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Institute of Physical Chemistry, UniVersity of Debrecen, 4010 Debrecen, P. O. Box 7, Hungary

ReceiVed: April 6, 2000; In Final Form: June 16, 2000

Although there are a number of theoretically suggested chaos control methods using artificial neural networks
(ANN), experimental tests are still lacking. In this paper, we report on experimental chaos control during the
electrochemical dissolution of copper in phosphoric acid. The neural network implementation of simple
proportional and recursive feedback algorithms is presented.

Introduction

Chaotic systems are highly susceptible to control by using
small perturbations to a system constraint. Feedback methods
have been applied to taming chaos in magnetoelastic and
hydrodynamic systems, electric circuits, lasers, chemical reac-
tions, and tissues of heart and brain in vitro.1 The well-known
Ott-Grebogi-Yorke (OGY) algorithm2 and its variations are
based on the notion that for controlling chaos one needs to know
only the local dynamics in a small (linear) range around a fixed
point (corresponding to the targeted unstable periodic orbit,
UPO), on somen-dimensional surface-of-section (Poincare´
section) of the phase space trajectories. The OGY method has
been further developed by Petrov et al.3 and Rhode et al.4 They
studied the dynamics of the system around the fixed point under
the effect of random perturbations, then the goal dynamics has
been targeted by using a control rule with empirically determined
constants in a control formula.

In experimental settings, however, application of these
methods is often troublesome because of noise and shift in the
system constraints.5 It seemed inevitable to develop a better
technique so as to make chaos control a routine (automated)
procedure.

Artificial neural networks are widely used in chemometrics,
especially when the evaluation of experimental data requires
complex, nonlinear fitting. A comprehensive review on the topic
has been published by Sumpter et al.6 It has been shown first
by Alsing et al.7 that chaos control can be implemented by using
a nonlinear fitting procedure with an ANN. In their numerical
work, however, they just simply fitted the data to the OGY
formula by an ANN and applied the trained network to control
chaos. A strategy developed later by Lebender et al.8 takes
advantage of the nonlinearity built in an ANN, and it also works
outside the linear region of the fixed point. However, training
of the ANN required an additional numerical fitting procedure.
Konishi et al.9 have also developed an on-line chaos controller
that, however, works only for fixed point with eigenvalues
in a given range or it requires a complicated procedure to
construct an error function for the ANN.10 The method of
Bakker et al.11 fits a global model to discrete time series data
and controls chaos using the trained network. This method has
been experimentally applied to control the chaotic motion of a
pendulum.

These methods have not been tested on real chemical systems
so far. Our goal was to develop ANN algorithms as simple as
possible and test their effectiveness in experiments.

This paper is structured as follows. First, a brief introduction
to artificial neural networks is presented. Then we devise a
simple strategy for controlling chaos by taking advantage of a
well-known feature of artificial neural networks: they can
“learn” the linear or nonlinear rules embedded even in a noisy
data set. The proposed method is first tested for taming chemical
chaos in a simple three-variable model, the chaotic Autocata-
lator.12 We show that after learning the map-based representation
of the chaotic dynamics at a given range of an accessible control
parameter, the trained network can be readily applied to
controlling chaos based on the simple proportional feedback
(SPF) algorithm by Peng et al.13 The network is then modified
so as to implement the so-called recursive proportional feedback
(RPF) method for controlling chaos.14 The improved ANN
algorithm is applied to a model for the respiratory behavior of
a diffusively coupled two-cell system.15,16 Finally, we test the
suggested method on an experimental system, the chaotic
electrodissolution of copper in concentrated phosphoric acid
electrolyte.17-21

