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Controlling Chaos with Artificial Neural Network: Numerical Studies and Experiments
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Although there are a number of theoretically suggested chaos control methods using artificial neural networks
(ANN), experimental tests are still lacking. In this paper, we report on experimental chaos control during the
electrochemical dissolution of copper in phosphoric acid. The neural network implementation of simple
proportional and recursive feedback algorithms is presented.

Introduction These methods have not been tested on real chemical systems

] ] ) . so far. Our goal was to develop ANN algorithms as simple as
Chaotic systems are highly susceptible to control by using possible and test their effectiveness in experiments.

small perturbations to a system constraint. Feedback methods s paper is structured as follows. First, a brief introduction
have been applied to taming chaos in magnetoelastic and, griificial neural networks is presented. Then we devise a

hydrodynar_nic systems, electric cir_cu_its, lasers, chemical réac-gimple strategy for controlling chaos by taking advantage of a
tions, and tissues of heart and brain in vitrohe well-known well-known feature of artificial neural networks: they can

Ott—Grebogi-Yorke (OGY) algorithni and its variations are g the [inear or nonlinear rules embedded even in a noisy

based on the notion that for controlling chaos one needs to know a4 set. The proposed method s first tested for taming chemical
only the local dynamics in a small (linear) range around a fixed 405 in a simple three-variable model, the chaotic Autocata-
point (corresponding to the targeted unstable periodic orbit, |o1or12\We show that after learning the map-based representation

UPO), on somen-dimensional surface-of-section (Poincare  the chaotic dynamics at a given range of an accessible control
section) of the phase space trajectories. The OGY method hasparameter, the trained network can be readily applied to

been further developed by Petrov efaind Rhode et #l.They controlling chaos based on the simple proportional feedback
studied the dynamics of the system around the fixed point under(SPF) algorithm by Peng et & The network is then modified
the effect of random perturbations, then the goal dynamics hasgg, 55 'tg implement the so-called recursive proportional feedback
been targeted by using a control rule with empirically determined (RPF) method for controlling chad$.The improved ANN
constants in a control formula. algorithm is applied to a model for the respiratory behavior of

In experimental settings, however, application of these j diffusively coupled two-cell systed?:16 Finally, we test the
methods is often troublesome because of noise and shift in thesuggested method on an experimenta| system, the chaotic
system constrainfslt seemed inevitable to develop a better electrodissolution of copper in concentrated phosphoric acid
technique so as to make chaos control a routine (automated)electrolytel’2
procedure.

Artificial neural networks are widely used in chemometrics, Artificial Neural Networks
especially when the evaluation of experimental data requires
complex, nonlinear fitting. A comprehensive review on the topic
has been published by Sumpter ef #l.has been shown first
by Alsing et al’ that chaos control can be implemented by using
a nonlinear fitting procedure with an ANN. In their numerical
work, however, they just simply fitted the data to the OGY
formula by an ANN and applied the trained network to control
chaos. A strategy developed later by Lebender éttakes
advantage of the nonlinearity built in an ANN, and it also works
outside the linear region of the fixed point. However, training
of the ANN required an additional numerical fitting procedure.
Konishi et al® have also developed an on-line chaos controller
that, however, works only for fixed point with eigenvalues =0+ Z WO (1)
in a given range or it requires a complicated procedure to '
construct an error function for the ANN.The method of
Bakker et alt! fits a global model to discrete time series data
and controls chaos using the trained network. This method has
been experimentally applied to control the chaotic motion of a
pendulum.

From a practical point of view, an artificial neural network
is simply a computer program that transforms ratvariable
input into ann-variable output. The units of the network are
the so-called neurons that are connected, for example, to a feed-
forward network, in which the information is processed through
several layers such as input layer, hidden layer(s), and output
layer?2 A neuron collects inputs from all of the units of the
upper layer and transforms its net input into an output. The total
inputl; to unitj is the weighted sum of the output of all neurons
(i=1, 2, ..,n) connected to it:

where o is the output of theith unit, w; is a weight
characterizing the “strength” of connection between yrgisd

i, andg; is a threshold value. The total inpljtis transformed
into an outputo; by a transfer function:

— -1
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The network is trained by iteratively correcting the weights
Wji So as to produce the previously specified output values (the
target sets) for as many input sets as possible. The error of a
network for a given training set is calculated by the following

i sod.."
equation:

