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Broken symmetry is characteristic of arrays of quantum dots and can be observed in the failure of selection
rules of optical spectroscopy or in the dielectric properties. Here we discuss scanning tunneling spectroscopy,
where electrons are detached or attached. In the lowest order of description (sometimes known as Koopmans
theorem), the orbitals of a system are regarded as given and one adds or removes electrons from these orbitals.
If one has a half-full band of states whose energies have a reflection symmetry about the center, the density
of states should be symmetric about the energy of the highest occupied state. Features that are special to
arrays of nanodots and lead to the breaking of the expected symmetry are identified. Computations of the
density of states of an array of Ag nanodots that are in accord with the available experimental observations
are also provided. For a disordered array, the response of the STM probe can be qualitatively different at
different lattice points and we interpret this in terms of a change in the nature of the ground electronic state
of the array when it is more disordered.

1. Introduction

In scanning tunneling7,16 (STM) experiments2,3,8,15,18 one
removes or adds electrons to the sample, depending on the
direction of the applied voltage. In this sense, scanning tunneling
spectroscopy is analogous to photoelectron spectroscopy, (where
an electron is removed) or to attachment experiments (where it
is added). In a simple one electron orbital picture, electrons are
removed from or added to given orbitals of the system. The
orbitals of then - 1, n, andn + 1 electron systems are, in this
simple picture, the same. In particular, the lowest ionization
voltage is the energy of the highest occupied molecular orbital
(HOMO) while an added electron is placed in the lowest
unoccupied molecular orbital (LUMO). This picture is retained
even when the orbitals are computed such that an electron moves
in the mean field of the other electrons and the quantitative
statement is often known as Koopmans theorem.22 It is
recognized to be an approximation, but it is a very useful
approximation because it allows us to think in simple terms
about adding or removing an electron. In this paper we argue
that this approximation will break down for arrays of quantum
dots. We discuss what is special about quantum dots that makes
the breakdown serious and present computational results in
support of our physical considerations. We also suggest that
there is experimental evidence15,18that can be explained by our
considerations.

The implications of Koopmans theorem are particularly easy
to visualize for such systems (e.g., molecules with alternant
symmetry22,23) where the energies of the occupied and unoc-

cupied molecular orbitals have a mirror symmetry about their
midpoint. For every energy of removing an electron there is
the mirror image energy for adding an electron. The “density
of states” as measured by scanning tunneling spectroscopy will
therefore show mirror symmetry when plotted as a function of
the voltage difference between the sample and the tip. It is the
breakdown of this expected symmetry that is the subject of the
present analysis.

We specifically identify one particular characteristic of
quantum dots as primarily responsible for the breakdown in
symmetry. This is their so-called “charging energy”, which is
atypically low (0.338 eV for the Ag nanodots15,18 that we will
specifically try to simulate. It is low when it is compared to the
corresponding values for most atoms). The charging energy is
itself measured by scanning tunneling spectroscopy when the
lattice is so very expanded that the dots are not interacting. It
is the energy required to add another electron to an isolated
single dot. It takes energy because this extra electron is repelled
by the electrons already in the dot. The dimensions of a dot are
large compared to an atom and this means that the charging
energy is not high. But it is finite and measurable. In metals,
the finite charging energy is known as the “Coulomb blockade”
to conduction.14,19,31

The low charging energy also means that electrons on
adjacent dots are not strongly repelling. We include this
repulsion in the Hamiltonian that is used.

Another experimental observation15 that we would like to
explain is the scanning tunneling spectroscopy of expanded
lattices. Often, up to the inevitable noise, the spectrum is the
same for different positions of the lattice. It is, however, found
that when there is more variability in the size of the individual
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dots, the spectrum at different locations can be one of several
(two or more) distinct types.