Artificial Neural Networks

From a practical point of view, an artificial neural network
is simply a computer program that transforms anm-variable
input into ann-variable output. The units of the network are
the so-called neurons that are connected, for example, to a feed-
forward network, in which the information is processed through
several layers such as input layer, hidden layer(s), and output
layer.22 A neuron collects inputs from all of the units of the
upper layer and transforms its net input into an output. The total
input Ij to unit j is the weighted sum of the output of all neurons
(i ) 1, 2, ...,n) connected to it:

where oi is the output of theith unit, wji is a weight
characterizing the “strength” of connection between unitsj and
i, andθj is a threshold value. The total inputIj is transformed
into an outputoj by a transfer function:
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Ij ) θj + ∑
i

wjioi (1)

oj ) {1 + exp(-Ij)}
-1 (2)
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The network is trained by iteratively correcting the weights
wji so as to produce the previously specified output values (the
target sets) for as many input sets as possible. The error of a
network for a given training set is calculated by the following
equation:

where oj
out and tj are, respectively, the actual and desired

(target) output values of neurons in the output layer. During
the training session the weights are updated according to a
“learning rule”. In our calculations we apply the Langevin-type
error back propagation using dynamic learning parameters:

where∆wji
n is the change in thewji value at thenth iteration,ηn

is the learning rate, 0< R <1 is a constant called momentum,
ân is a training parameter, andσ(1) is a Gaussian-noise with
zero expected value and unit standard deviation. The derivatives
∂E/∂wji are calculated by the back-propagation algorithm. After
each input set has been passed through the network (after one
epoch)ηn andân are updated according to eq 5

The initial values ofân and ηn were set to 2.0 and 0.1,
respectively, whileR ) 0.5. After the weights are adjusted, the
error is recalculated by doing a forward pass through the network
again. This procedure is repeated until the error of the network
is less than an acceptable value or the number of epochs exceeds
a preset limit. Details of the learning algorithm can be found in
the manual of JETNET program package23 and references cited
therein.

Controlling Chaos with ANN

Numerical Studies. The steps of the envisioned simplest
strategy for controlling low-dimensional chaotic systems with
an artificial neural network are as follows: (1) Collect a small
set of next-return valuesXn(p) and Xn+1(p) of a monitored
variable to a previously defined Poincare´ section of the phase-
space trajectories at different values of an accessible parameter
p. (2) By using the collected values of next iterates at each value
of p (the input set), train an ANN to compute the corresponding
values of control parameterp (the output set). (3) To control
chaos, apply the trained network to calculatepn+1 for the next
period (the output value) by usingXn(pn) andXF(p0) as input
values, wherepn and p0 are values of the control parameter,
respectively, during the cycle and before control is turned on.

If the Poincare´ section of the attractor moves in the phase
space when the control parameterp is changed, the OGY
algorithm must be modified. Dressler and Nitsche24 showed that
the correctionδpn depends not only on the deviation of the
system from the fixed point but also on the correctionδpn-1

during the previous cycle. The result is a recursive proportional
feedback (RPF) algorithm. As shown later, the simple strategy
above can be easily modified for the implementation of the RPF
method.

Simple Proportional Feedback by ANN Algorithm.In Figure
1, a previously trained feed-forward ANN is applied to
controlling chaos in the three-variable Autocatalator12 that is a
prototype model for chaotic behavior observed in isothermal
chemical systems. Rate equations of the model are

wherea, b, andc are dimensionless variables,τ is dimensionless
time, andµ ) 0.154,κ ) 65,σ ) 5 × 10-3, andδ ) 2 × 10-2

are parameters.Bn is the value of the monitored variableb at
the nth return to a Poincare´ section (c ) 15, dc/dt > 0).

The differential equations were solved at 32 different values
of control parameterµ ranging from 0.1535 to 0.15505 (∆µ )
5 × 10-5). At a given µ, the values ofBn and Bn+1 were
monitored after a transient periodt ) 10. A particular pair of
data has been recorded if the value ofBn was within a predefined
range (36< Bn < 43). The full set of input data was compiled
by using the first 26 pairs of suchBn values at eachµ, while
the targeted set of outputs contained the correspondingµ values.
The appropriate size of the network has been determined by
using the standard procedures of neural computing. In this case
we have found the best performance by using a 2-6-6-1 feed
forward network.