1 t
E= 5 Z(iju - tj)z (3) 60 -

J

where ojOUt and t; are, respectively, the actual and desired B,

(target) output values of neurons in the output layer. During
the training session the weights are updated according to a
“learning rule”. In our calculations we apply the Langevin-type
error back propagation using dynamic learning parameters:
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whereAwﬂ is the change in they; value at thenth iteration,,

is the learning rate, 6 o. <1 is a constant called momentum, _ _ )
Figure 1. Chaos in the three-variable Autocatalatopat 0.154 is

Bn is a training parameter, ang(1) is a Gaussian-noise with trolled by Usi 26—6-1 foed f q | network. Gontrol
zero expected value and unit standard deviation. The derivativesSo o €@ by using a eed Jorward neural NEwork. &-ontro

. ; Br = 40. is switch =2 ff an = 750.
dE/awj; are calculated by the back-propagation algorithm. After (Br = 40.568) s switched on at =250 and turned off ab = 750
each input set has been passed through the network (after one
epoch)y, andf, are updated according to eq 5

n

Simple Proportional Feedback by ANN Algorithim Figure
1, a previously trained feed-forward ANN is applied to
controlling chaos in the three-variable Autocataltttnat is a

. 0'9997”1_0 999 T Eqyy = B prototype model for chaotic behavior observed in isothermal
Mn+1 = M (1 + 1—03 otherwise chemical systems. Rate equations of the model are
Pria = 0.99%, (5) B et -a-atf
The initial values off3, and », were set to 2.0 and 0.1,
respectively, whilex = 0.5. After the weights are adjusted, the db _ ata—b
error is recalculated by doing a forward pass through the network Odt -
again. This procedure is repeated until the error of the network
is less than an acceptable value or the number of epochs exceeds dc
a preset limit. Details of the learning algorithm can be found in 5& =b-c (6)

the manual of JETNET program packagend references cited

therein. wherea, b, andc are dimensionless variablasis dimensionless

time, andu = 0.154,«k = 65,0 =5 x 1073, andd = 2 x 1072

Controlling Chaos with ANN are parameter®, is the value of the monitored variableat

Numerical Studies. The steps of the envisioned simplest
strategy for controlling low-dimensional chaotic systems with
an artificial neural network are as follows: (1) Collect a small

the nth return to a Poincarsection ¢ = 15, cc/dt > 0).
The differential equations were solved at 32 different values
of control parametes ranging from 0.1535 to 0.1550%\¢ =

set of next-return valueX,(p) and X,+1(p) of a monitored 5 x 1079. At a giveny, the values ofB, and Bn+1 were
variable to a previously defined Poin¢aection of the phase monitored after a transient periad= 10. A particular pair of
space trajectories at different values of an accessible parametedata has been recorded if the valu@pfvas within a predefined

p. (2) By using the collected values of next iterates at each value range (36< B, < 43). The full set of input data was compiled

of p (the input set), train an ANN to compute the corresponding by using the first 26 pairs of sudB, values at eacl, while
values of control parametgr (the output set). (3) To control  the targeted set of outputs contained the correspondirzjues.
chaos, apply the trained network to calculpte; for the next The appropriate size of the network has been determined by
period (the output value) by using(p,) and Xg(po) as input using the standard procedures of neural computing. In this case
values, wherep, and py are values of the control parameter, we have found the best performance by using-&26—1 feed
respectively, during the cycle and before control is turned on. forward network.

If the Poincafesection of the attractor moves in the phase  Control is achieved (Figure 1) by changing the valueuof
space when the control parameferis changed, the OGY  such that the fixed poinBr = 40.568 (corresponding to the
algorithm must be modified. Dressler and Nitstshowed that unstable periodic orbit) is targeted on each return. The value of
the correctiondp, depends not only on the deviation of the u for the next period is calculated by the trained network such
system from the fixed point but also on the correctiigm-1 that the inputs ar®, and B, while the output is the sought
during the previous cycle. The result is a recursive proportional value of iny 1.
feedback (RPF) algorithm. As shown later, the simple strategy = Recursie Proportional Feedback by ANN Algorithrithe
above can be easily modified for the implementation of the RPF chaotic respiratory behavior of a two-c#llebsiella aerogenes
method. bacterial culture can be described with a model suggested by
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23 computer controlled potentiostat (Electroflex EF451). The
potential between a rotating copper disk electrode of 5 mm
diameter (anode) and a saturated calomel electrode (SCE) was
measured and set with a resolution of 0.2 and 0.01 mV,
respectively, for simple potentiostatic and chaos control experi-
ments. The output current signal between the rotating disk
electrode (RDE) and a platinum sheet counter electrode of 5
cn¥ area (cathode) was fed into a 12-bit A/D converter built
into the potentiostat. Sampling frequencies of 100 and 200 Hz
were applied, respectively, for data acquisition and control
experiments. A period-doubling route to chaos can be observed
at about 1750 rpm if 13022 external serial resistance is
connected to the system such that the total ohmic resistance of
the cell is between 200 and 2@ Chaotic current oscillations
can be observed under potentiostatic conditions-&7.5 °C

near 1750 rpm and 510 mV.