The low charging energy cannot be the whole story because
the experiments15,18 clearly show that when the lattice is very
compressed, the STM measured density of states becomes
symmetric. Therefore, in section 2 we discuss three electronic
terms relevant to the description of an array of dots. It is the
interplay between these three energies which determines the
coupling regime. The problem is more complicated to describe
because one has to consider two dimensionless ratios. On the
other hand, it makes it richer because with two dimensionless
numbers one can have a whole plane of possibilities. In other
words, there is a gamut of electronic isomers that are possible28

and we will comment on this phase diagram.

2. Electronic Structure of Arrays of Quantum Dots

Arrays of quantum dots1,5,10,17have three features that allow
for the control and tuning of the electronic properties of the
array. One degree of control is the (relative) experimental ease
with which the array can be compressed.8,9,11 In this way, the
extent of overlap of the wave functions of adjacent dotssand
hence their electronic couplingscan be varied. Outside of the
dot the wave function falls exponentially with distance and so
even moderate variations in the spacings of the dots result in
large changes in the inter dot coupling.26 In this paper we will
vary the distance between the dots (the lattice spacing) so as to
examine different coupling regimes. We will use the coupling
as a function of distance as determined by us25 by fitting to the
measured9 second harmonic response of an array of Ag
nanodots.

The second feature is the charging energy of the dot. As
already mentioned, it is atypically low. Simple electrostatic
considerations suggest that the charging energy will decrease
with increasing size of the dot, as is further discussed below.
Therefore, the charging energy can be varied via the synthetic
procedure that is used to prepare the dots. Values as low as
0.05 eV have been measured for larger metallic dots. In the
computations below we shall use the value (0.338 eV) that was
measured for the Ag nanodots used in the experiment,18 which
are about 3 nm in size.

Considerable control of the electronic properties is also
available through another experimental condition. The synthetic
procedure that is used to prepare the dots can be used to govern
the spread in sizes of the dots. The distribution cannot be
extremely sharp but it can be narrow (about 10%) or broader.
Individual dots have discrete electronic states because of their
small size, to within which the electron is largely confined. The
HOMO is therefore similar to the orbital of a particle in a
spherical box of radiusR. If the potential outside is infinite,
the energy can be readily computed analytically and scales as
R-2. The radius of the dot determines therefore the energy of
the highest occupied orbital and also the charging energy.
Fluctuations in the size of the dots imply fluctuations in both
the energy of the highest occupied orbital of the dot and in the
charging energy. The fractional fluctuations are roughly the same
because both decrease with increasing size of the dot. The
absolute fluctuations in the orbital energies of the dots are far
larger because the typical orbital energy is a few eV's i.e., an
order of magnitude larger than the charging energy. An
important dimensionless variable is the ratio∆R/I of the
fluctuation in the orbital energy to the charging energy. For a
narrow size distribution∆R/I < 1. It is the opposite case,∆R/I
> 1, where individual dots in the array can exhibit distinct STM
responses. The physical reason is that, when∆R > I, it can be

energetically favorable for a (smaller) dot to transfer an electron
to an adjacent larger dot, leading to an ionic lattice. It can even
be the case that a particularly large dot will accept two electrons.
The differently charged dots differ in their charging energy and
so an STM probe leads to site-dependent response.

The coupling of adjacent dots depends both on the radius of
the dots and on their spacing. The size distribution of the dots
can therefore affect this coupling in two different ways: first,
directly through the size dependence and, second, indirectly,
because a wider size distribution can lead to packing imperfec-
tions of the lattice. These variations in the spacings are seen in
the STM scan of the lattice.15

The actual computation of the orbitals of the lattice has been
described in detail in several earlier papers.27,28 We use a
Pariser-Parr-Pople Hamiltonian,21,30which includes both the
Coulomb blocking (the so-called, Hubbard term) and also a
Coulomb repulsion between electrons on adjacent dots