Control is achieved (Figure 1) by changing the value ofµ
such that the fixed pointBF ) 40.568 (corresponding to the
unstable periodic orbit) is targeted on each return. The value of
µ for the next period is calculated by the trained network such
that the inputs areBn and BF, while the output is the sought
value ofµn+1.

RecursiVe Proportional Feedback by ANN Algorithm.The
chaotic respiratory behavior of a two-cellKlebsiella aerogenes
bacterial culture can be described with a model suggested by

E )
1

2
∑

j

(oj
out - tj)

2 (3)

∆wji
n+1 ) -ηn

∂E
∂wji

+ R∆wji
n + ânσ(1) (4)

ηn+1 ) {0.999ηn if En+1 g En

ηn (1 + 1-0.9999
10 ) otherwise }

ân+1 ) 0.999ân (5)

Figure 1. Chaos in the three-variable Autocatalator atµ ) 0.154 is
controlled by using a 2-6-6-1 feed forward neural network. Control
(BF ) 40.568) is switched on atn ) 250 and turned off atn ) 750.

da
dt

) µ(κ + c) - a - ab2

σdb
dt

) a + ab2 - b

δdc
dt

) b - c (6)
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Degn and Harrison:15,16

whereu1, V1, u2, andV2 are variables,t is time, anda2 ) 8.9,b1

) b2 ) 11, q1 ) q2 ) 0.5, c ) 4 × 103, Du ) 1 × 10-5, and
DV ) 1 × 10-3 are parameters. The control parameter isa1,
while Un is the value of the monitored variableu2 at thenth
return to a Poincare´ section (V2 ) 13.45, (dV2/dt > 0).

The differential equations were solved by randomly varying
the value of control parameter:a1 ) 8.9+ 2 × 10-3random(50)
where random(50) denotes a random integer between 0 and 50.
The values ofUn-1, Un, anda1,n-1 were monitored. The data
were recorded if the value ofUn was within a predefined range
|Un - UF| < 0.01 around the targeted fixed point (UF ) 1.9921).
The full set of input data was compiled by using 500 recorded
values, while the targeted set of outputs contained the corre-
spondinga1,n values. The best performance has been found by
using a 3-8-8-1 feed forward network.

Control is achieved (Figure 2) by changing the value ofa1

such that the fixed pointUF ) 1.9921 is targeted on each return.
The value ofa1,n+1 for the next period is calculated by the trained
network such that the inputs areUn, UF, and a1,n, while the
output is the sought value ofa1,n+1 for the next cycle.

Experiments. Details of the experimental setup and proce-
dures have been published in an earlier publication.21 A standard
three-electrode electrochemical cell was used. The cell contained
70 cm3 orthophosphoric acid (85%, Merck or Spektrum-3D)
thermostated at-17.5 ( 0.1 °C and was connected to a

computer controlled potentiostat (Electroflex EF451). The
potential between a rotating copper disk electrode of 5 mm
diameter (anode) and a saturated calomel electrode (SCE) was
measured and set with a resolution of 0.2 and 0.01 mV,
respectively, for simple potentiostatic and chaos control experi-
ments. The output current signal between the rotating disk
electrode (RDE) and a platinum sheet counter electrode of 5
cm2 area (cathode) was fed into a 12-bit A/D converter built
into the potentiostat. Sampling frequencies of 100 and 200 Hz
were applied, respectively, for data acquisition and control
experiments. A period-doubling route to chaos can be observed
at about 1750 rpm if 130Ω external serial resistance is
connected to the system such that the total ohmic resistance of
the cell is between 200 and 204Ω. Chaotic current oscillations
can be observed under potentiostatic conditions at-17.5 °C
near 1750 rpm and 510 mV.

