR-matrix for the backward
part of the trajectory.

From the computational point of view, the above derivation
ultimately means that, within the FB method, one proceeds
integrating theR-matrix first using eq 11a for the forward
trajectory, then switching to eq 32 during the jump segment,
and then using eq 11a again for the backward part of the
trajectory.

3. Application, Results, and Discussion

The procedure set forth in the above section is rigorous, i.e.,
it yields exactly the same results as the conventional method
for computing the prefactor through either the SC-IVR-HK
method or its FB approximation. As stated above, the main
advantage is that the log-derivative formulation of the HK
prefactor practically avoids the branch cut problem in the
computation of the square root in eq 15. Therefore, it is no
longer necessary to keep track of the Maslov index of the
prefactor. This means that computationally there is no need to
monitor the prefactor value along the integration of the trajectory
to ensure a timely update of the Maslov index. As a conse-
quence, the determinant appearing in eq 15 should be calculated
only at the end of the trajectory. Besides, the log-derivative
version of the prefactor requires the integration of equations
11, that is, 2F2 ordinary differential equations (ODEs) instead
of 4F2 ODEs in the conventional formulation.

In this section, the reliability and general performance of the
log-derivative formulation of the prefactor is thoroughly tested.
First, we show results for a series of one- and two-dimensional
cases in order to check the accuracy and performance of this

approach. The accuracy of the approximate version of it, outlined
in section 2, will also be tested. Finally, we will present a
complete forward-backward semiclassical calculation on a two-
dimensional system.

3.1. One-Dimensional Tests.In this section the performance
of the log-derivative formulation of the prefactor will be tested
on the well-known harmonic oscillator (HO), Morse oscillator
(MO), and double-well (DW) problems. Their Hamiltonians are,
in mass-weighted coordinates,

where we have takenk to be unity,R ) 0.67 au-1, ω andV0 to
be 45000 and 8000 cm-1, respectively, andD equal to 4 au.
Figures 1-3 show the real part of the Herman-Kluk prefactor
for a single trajectory as a function of time, for each one of the
systems, respectively. Initial conditions for the specific trajec-
tories areq0(HO) ) 0.95 au,q0(MO) ) -0.35 au, andq0(DW)
) -3.0 au. In all cases, the initial momentum was set to zero.
The initial conditions for the Morse oscillator correspond to a
system with energy below the asymptotic limit, whereas the
initial conditions for the double well case correspond to a total
energy lying above the internal barrier. The prefactor has been
computed in three different ways. First, by conventional means,
eq 2; second, by exact log-derivative transform, eq 15; and
finally, through the approximate log-derivative transformation,
eq 19. For the sake of comparison, no tracking of the Maslov
index has been done in any case, so as to easily identify the
branch cut occurrence and to explicitly show how it is avoided
by the log-derivative formulation.

All figures show clearly that the exact log-derivative formula-
tion avoids the branch cuts that affect the conventional formula-
tion, for these one-dimensional cases, as expected from the
analysis of the previous section.

Figures 1-3 show also the results corresponding to the
approximate log-derivative version. For the harmonic oscillator
the approximation is, in fact, exact. The two remaining cases,
namely, the Morse and the double-well, consider potentials for
which the associated particle dynamics becomes more involved.

Figure 1. Time dependence of the HK prefactor, for the harmonic
potential, from a single trajectory. See text for trajectory’s initial
conditions. Conv. stands for the conventional formulation, eq 2; log-
der for the logarithmic-derivative version, eq 15; and aprox. for the
approximate log-derivative version, eq 19.
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In particular, it is clearly seen how the prefactor dependence
with time shows a more structured behavior and an increasing
overall trend. This latter feature is associated to the fact that
the trajectory samples regions of configuration space described
by potentials having a component of convex curvature. Even
with these difficulties, it is seen that the approximate version
performs acceptably.