The Hamiltonian is written in the notation of the unitary
group.12,20 Êii is the operator that determines the charge on the
site i while Êij moves an electron from sitej to site i. The first
two terms in (2.1) are therefore the Hu¨ckel (or tight binding)
Hamiltonian whereRi is the ionization potential (IP) of thei’th
dot, i ) 1, ..., n and the coupling,âij, is the transfer integral,
which is nonzero between near neighbors only.R, â, γ, andI
carry labels of the sites because the dots are not equivalent due
to the fluctuations in size. As an example, the charging energy
can be estimated asI ) e2/C(R), where C(R) is the size
dependent finite capacitance of an individual dot,C(R) )
4πε0εR, whereR is the radius of the dot,ε0 is the permittivity
of vacuum, andε is the dielectric constant of the material. It
follows that the fluctuation in the charging energy scale asδI
) I(δR/R). The transfer integralâ depends on the distanceD
between the dots, and we use the following functional form25

which decays exponentially as exp(-D/2RL) at large interdot
separation. Here there are two sources of variations

In the computation we drawRandD from a uniform distribution
of a specified width about its mean.

Just as the third term in the Hamiltonian (2.1) is the
electrostatic repulsion between two electrons on the same site,
the last term is the repulsion between two electrons on different
sites. The restrictioni * j is indicated by the prime on the
summation sign. The lack of similarity between the third and
fourth term is only apparent. It stems from Pauli principle
restrictions. Since we use one valence orbital per dot, only
valence electrons of opposite spins can occupy the same dot.
But there are no such restrictions on the repulsion of electrons
on adjacent dots. The magnitude of the electrostatic repulsion
is proportional toI but decreases with distance between the dots,
so it is less important when the array is highly expanded. On
the other hand, in a hexagonal array, each dot has six near
neighbors so this term is not negligible. Explicitly, in the
distance rangeD/2R >1, which is of interest here,γ ) I/ε(D/

H ) ∑
i)1

n

Ri Êii + ∑
i, j

near neighbors

n

âij Êij +

1

2
∑
i)1

n

Ii Êii(Êii - 1) +
1

2
∑
i,j

n

′γij Êii Êjj (2.1)

â ) (â0/2)(1 + tanh[(D0 - D)/4LR]) (2.2)

δâ ) â(D/2RL)[(δD/D) + (δR/R)] (2.3)
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2R). We use a unitary group basis12,20 to diagonalize the
Hamiltonian. In this basis the electrostatic repulsion terms are
diagonal. The computational effort is needed only to diagonalize
the dot-dot electron-transfer operatorsÊij.

It is the explicit inclusion of the electrostatic repulsion energy
in the Hamiltonian that will lead to the asymmetry in the density
of states. That is, the energetic cost of adding an electron is not
the mirror image of the cost of removing an electron. In other
words, the Hamiltonian (2.1) does not admit of an orbital picture.
The energy of any one electron depends specifically on where
the other electrons are and not only on their average field. The
computational cost of exactly diagonalizing a Hamiltonian,
which contains explicit correlation between different electrons
is high. We therefore limit the computations to the smallest
hexagonal lattice, which has seven sites. Details about the
diagonalization are provided in our earlier papers.27,28

The one different technical point in this paper is that, for
each lattice ofn sites and each interdot separation, we carry
out three computations, forn - 1, n, andn + 1 electrons. In
other words, we do not invoke Koopmans theorem.

When the lattice is considerably expanded, the Hamiltonian
(2.1) assumes a simpler form because the transfer of electrons
from one dot to another can be neglected

We refer to this Hamiltonian asHsite because it is diagonal in
a site basis set and its eigenvalues can be simply written

Hereni is the number of electrons on sitei and for a lattice to
which no electron was added or withdrawn∑ini ) n. Otherwise,
the sum is larger or smaller by unity, depending on the sign of
the voltage on the STM tip. Different eigenstates differ in the
distribution of charge (and spin) on the different sites. We
reiterate that (2.5) and also (2.6) below are not orbital energies
but energies of the many electron eigenstates.