We have shown in our earlier work21 that the dynamics of
the system on the Poincare´ section can be represented by a one-
dimensional next-return mapf. In our case, a reconstructed phase
space can be obtained using the time-delay method with an
embedding dimension of two and 0.5 s delay. The next return
map In+1 vs In has been generated by using successive current
values on the Poincare´ section defined asIt ) I(t - 0.5 s) and
dI(t)/dt > 0), whereI(t) is the measured current at timet. The
iterates on the next-return map are given byIn+1 ) f(In,V), where
In and In+1 are next-return values of the monitored variable
(current) at a given value of an accessible parameterV (voltage).
At V ) V0 the mapf generates chaotic dynamics around the
fixed point IF(V0) ) f(IF(V0),V0).

For this experimental system, the simplest ANN algorithm
for controlling chaos was applied as follows. (i) We changeV
randomly aroundV0 at every stepVn ) V0 + ∆V(-1 + 2 ran-
(1)), where ran(1) denotes a random number between 0 and 1
and∆V is the maximum allowed perturbation (0.15 mV). During
this step we collected the data triplets{In, In+1, δVn} if the In

and In+1 values were near the fixed pointIF(V0). The ap-
proximate value ofIF (0.900( 0.001 mA) was determined from
the one-dimensional map using a linear least-squares fit around
the fixed point. We collected the data triplets{In, In+1, δVn} if
|In - IF| < ε or |In+1 - IF| < ε, and |In+1 - In| < 2ε were
found to be valid withε set to 0.015 mA. (ii) When enough
data triplets (31 in this case) was collected, we constructed a
2-6-1 ANN with two inputs (In, In+1) and one output (δVn).
The network was trained (3500 epoch) to calculate the parameter
value at which the phase point in the map is moved fromIn to
In+1. (iii) To control chaos, we applied the trained network to
calculateδVn for the next period by usingIn(Vn-1) and IF(V0)
as inputs. The potential perturbation calculated by the network
was applied when|In - IF| < 2ε.

We note that for simple technical reasons, namely, the design
of our computer-controlled potentiostat, we trained the network
to calculateδVn values rather thanVn ) V0 + δVn values. In
Figure 3, time series current data (left axis) and the applied
potential perturbations (right axis) are plotted. The control
algorithm was turned on at 56.2 s. However, the first potential
perturbation was applied only at 67.2 s when|In - IF| < 2ε.
The period-one orbit was stabilized until the control was turned
off at 115.9 s, then the behavior became chaotic again.

The average potential perturbation is greater than zero (0.09
mV) which shows that at the appliedV0 the controlled fixed
point (IF,ANN) is slightly different from the desired valueIF. This
deviation can be explained by some systematic error during the
training session of the ANN. By changing the desired fixed point

Figure 2. Chaos in the model for the respiratory behavior of a two-
cell system ata1 ) 8.95 is controlled by using a 3-8-8-1 feed forward
network. Control (UF ) 1.9921) is switched on atn ) 1000 and turned
off at n ) 3000.

du1

dt
) b1 - u1 -

u1V1

1 + q1u1
2

+ Duc(u2 - u1)

dV1

dt
) a1 -

u1V1

1 + q1u1
2

+ DVc(V2 - V1)

du2

dt
) b2 - u2 -

u2V2

1 + q2u2
2

- Du(u2 - u1)

dV2

dt
) a2 -

u2V2

1 + q2u2
2

- DV(V2 - V1) (7)
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to stabilizeIF we calculated the average of the controlled fixed
points (Figure 4). The sigmoidal curve fitted on the points
resulted from the sigmoidal scaling functions of the network
and was also observed in our numerical studies. We expected
the network to control the desired fixed points in the range from
0.89 to 0.91; however, the ANN was able to control chaos only
in the range of 0.898-0.901. Outside this region the ANN was
not able to control chaos but held the system near the fixed
points for some iterations. The small control region can be
interpreted by plotting the average potential perturbations during
control vs the controlled fixed points (Figure 5). The ANN
controls chaos in almost half of the training regionV0 ( 0.5∆V
but obviously does not control outside this range. Our efforts
to increase the training region were unsuccessful because the
ANN could not be trained with enough accuracy.