We have shown in our earlier watkthat the dynamics of
the system on the Poincasection can be represented by a one-
dimensional next-return mdpln our case, a reconstructed phase

n space can be obtained using the time-delay method with an
Figure 2. Chaos in the model for the respiratory behavior of a two-  embedding dimension of two and 0.5 s delay. The next return

cell system af; = 8.95 is controlled by using a38—8—1 feed forward maplni1 Vs I, has been ; ;
> o ) - n+1 VS In generated by using successive current
network. Control g = 1.9921) is switched on &= 1000 and turned values on the Poincasection defined ak = I(t — 0.5 s) and

T T T T T T T
1] 1000 2000 3000 4000

off atn = 3000. di(t)/dt > 0), wherel(t) is the measured current at timeThe
Degn and Harrisof®16 iterates on the next-return map are giverl hy = f(I,,V), where
In and In+1 are next-return values of the monitored variable
du, U, vy (current) at a given value of an accessible paramé(eoltage).
ot o up — Tuz + Dyo(u, = uy) At V = V, the mapf generates chaotic dynamics around the
171 fixed pointIF(Vo) = f(||:(Vo),V0)
dv, Uy For this experimental system, the simplest ANN algorithm
ot & - rquz +D,c(v, = vy) for controlling chaos was applied as follows. (i) We chaige
11 randomly around/y at every step/, = Vo + AV(—1 + 2 ran-
du, U0, (1)), where ran(1) denotes a random number between 0 and 1
G- P~ D~ uy) andAV is the maximum allowed perturbation (0.15 mV). During
1+0u; this step we collected the data tripldtls, In+1, OVi} if the I
do, U0, and ly+1 values were near the fixed poinig(Vo). The ap-
i 5~ D(v, — vy) @) proximate value ofg (0.900+ 0.001 mA) was determined from
1+ qu; the one-dimensional map using a linear least-squares fit around
the fixed point. We collected the data triplgts, 1n+1, OV} if
whereuy, v1, Up, andw, are variablest is time, anda, = 8.9,b; n — gl < eor |lnt1 — le| < e and|lnss — In] < 2¢ were

=b=11, 01 S %= 0.5¢c=4x 10>, D, = 1 x 107 and found to be valid withe set to 0.015 mA. (ii) When enough
D, =1 x 10°° are parameters. The control parameteais  data triplets (31 in this case) was collected, we constructed a
while Uy, is the value of the monitored variabige at thenth 2—6—1 ANN with two inputs (n, In+1) and one outputd\Vy).

return to a Poincarsection ¢, = 13.45, (d,/dt > 0). _ The network was trained (3500 epoch) to calculate the parameter
The differential equations were solved by ra?domly varying ajye at which the phase point in the map is moved ftgito
the value of control parameteay, = 8.9+ 2 x 10 *random(30) | . i) To control chaos, we applied the trained network to

where random(50) denotes a random integer between 0 and 50
The values olU,-1, U,, andai,—1 were monitored. The data
were recorded if the value &f, was within a predefined range
|Un — Ug| < 0.01 around the targeted fixed poitt= 1.9921).

The full set of input data was compiled by using 500 recorded
values, while the targeted set of outputs contained the corre-
spondinga; , values. The best performance has been found by
using a 3-8—8—1 feed forward network.

calculatedV, for the next period by usingn(Vh-1) andlg(Vo)
as inputs. The potential perturbation calculated by the network
was applied wheirl, — Ig] < 2e.