A limit that readily provides insight is the very highly
expanded lattice. Then the electrostatic repulsion between
electrons on different dots can be neglected. The state energies
are simply the sum of the energies of the different sites

In the second line we wrote the site energy in terms of the mean
valueRj and the particular fluctuation at a given site. In other
words,δRi is a random number in the range(δR.

Figure 1 shows the energies of the possible (singlet) states
of a seven dot hexagonal lattice at very low disorder,δR ) I/4,
with six, seven, and eight electrons, respectively. It is empha-
sized that eq 2.6 and Figure 1 show total (electronic) state
energies (and not orbital energies) and that the number of
electronic states depends on the number of electrons. We use
the convention (sometimes called a highly asymmetric junction)

that the six electron states will be accessed at a negative voltage
while the eight electron states are seen at positive voltages. The
energy scale in Figure 1 corresponds to a negative voltage for
the left column of states and to positive voltage for the right
column. The lack of symmetry that we are talking about is that
at a given energy we do not have corresponding states.

This failure of Koopmans theorem is easily seen analytically
in the limit of a highly expanded lattice, eq 2.6. Consider adding
or withdrawing an electron,∑ini ) n + 1 or ∑ini ) n - 1,
respectively. The fluctuations in the site energies need to average
out, ∑iδRi ) 0, but because the sites need not be uniformly
occupied, this does not imply∑iniδRi ) 0. If there is no charging
energy term in (2.6), the change in energy of the state is(Rj,
wherej is the site whose occupancy has changed. Say first that
then electrons are evenly distributed over then sites. With the
last term in (2.6), adding an electron to the neutral array means
that one site must now be doubly occupied and its energy is
higher, by the charging energyI. Since we assume that each
site is singly occupied, removing an electron does not result in
a loss in charging energy. Computational examples, using
energies obtained by an exact diagonalization of the full
Hamiltonian, are shown in the figures below.

Equations 2.5 or 2.6 imply that the deviations from symmetry
(or, in general, deviations from Koopmans theorem) occur
primarily for the lower excited states i.e., for low (positive or
negative) tip voltages. The reason is that the higher excited states
of the uncharged dot are characterized by a nonuniform
distribution of charges. Therefore, whether adding or withdraw-
ing an electron one will have charging energy effects. It is only
the lowest excited states for which the charges are uniformly
distributed, one per site, that it makes a qualitative difference
if an extra electron is accommodated or if an existing electron
is withdrawn. These lower excited states are but a fraction of
the total number of singlet states (35 states out of 490 for six
electrons on seven sites, these are the lowest band in the left
column of Figure 1) and so the symmetry breaking in never
extreme.

Figure 1. Energies of the possible electronic states for a very expanded
hexagonal array of seven dots. Equation 2.6 forδR ) I/4 ) 0.075 eV.
The zero is chosen such thatRj ) 0. It is emphasized that these are
state energies and not orbital energies. The three columns differ in the
number of valence electrons, as indicated. There are 490 states for the
six and the eight electron cases. For the six electrons, the lowest band,
35 states, is covalent. Each electron is localized on a different dot.
The band higher up, 210 states, has one dot with two electrons (and
two empty dots). Further up is an even more ionic band, with two dots
being negatively charged, etc. The separation between the bands is due
to the finite charging energyI and the spread in the energies is due to
the fluctuations in the size. When the fluctuations are wider, the bands
will begin to overlap, as shown in Figure 2. For the eight electrons,
already the lowest band, 35 states, is ionic since one dot has two
electrons. The band higher up is doubly ionic, etc.