A deeper analysis of the approximate log-derivative version
accuracy can be performed from inspection of Figure 4, where
the real and imaginary parts of the square root kernel of eq 15
are displayed. The results correspond to a double-well trajectory.
It is clearly seen that the approximation to the log-derivative
prefactor gives acceptable results, because the log-derivative
matrix, in this case, just a scalar, is almost constant except at
the points where the trajectory undergoes a classical turning
point.

3.2. Two-Dimensional Tests.Next, we proceed to systems
of higher dimensionality. The first problem corresponds to a
double-well potential in they direction plus a harmonic oscillator

in the x direction:

whereE0 ) 8000 cm-1, υ ) 42000 cm-1, andk ) 0.025 au.
The second problem is a two-dimensional model for the double-
slit experiment, whereby the double-slit is described as a double-
well potential in they-direction and a Gaussian in thex-direction:

whereV0 ) 8000 cm-1, ω ) 600 cm-1, andR ) 50 au. Figures
5 and 6 show the real parts of the prefactor for a single
trajectory, obtained through the three procedures outlined above.
It is again seen that the exact log-derivative formulation avoids
the branch cuts while being perfectly accurate, as expected.

The conditions for the branch cut occurrence have been
investigated in more detail, for the double slit case, as it is shown
in Figure 7. Plotting the real and imaginary parts of the square-
root kernel, as a function of time, shows that the real part
becomes negative in the instances where a caustic takes place,
as it displays a resonant-like behavior. At these points it is also
found that the imaginary part crosses the time axis, thus
becoming zero, while describing also a resonant-like pattern.
This may indicate a branch cut case. However, a closer
inspection reveals that when the imaginary part is zero, the real
part is always positive. This has ever been the case for up to
20 000 different trajectories individually checked. This example

Figure 2. The same as in Figure 1, for a Morse potential.

Figure 3. The same as in Figure 1, for a double-well potential.

Figure 4. Time dependence of the real and imaginary parts of the
kernel of the prefactor’s square root, for the double-well potential case.

Figure 5. The same as in Figure 1, for the two-dimensional double-
well potential case.

Figure 6. The same as in Figure 1, for the double-slit diffraction
experiment model potential case.
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provides, while lacking a rigorous derivation of the branch cut
avoidance for multidimensional cases, a confident test on its
practical verification.

For the approximate log-derivative version it is found that,
contrary to the one-dimensional cases, it is only capable of
reproducing the qualitative behavior, being very poor at the
quantitative level. Hence, it must be concluded that this
approximation can only work for one-dimensional cases.

3.3. Computational Performance of the Log-Derivative in
the FB-IVR. The above analysis leads to the conclusion that
the integration of the log-derivative equation for the prefactor
avoids the branch cut problem, making the calculation of the
Maslov index unnecessary. It is still necessary, however, to
perform a comprehensive test in order to check the actual
performance of the new algorithm.

To that end, this section presents a full FB-SC-IVR
calculation of the model system of the double slit, which has
been carried out by means of the log-derivative transform of
the prefactor. This calculation is relevant since it explicitly tests
the continuity of the prefactor along the momentum jump, eq
32.

The quantity to be calculated, in the double-slit numeric
problem, is the angular probability distribution after the particle
has gone through the slit, denoted byP(ϑ). It is given by the
following expression:

where the initial stateψi is a coherent state (minimum
uncertainty) wave packet. The Dirac delta function in eq 35
can be represented by its Fourier series expansion:

so that now the angular probability distribution expression is
ready for the FB approximation. Within the HK-IVR it yields

The FB trajectory implicit in eq 37 begins, as usual, with
initial conditions (p0q0) at t ) 0 and evolves to timet, yielding
the position and momenta (ptqt). Then the trajectory undergoes
the following momentum jump

where, according to the general expressions 24-26, the jump
Hamiltonian is taken to be

Finally, the trajectory is integrated backward in time, starting
at (p′t q′t) and ending att ) 0 with position and momenta
(p′0 q′0). The overall FB action in eq 37 takes the explicit form:

The final quantity which has to be calculated explicitly is
the log-derivativeR-matrix time dependence along the momen-
tum jump segment of the trajectory. It is given, according to eq
32, by

so that the particularization of the SC-IVR-HK treatment,
within the FB approximation and the log-derivative formulation
of the prefactor, is completed.