We note that for simple technical reasons, namely, the design
of our computer-controlled potentiostat, we trained the network
to calculatedV, values rather thaW, = Vo + &V, values. In
Figure 3, time series current data (left axis) and the applied

Control is achieved (Figure 2) by changing the valueof poteqtial perturbations (right axis) are plotted. The contrpl
such that the fixed poirr = 1.9921 is targeted on each return. algorithm was turned on at 56.2 s. However, the first potential

The value ofay 1 for the next period is calculated by the trained Perturbation was applied only at 67.2 s whén— Ig| < 2e.
network such that the inputs até,, Ug, anday,,, while the The period-one orbit was stabilized until the control was turned

output is the sought value @f 1 for the next cycle. off at 115.9 s, then the behavior became chaotic again.
Experiments. Details of the experimental setup and proce-  The average potential perturbation is greater than zero (0.09

dures have been published in an earlier publicatlghstandard mV) which shows that at the applied, the controlled fixed

three-electrode electrochemical cell was used. The cell containedpoint (Irann) is slightly different from the desired valdge. This

70 cn? orthophosphoric acid (85%, Merck or Spektrum-3D) deviation can be explained by some systematic error during the

thermostated at-17.5 + 0.1 °C and was connected to a training session of the ANN. By changing the desired fixed point



8036 J. Phys. Chem. A, Vol. 104, No. 34, 2000 Kiss and Gapa

1.6} On Off 0.15
149 0.10 1
. MWI MM 1! _
~ h‘\\\ﬂ\‘u‘ M\ H \P i = 0
N M il M I M i W H “‘ \\ i “” e ]
il \\J\H\“‘ J“‘ il m MM \\ ‘\ &
w0y | ‘I\[ | \J -0.05 4
por 02 |
—ﬂrwfl_-_ 3 1
B 2I5 5Io 7I5 1c|30 1;5 1;0 100 3 -0.10 o
t(s) T T T T T T 1 T
. . . . 0.8980 0.8985 0.8980 0.8995 0.9000 0.9005 0.9010
Figure 3. The ANN implementation of SPF. Current (left axis) vs <l (MA)

time for an interval when control for stabilizing period-one has been

switched on at 56.2 s and switched off at 115.9 s. The chaotic behavior Figure 5. The average values of potential perturbatiadg,0vs the

was observed at 1721 rpm, 509 mV, anil7.5°C. |- was set to 0.9000 average values of the controlled fixed poifliisann] The averages were

mA. The ANN (2-6—1) was trained using 3{l,, Int1, 0Vy} data made from 30 points. The straight line is the least-squares linear fit to

triplets collected near the fixed point. Potential perturbations (right axis) the points. The intersection of this line witdV,O= 0 line gives the

were applied if{l, — Ig] < 0.030 mA. actual value of the fixed poirtg = 0.9002 mA. Experimental conditions
are given in Figure 3.
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Figure 4. The average of controlled fixed poirifi anivs the desired 0.8 1
fixed pointslz. The average of controlled fixed point ann The
average was calculated using 30 controlled fixed points. The curve is 0.7
a fitted sigmoidal function of [(0.89790.9012)/(1+ exp({x-0.8993)/ '

0.0041))+ 0.9012]. Experimental conditions are given in Figure 3. - T T T T T T
07 08 09 10 11 12 13 14

to stabilizelr we calculated the average of the controlled fixed /( 0.5 S) (mA)
points (Figure 4). The sigmoidal curve fitted on the points
resulted from the sigmoidal scaling functions of the network Figure 8. The ANN implementation of RPF. Stabilized period one

. . . rbit embedded in the chaotic attractor. The next-return map has been
and was also observed in our numerical studies. We expectedoeneratecl by using the successifte— 0.5 s) values on the Poincare

the network to control the desired fixed points in the range from gection (thick line). Superimposed on the map (inset) are the next-
0.89 to 0.91; however, the ANN was able to control chaos only return values (solid squares) while control is being implemented. The
in the range of 0.8980.901. Outside this region the ANN was  applied potential in the uncontrolled system is 515.5 mV, rotation rate
not able to control chaos but held the system near the fixed 1800 rpm,Jr = 0.9040 mA. The ANN (3-4—1) was trained using 32
points for some iterations. The small control region can be {lm Int1, OVn-1, OV} data sets collected near the fixed point.
interpreted by plotting the average potential perturbations during
control vs the controlled fixed points (Figure 5). The ANN {In, In+1, 8Va-1} and one outpudVy. To control chaos in step
controls chaos in almost half of the training reghs= 0.5AV (iii), the inputs to the ANN ar{ly, Ir(Vo), OVa}.
but obviously does not control outside this range. Our efforts ~ Stabilized period-one orbit embedded in the reconstructed
to increase the training region were unsuccessful because thechaotic attractor of the copper-phosphoric acid system is shown
ANN could not be trained with enough accuracy. in Figure 6. The next return map has been generated by using
The most exciting feature of our algorithm is its ability to successive current values on the Poihcseetion as earlier.
extend the chaos control algorithm to more dimensions and moreSuperimposed on the map are the next-return values (solid
complicated systems. We demonstrate this feature by imple- squares) while control is being implemented. The data collection
menting the recursive proportional feedback algorithm as well. took approximately 15 min, while the ANN training took about
This algorithm can be appliedlif+; depends oty,Vy,, andVp-1 5 min, so the whole procedure could be repeated easily. This
as well. The ANN implementation of RPF requires the following algorithm requires only the approximate location of the fixed
steps: Step (i) is the same as before but instead of collectingpoint and was successfully applied to control the chaotic
{In, In+1, OV} data triplets we now colledtl,, 1+1, V-1, OVp} electrodissolution of copper in concentrated phosphoric acid
datasets. In step (ii) we construct an ANN with three inputs electrolyte.
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Conclusions (3) Petrov, V.; Mihaliuk, E.; Scott, S. K.; Showalter, Rhys. Re. E
_ _ _ 1995 51, 3988.