H98
D/2R > 1
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n

Ri Êii +

1

2
∑
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n
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1

2
∑
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n
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Em ) ∑
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1
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∑
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∑
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Iini(ni - 1)
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ni + ∑
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δRini +
1

2
∑
i)1

n

Iini(ni - 1) (2.6)
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Figure 1 provides the essence of what we have to say. An
STM scan is just a scan of this figure with the technical
refinement that each state is weighted by the charge on the site
over which the tip is located. See eq 3.1 and also Figure 7,
below which is an STM spectrum showing a band structure.
Figure 1 is drawn for the simple limit of eq 2.6. Therefore, in
Figure 2 we show separately the role of two effects, effects
included in the full computation. The top panel is eq 2.5, i.e.,
including electrostatic repulsion of electrons on different dots.
The amount of disorder is the same as in Figure 1, namely low.
The bottom panel shows the role of increased disorder,δR ≈ I.
Either effect tends to make the energies more uniformly spread.
The full computation includes one more term, allowing for
electron transfer between adjacent dots.

We caution the reader not to draw the conclusion that we
are demolishing Koopmans theorem. We are talking small
energy differences, of the order of the charging energy. These
are measurable in an STM experiment and hence we need to
make corrections for them. But on the whole it is a correction
and not a change in perspective. The asymmetry in the density
of states that we report below, computed for a realistic
Hamiltonian is not much more than 20%. Moreover, it is a
correction made necessary by the atypically low value of the
charging energy as is special to the case of quantum dots. When
the charging energy is far higher, it is not necessary to exactly
diagonalize the Hamiltonian (2.1) because states that differ in
their energy by the order ofI will be only weakly interacting.
A second cautionary note concerns the representation of the
electronic states of the isolated dots. The computations we show
below are for interacting dots, when their coupling, as measured
by the magnitude of the transfer integralâ, is finite, cf. eq 2.2.
The approximation (2.6) is valid only whenâ , I. In this limit
the dots are isolated, and one knows2,3,24 that in an STM
experiment one can see not only the valence orbital of the dot
but also excited states. Hence a physically more correct
asymptotic limit is given using an “extended Hu¨ckel” repre-
sentation13 for the energies of the dots

Herek sums over all the possible (valence and excited) states
of a dot in the energy range of interest andnik is the occupancy
of the kth state on the doti. Also in this extended form, the
second term ensures an inherent asymmetry in the density of
states.

3. Scanning Tunneling Spectroscopy

Following the work of Bardeen,4,7,16 the “density of states”
as measured in an STM experiment at the sitei is the weighted
sum

wherecim is the charge on the sitei when the system is in the
eigenstatemof the Hamiltonian,cim ) 〈m|Êii|m〉. E is the energy
as determined by the voltage on the tip. In terms of the operator
Êii that determines the charge on the site, one can formally write
the local density of states as

The eigenenergies in (3.1) that we use are for then - 1 or
n + 1 electron states of then site array. (We compute forn )
7.) We normalize the LDOS by the number of electrons. The
presence of the electrostatic repulsion terms in the Hamiltonian
means that these are not in a mirror image relation to one
another. This can be seen analytically when the lattice is highly
expanded so that eq 2.6 applies. It is also shown in Figure 1.

In the actual computations we approximate the delta function
by including all the eigenstates whose energies are within a
narrow finite interval [E - ∆E/2, E + ∆E/2] with the weight
1/∆E. At a finite temperatureT we sum over all states with a
Gaussian weight centered aboutE with a width kT wherek is
Boltzmann’s constant

The experiment often takes an average over many sites of
the sample. We can mimic this by (i) repeating the computation
of the LDOS for a given site but for a different set of size
distribution of the dots, while ensuring that the sum of the
fluctuations in the site energies averages out,∑iδRi ) 0, and
(ii) averaging over all sites.

4. Results

Figure 3 is a typical result for the LDOS vs the scanning
voltage, for weakly interacting (D/2R) 1.4) dots with a narrow
size distribution at a low temperature. Shown is the LDOS
averaged over the six external sites of a hexagonal array of seven
dots, for a narrow (5%) size distribution. The direction of the
asymmetry in the LDOS is as in the experiments,15,18 namely,
a higher peak for electron detachment. This is as expected since
in the rangeD/2R > 1 one can use the approximate eq 2.5 to
argue that for six electrons over seven sites there will be many
states without Coulombic repulsion. These states will give rise
to a peak at a low energy, as seen in the experiment and in the
figure.