All trajectories were integrated up to 7500 au forward in time
using a variable-step Adams method,17 and the momentum jump
considered values ofl up to 50, this being the range of
nonnegligible contribution to the Fourier series sum in eq 37.
These results were also obtained through use of the conventional
formulation of the prefactor, so that the validity of the FB-
IVR expressions and the general avoidance of the branch cut
problem has been checked. A set of 50 000 trajectories showed
a perfect agreement between both methods, as well as the fact
that no branch cut discontinuities during the momentum jump
section of the trajectory were observed.

This application provides a good test of the computational
performance of the log-derivative algorithm. A detailed analysis
of the operations involved, in both the log-derivative and the
conventional algorithms, leads to the following considerations.
The log-derivative approach requires, as stated, the integration
of 2F2 differential equations, instead of 4F2 for the conventional
method. A complexF × F matrix product is required in eq
11a, corresponding to twoF × F matrix products in eq 6.
Furthermore, the determinant calculation, which in the conven-
tional formulation must be performed at time steps small enough
to ensure the proper tracking of the Maslov index, is avoided.
Finally, the log-derivative function should be simpler to integrate
than the conventional monodromy matrix or theQ-matrix itself.
However, this is only true if a specifically taylored algorithm
(e.g. the invariant embedding method18) is used; when standard
integrators are used, some difficulties in crossing the resonant-
like behavior at caustics may be encountered. Nevertheless, out
of this region the log-derivative should behave better and thus
be more easily integrated.

The overall results for the present application, concerning
the computational performance, show that the CPU time ratios
between the two formulations, range between 1.2 and 2.0 in
favor of the log-derivative approach, for low (the standard two-
dimensional double-slit problem) and high dimensionality (five
harmonic modes coupled to the double slit) tests, respectively.
These results were obtained using a standard integration

Figure 7. The same as in Figure 4, for the double-slit potential case.
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algorithm in both cases, implying that the integration routines
were called about twice as often for the conventional method
as for the log-derivative case. These CPU comparisons are not
particularly significant, however, for the log-derivative approach
can be significantly enhanced by using the invariant embedding
algorithm of Johnson and Manolopoulos. Very recently, in fact,
we have successfully implemented this algorithm for integrating
the log-derivative equation and have obtained very encouraging
results. A full account of this new implementation will be given
elsewhere.21

Finally, the interference pattern obtained in the present case
is shown in Figure 8. Even though it is not the main purpose of
the present work, it is worth mentioning that the FB approach
is able to reproduce, quite accurately, interference phenomena,
such as that coming from the double-slit diffraction problem.
A comprehensive analysis of this model problem will be
reported elsewhere soon.22

4. Conclusions.

In this paper we have presented a re-formulation of the
Herman-Kluk prefactor for the semiclassical time-propagator,
based on a log-derivative transform of a combination of
monodromy matrix elements. The necessary formulas for
applying this new formulation to the forward-backward
semiclassical IVR have been worked out. While being a rigorous
way of reformulating the prefactor, it avoids in a practical way
the branch cut problem that hampers the conventional formula-
tion of the prefactor and thus eliminating the need to monitorize
the Maslov index. Thus, it is a new formulation from which
further developments or approximations can be derived, so as
to tackle the unfavorable scaling of the Herman-Kluk prefactor
calculation with the number of degrees of freedom, provided
that they preserve the important feature of the branch cut
avoidance.

Both the branch cut avoidance and the computational
performance have been confirmed for one- and two-dimensional
model problems. An approximate version of the log-derivative
formulation has also been derived and checked. It has been
shown to work reasonably well only for one-dimensional cases.
The log-derivative formulation of the SC-IVR propagator has
also been applied to a two-dimensional double-slit diffraction
problem and shown to yield accurate results of quantum
interference.
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Figure 8. Scattering probability as a function of the double-slit
scattering angle.
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