The ANN implementation of SPF and RPF algorithms was (4) Rhode, M. A.; Rollins, R. W.; Dewald, H. BChaos1997, 7, 653.
successfully applied to control chaos in simple models and in  (5) Petrov, V.; Gapa, V.; Masere, J.; Showalter, Kature1993 361,
an electrochemical reaction as well. An ANN is trained by 240. _ _
exploring the dynamics of the system under random perturba- lgggezssj’ggterv B. G.; Getino, C.; Noid, D. WAnnu. Re. Phys. Chem.
tions (tralnlng session) and then is gpplled to controlling chaos (7) Alsing, P. M. Gavrielides, A.; Kovanis, \Phys. Re. E 1994 49,
(control session). Advantages of using an ANN are the follow- 1225
ing: (a) the inherent nonlinearity built into ANN can be (8) Lebender, D.; Mler, J.; Schneider, F. WJ. Phys. Chem1995
exploited to control nonlinear processes, (b) the procedure doesd9, 4992.
not require a large number of complex calculations, and (c) ~ (9) Konishi, K.; Kokame, HPhys. Lett. AL995 206 203.
because of its simplicity, the strategy can be easily applied to  (10) Konishi, K.; Kokame, HPhysica D1996 100 423.

e . . - . (11) Bakker, R.; Schouten, J. C.; Takens, F.; van den Bleck, ®hys.
similar problems in a wide arena of research fields ranging from "¢ 1996 54 3545.

physics to biology. (12) Peng, B.; Scott, S. K. Showalter, &.Phys. Cheml99Q 94, 5423.
The algorithms presented in this paper are based on one- (13) Peng, B.; Petrov, V.; Showalter, &. Phys. Cher991, 95, 4957.

dimensional next-return maps and low-dimensional chaotic  (14) Rollins, R. W.; Parmananda, P.; SherardPRys. Re. E 1993

attractors. ANN methods have been tested to control high- 47, R780.

dimensional chaos but only in numerical models. Application ~ (15) Degn, H.; Harrison, D. E. Rl. Theor. Biol.1969 22, 238.

to real systems as well as extending these algorithms to track (16) Lenayel, I, Epstein, I. RChaos1991, 1, 69.

. . . . . (17) Glarum, S. H.; Marshall, J. H. Electrochem. So4985 132 2872.
:Jnnfrt:bflstfreenodlc orbits requires extensive experimental work (18) Albahadily, F. N.: Schell, MJ. Chem. Phys1988 88, 4312.

(19) Vidal, R.; West, A. CJ. Electochem. S0d.995 142 2682.
(20) Kiss, I. Z.; Gapa, V.; Nyikos, L. J. Phys. Chem. A998 102

Acknowledgment. This work was supported by the follow- g9
ing Hungarian Research Grants: OTKA T017784, T025375, (21) Kiss, I. Z.; Gapa, V.; Nyikos, L.; Parmananda, B. Phys. Chem.

and FKFP 0455/1997. A 1997 101, 8668.
(22) Rumelhart, D. E.; Hinton, G. E.; Williams, R.Nature1986 323
533.
References and Notes (23) Peterson, C.; Rmvaldsson, T.; Lonblad, L.Comp. Phys. Commun.
(1) Shinbrot, T.Adv. Phys.1995 44, 73. 1994 81, 185.

(2) Oftt, E.; Grebogi, C.; Yorke, J. &hys. Re. Lett.199Q 64, 1196. (24) Dressler, U.; Nitsche, Ghys. Re. Lett. 1992 68, 1.