The energy scale used in Figure 3 is set for a photoelectron
spectrum. Explicitly, we plot the energy of the eigenstate,Em,

Figure 2. Energies of the possible electronic states for a very expanded
hexagonal array of seven dots. Same as Figure 1 but the top panel
includes electrostatic repulsion between electrons on different dots, see
eq 2.5. The bottom panel has higher disorder than in Figure 1. Now
the bands discussed in the legend of Figure 1, are overlapping. The
extent of disorder shown for the bottom panel is quite realistic.

Em ) ∑
k

extended valence states

∑
i)1

n

Riknik +
1

2
∑
i)1

n

Iini(ni - 1) (2.7)

LDOSi ≡ ∑
m

cimδ(Em - E) (3.1)

LDOSi ≡ Tr[Êiiδ(Ĥ - E)] (3.2)

LDOSi(T) ≡ ∑
m

cimG((Em - E)/kT) (3.3)
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minus the ground-state energy of the original seven electron
state and set the zero as in Figure 1, i.e.,Rj ) 0. The energies
are computed, for eachD/2R and a given number of electrons,
by a full diagonalization of the Hamiltonian, eq 2.1. The interdot
coupling, eq 2.2, is the same as that used in our earlier
studies25,29of arrays of small Ag nanodots. The fluctuations in
size for a given array are kept the same for any number of
electrons and for any value ofD/2R. The computations shown
below as Figures 3-7 are an average over 100 samplings of
the LDOS. This is to mimic the averaging over many sites in
the experimental spectra.

To emphasize the role of the electrostatic repulsion between
electrons on adjacent dots, Figure 4 is a computation with the
same parameters as Figure 3 but without averaging over the
sites. One spectrum shown in Figure 4 is for the central site.
This site is not included in the averaging carried out in Figure
3. The spectrum for the central site is not quite similar to Figure
3. This is because the central site has six near neighbors, unlike
the external sites which have only three. The spectrum for the
central site is thus closer to experimental reality for a hexagonal
lattice than Figure 3. One can then ask why do we not compute
for a larger hexagonal array, e.g., one of 19 dots where there
are two layers of dots surrounding the central one. The answer

is that, for us, this is computationally intractable. For 19 sites,
the Hamiltonian matrix is about 3 billion times 3 billion in size.

The limit of a smallD/2R is shown in Figure 5. As in the
experiment, once the lattice is compressed and the dots are
strongly interacting, the asymmetry disappears. For this close
packing the electron-transfer coupling between the dots (as
measured byâ) dominates the electrostatic terms and the
spectrum becomes metallic like.

Increasing the temperature, Figure 6, allows more states to
contribute at a given tip voltage and the asymmetry gradually
disappears as the temperature is increased. One can readily
estimate the temperature at which the asymmetry will begin to
even out. This is when many states contribute in an energy
interval of kT. Also the gap where there are no states fills up
due to thermally assisted transitions.

When the spectrum of excited states of the array is plotted,

Figure 3. Computed charge weighted local density of states, LDOS,
eq 3.3, at 20 K for a lattice of seven dots expanded beyond the metal
to insulator transition.29 See text for definition of the energy scale. The
results shown are the LDOS averaged over sites 2 to 7, which are the
outer sites of the hexagonal array of seven dots. See Figure 4 for site-
specific spectra.

Figure 4. Computed charge weighted local density of states, LDOS,
eq 3.3, at 20 K as in Figure 3 but for two particular sites. Site 1 is the
central site of the hexagonal array of seven dots. This site has strong
electrostatic repulsion with six other sites.