The most exciting feature of our algorithm is its ability to
extend the chaos control algorithm to more dimensions and more
complicated systems. We demonstrate this feature by imple-
menting the recursive proportional feedback algorithm as well.
This algorithm can be applied ifIn+1 depends onIn,Vn, andVn-1

as well. The ANN implementation of RPF requires the following
steps: Step (i) is the same as before but instead of collecting
{In, In+1, δVn} data triplets we now collect{In, In+1, δVn-1, δVn}
datasets. In step (ii) we construct an ANN with three inputs

{In, In+1, δVn-1} and one outputδVn. To control chaos in step
(iii), the inputs to the ANN are{In, IF(V0), δVn}.

Stabilized period-one orbit embedded in the reconstructed
chaotic attractor of the copper-phosphoric acid system is shown
in Figure 6. The next return map has been generated by using
successive current values on the Poincare´ section as earlier.
Superimposed on the map are the next-return values (solid
squares) while control is being implemented. The data collection
took approximately 15 min, while the ANN training took about
5 min, so the whole procedure could be repeated easily. This
algorithm requires only the approximate location of the fixed
point and was successfully applied to control the chaotic
electrodissolution of copper in concentrated phosphoric acid
electrolyte.

Figure 3. The ANN implementation of SPF. Current (left axis) vs
time for an interval when control for stabilizing period-one has been
switched on at 56.2 s and switched off at 115.9 s. The chaotic behavior
was observed at 1721 rpm, 509 mV, and-17.5°C. IF was set to 0.9000
mA. The ANN (2-6-1) was trained using 31{In, In+1, δVn} data
triplets collected near the fixed point. Potential perturbations (right axis)
were applied if|In - IF| < 0.030 mA.

Figure 4. The average of controlled fixed points〈IF,ANN〉 vs the desired
fixed points IF. The average of controlled fixed points〈IF,ANN〉. The
average was calculated using 30 controlled fixed points. The curve is
a fitted sigmoidal function of [(0.8979-0.9012)/(1+ exp((x-0.8993)/
0.0041))+ 0.9012]. Experimental conditions are given in Figure 3.

Figure 5. The average values of potential perturbations〈δVn〉 vs the
average values of the controlled fixed points〈IF,ANN〉. The averages were
made from 30 points. The straight line is the least-squares linear fit to
the points. The intersection of this line with〈δVn〉 ) 0 line gives the
actual value of the fixed pointIF ) 0.9002 mA. Experimental conditions
are given in Figure 3.

Figure 6. The ANN implementation of RPF. Stabilized period one
orbit embedded in the chaotic attractor. The next-return map has been
generated by using the successiveI(t - 0.5 s) values on the Poincare´
section (thick line). Superimposed on the map (inset) are the next-
return values (solid squares) while control is being implemented. The
applied potential in the uncontrolled system is 515.5 mV, rotation rate
1800 rpm,IF ) 0.9040 mA. The ANN (3-4-1) was trained using 32
{In, In+1, δVn-1, δVn} data sets collected near the fixed point.
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Conclusions

The ANN implementation of SPF and RPF algorithms was
successfully applied to control chaos in simple models and in
an electrochemical reaction as well. An ANN is trained by
exploring the dynamics of the system under random perturba-
tions (training session) and then is applied to controlling chaos
(control session). Advantages of using an ANN are the follow-
ing: (a) the inherent nonlinearity built into ANN can be
exploited to control nonlinear processes, (b) the procedure does
not require a large number of complex calculations, and (c)
because of its simplicity, the strategy can be easily applied to
similar problems in a wide arena of research fields ranging from
physics to biology.

The algorithms presented in this paper are based on one-
dimensional next-return maps and low-dimensional chaotic
attractors. ANN methods have been tested to control high-
dimensional chaos but only in numerical models. Application
to real systems as well as extending these algorithms to track
unstable periodic orbits requires extensive experimental work
in the future.
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