Figure 5. Computed charge weighted local density of states, LDOS,
eq 3.3, at 20 K for a lattice of seven dots compressed past the metal to
insulator transition.29 The recovery of the mirror image nature of the
STM spectrum upon compression is easy to understand. WhenD/2R
decreases, the coupling of the dots increases. ByD/2R ≈ 1.3 the
coupling in the Ag nanodots array is comparable to the charging energy
()Mott transition28). At closer packings one can begin to neglect the
role of the charging energy so that the spectrum of states becomes
Hückel-like. Then Koopmans theorem is valid.

Figure 6. Computed charge weighted local density of states, LDOS,
eq 3.3, at 20, 300, and 3000 K for a lattice of seven dots expanded
beyond the metal to insulator transition.29 The density of states of a
lattice of seven dots is low so, in comparison to experiment, one needs
to go to higher temperatures to see a symmetric LDOS. This is because
the computed mean spacing of states is higher than it really is so it
requires a higher temperature beforekT exceeds the mean spacingDh .
Therefore, the computations at 20 and 300 K are practically the same
whereas in the experiment they will differ. The correct parameter for
comparison iskT/Dh .
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Figure 1, it is seen that it has several bands. The less compressed
is the array, the less overlapping are the bands. A narrow size
distribution, such thatδR < I, also serves to keep these bands
apart, Figure 1. It is easiest to discuss these bands in the limit
D/2R . 1 where an analytical expression for the energy, (2.5)
or (2.6), is available. For six electrons on seven sites, the lowest
band of states is the one where there is no more than one electron
per site. (There are 35 such (singlet) states for six electrons on
seven sites.) These states are not degenerate because the dots
are weakly coupled but they are quite close in energy. The next
band of states is separated from the lowest band by the charging
energyI. This is the band where two sites are empty, one site
is doubly occupied and four sites are singly occupied. There
are 210 such (singlet) states. The coupling between the dots
broadens the ground and the first excited band. As the array is
compressed and the coupling becomes stronger, there comes a
point when the two bands merge. This is analogous to the Mott
nonmetal to metal transition. But when the lattice is expanded,
the two bands are not overlapping. Higher in energy is the band
where two sites are doubly occupied, and even further up, three
sites are doubly occupied. In principle, these bands could be
resolved by scanning tunneling spectroscopy. Several factors
act so as to merge the bands: (i) fluctuations in the site energies
(which can be large enough to change the whole picture, so we
discuss them further below), (ii) electrostatic repulsion between
electrons on different sites, and (iii) coupling between the dots.
Figure 7 shows that the band structure can be resolved in the
LDOS spectrum.

The role of a broad size distribution deserves a special
discussion because qualitatively new features occur. For ex-
ample, at largerD/2R it is evident from eq 2.6 that the ground
state can be ionic. In other words, if because of a fluctuation a
site has a low IP, it may be energetically favorable for its
electron to be ionized and placed on a site with a high IP. The
gain,δR, in energy can compensate for the additional charging
energy. The LDOS is a site-charge weighted density of states,
eq 3.1. An ionic ground state could be seen by scanning
tunneling spectroscopy as different spectra of different sites.
On the other hand, as the energy is scanned, all states and not
only the ground state contribute to the LDOS. As we mentioned
several times, many excited states are ionic and this is one
characteristic of arrays of nanodots. To observe an ionic ground
state one needs therefore to look at the low voltage spectrum.
Adding an electron will occur at a lower voltage for a site that

is empty than for one that is singly occupied than for one that
is doubly occupied.

That there is, in principle, an effect of a broad size distribution
is shown in Figure 8. Plotted in Figure 8 is the LDOS for
different sites of a disordered expanded array, without any
repeated samplings of the site energies, couplings, etc. The
spectrum is therefore bumpy and not continuous looking. The
reason for the differences in the spectra of different sites is, as
discussed above, due to different occupancies of different sites,
for the ground and the lower excited states. Consider, as an
example, a site, which because of its larger radius, has a high
IP. Such a site will be preferentially occupied not only in the
ground state but also in low-lying excited states. It is only for
states at far higher energies that such a site will be preferentially
empty. In Figure 8, site 2 is of this type. It is doubly occupied
and is quite resilient both to acquiring an extra electron or to
losing one of its electron. Site 7 is exactly the opposite.

5. Electronic Isomers

The computations clearly show that there can be nearly
isoenergetic electronic states with a qualitatively different
distribution of charges on the sites. It is customary to talk of
fluxional molecules with many geometric minima. Here it is
the electrons that are fluxional. At a given configuration of the
lattice, the electrons can assume different arrangements with
comparable energies. The one simple limit is a lattice that is
compressed enough that the dot-dot couplingâ can overcome
both the electrostatic and the size disorder effects,â > I or δR.
Then the lattice is metallic, meaning that the electrons can be
assigned to delocalized molecular orbitals. The electron-transfer
coupling is strong enough to overcome both the electrostatic
costs of moving the charge and any gap in the IP’s of adjacent
sites. There are two opposite limits,â < δR < I, for a narrower
size distribution and/or higher charging energy andâ < I <
δR for a broad size distribution and/or lower charging energy.
As can be seen from eq 2.5, in either case there is much scope

Figure 7. Computed charge weighted local density of states, LDOS,
eq 3.3, at 20 K for a lattice of seven dots, averaged over all sites.
Computed for a narrow size distribution,δR ) I/4 ) 0.075 eV, as
used also in Figure 1. The bands seen in Figure 1 are clearly resolved
in this computedSTM spectrum.

Figure 8. Computed charge-weighted local density of states, LDOS,
eq 3.3, at 20 K for a lattice of seven dots, same as Figure 3 but without
averaging over the sites and with a higher disorder, (δR/R ) 0.075 or
δR ) 0.75 eV).
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for electronic fluxionality but whenI < δR the scope is richer:
For a broad size distribution, very low energy ionic states are
possible. The intermediate regime,δR < â < I, is a typical
Mott insulator.19 The dot-dot coupling cannot overcome the
charging energy. But another limit,25,28 I < â < δR, is not as
familiar. Here the coupling can overcome the charging effects,
but the orbitals are not yet delocalized. One has small domains
over which the electrons can move, but overall, they are still
localized.

6. Concluding Remarks

Scanning tunneling experiments (STM) showing that the
density of states of an array of Ag nanodots at low temperatures
is asymmetric with respect to adding or removing an electron
were recently reported.15,18 There is no observed asymmetry
when the array is more closely packed and/or when the
temperature is raised. We have argued26 that broken symmetry
is characteristic of arrays of quantum dots and can be directly
observed in the failure of selection rules of optical spectroscopy.
STM is a different type of experiment, where electrons are
detached or attached. It is analogous to photoelectron spectros-
copy and most closely resembles the Ne(gative)-Ne(utral)-
Po(sitive) scheme of Wo¨ste and Berry.6,32 We presented
computations of the density of states of an array of Ag nanodots
that are in accord with all available experimental observations.

The asymmetry of the tunneling current vs voltage spectrum
reflects the asymmetry in the energies of the states of the system.
The physical basis of this is the low charging energy of the
dots, which is comparable in magnitude to the coupling between
adjacent dots. Under such circumstances the electrons are
strongly correlated. When the lattice is compressed, the coupling
between adjacent dots dominates and one can assign electrons
to molecular orbitals. The orbital energy determines the ioniza-
tion potential or the electron affinity (Koopmans theorem). If
the coupling also dominates the fluctuation in the energies of
the sites, the molecular orbitals are delocalized and the spectrum
is symmetric as for a metal.

At a finite temperature, when more states can contribute to
the (charge weighted, local) density of states at a given voltage,
the asymmetry is reduced and eventually disappears at a high
enough temperature.
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