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Equilibrium isotope effects (EIE) on the binding ot ldnd D to transition metal complexes are calculated

for a modeled version of W(CQPCy)2(17%-H,), [Ru(H--H)(CsMes)(dppm)I™ and trans[Os(H-+-H)CI-
(dppe}]*. Being probably unsatisfactorily described by the harmonic approach (specially in the elongated
dihydrogen complexes), the thermodynamic contribution of theHrstretching related modes is evaluated

by means of nuclear motion quantum calculations. The Discrete Variable Representation (DVR) methodology
is applied to obtain the anharmonic vibrational spectrum on the bidimensional B3LYP potential surface.
From these results, the associated partition function is calculated and used to correct the harmonic EIE and
other thermodynamic magnitudes. In agreement with experimental results, the anharmonically corrected EIE
for the W complex turns out to be inverse (0.534 at 300 K). On the contrary, the corrected EIE for the Ru
and Os complexes is clearly normal (1.217 and 1.685 at 300 K, respectively), predicting an unusual behavior
for ML H, compounds. Comparison with the pure harmonic EIE’s leads to the conclusion that the harmonic
approach is inadequate to describe the properties of the elongated dihydrogen complexes.

I. Introduction solution they obtain an EIE value of 0.200.15 at 295 K. At
. : _ first glance these results seem counterintuitive because the large
Isotope effects provide useful information about the molecular yo-rease in the HH (D—D) stretching frequency due to the
properties (structure and reactivity) of the organometallic H (D) binding to the complex should produce a large normal
compounds, specially in fluxional (nonrigid) transition-metal EIE. However, Bender, Kubas, Hoff and co-workers show that

com_plelxes_ mvolvmgﬁ dlhy?]rogert]) or/and hyd”d? ligands. In | the contributions of the five new vibrational modes that appear
particular, Isotope effects have become a very important ool ¢ aqgition product (coming from the original five transla-

in the mechanistic study of the reversible oxidative addition of tional and rotational degrees of freedom in the free hydrogen

molecular hydrogen to transition-metal complexes, one of the molecules) overcome the normal contributions of theHH(D—

most interesting and characteristic reactions of transition-metal D) stretching mode and the translational and rotational degrees
chemistry. Several papers have recently appeared concerningie e o - dom. this way leading to an overall inverse EIE.

deuterium equilibrium isotope effects (EIE’s) for the addition ; ) ) ’
of H, and D» to various transition-metal complexes in solution At this point, an inverse deuterium EIE seems the rule rather

to form either metal dihydride/dideuteride complekesr than the exception for the addition of molecular hydrogen to
dihydrogen/dideuterium complex€IE’s are defined a&/ suitable metal complexes to form either dihydride or dihydrogen
Ko, where Ky is the equilibrium constant for the perprotio {ransition-metal complexes. However, we wondered what the
reaction andKp stands for the equilibrium constant of the EIE would be for the formation of the particular group of
isotopically substituted reaction. By definition, an EIE is normal transition-metal dihydrogen complexes known as elongated
if it is greater than unity, whereas it is inverse if it is less than dihydrogen complexesThese complexes fill the gap between
unity. Observed EIE’s for piversusD; addition turn out to be  classical polyhydrides (with HH distances at or above 1.6 A)
usually inversé, with typical values of./Kp around 0.50 or ~ @nd nonclassical dihydrogen complexes (which havetH
less, showing that metal complexes bingl2tter than they do  distances below 1.0 A). Some of788 have recently used a
H, over a large temperature range. combined electronic Density Functional Theory plus nuclear
Of special interest is the very recent stéidy the EIE on B dynamics study of two complexes to prove that the existence
binding to the dihydrogen complex W(C§IPCys)-(7%-Hz), one and several propert|e§ of. the elongated dihydrogen qomplexes
of the so-called Kubas complexes (the first isolable dihydrogen ¢an be explained taking into account the quantum vibrational
complexes). In that paper Bender, Kubas, Hoff and co-workers motion of the hydrogen nuclei on a very anharmonic potential
use the measured vibrational frequencies arising from the €nergy surface.
corresponding infrared spectra to obtain the molecular transla- The first purpose of this paper is to theoretically study the
tional, rotational and vibrational partition functions ratios as deuterium equilibrium isotope effect for the addition of molec-
described in the general treatment of equilibrium isotope effects ular hydrogen to a complex leading to an elongated dihydrogen
by Bigeleisen and Goeppert-Maydfrom their calculations they ~ transition-metal complex. To this aim we will calculate the
get a modest inverse EIE value of 0.78 at 300 K. In addition, equilibrium constants of the several equilibria of the type
by comparison of the equilibrium constants for displacement pictured in Scheme 1. Concretely, we will study the EIE
of N2 by H, or D in the complex W(CQ)PCys)2(N2) in THF corresponding to the formation of the elongated dihydrogen
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SCHEME 1 the tungsten atom in the Kubas complex. For the 14 outer
D H electrons of the metal atom the basis set was that associated
with the pseudopotential of Hay and Wé&twith a standard
D, + |— ML, valence doublé: LANL2DZ contraction!4 The basis set for
the hydrogen atoms directly attached to the metal was a dguble-
D H supplemented with a polarization p sh€lt® A 6-31G basis

complexes [Ru(H+H)(CsMes)(dppm)]- andtrans[Os(Hr+H)- set® was used for the H atoms attachedat P or a Catom, as
Cl(dppe)]* (dppm= bis(diphenylphosphino)methane; dppe well as for _carbon_ and oxygen atoms. The phosphorus atoms
1,2-bis(diphenylphosphino)ethane). For the sake of comparison,Were described with the 6-31G(d) basis Set.

the case corresponding to the formation of the dihydrogen Most of the electronic results for the two elongated dihydro-
complex W(CO)(PCys)a(172-H,) will also be considered. Onthe ~ gen complexes have been taken from our previous papér$?
other hand, it has to be emphasized that, as mentioned abovetiowever, a few new electronic calculations have been carried
the interesting properties of the elongated dihydrogen complexesout for these two complexes using the same level of calculation
arise from the high anharmonicity of the-HH stretching and  described there. That is, an effective core operator replacing
that the related vibrational modes are very sensitive to it. As a the inner electrons (28 and 60 in the ruthenium and osmium
consequence, any theoretical calculation of the EIE for theseatoms, respectively), and the basis set associated with the
complexes should include vibrational anharmonicity in a reliable pseudopotential of Hay and Waglwith a standard valence
way. So, the second purpose of this paper is to devise andouble£ LANL2DZ contractiort* for the 16 outer electrons in
effective strategy which allows for the practical calculation of both ruthenium and osmium atoms.The basis set for the
the anharmonic vibrational levels that influence the EIE in hydrogen atoms directly attached to the metal was a dafible-
dihydrogen transition-metal complexes, so that the vibrational supplemented with a polarization p sh€élf® A 6-31G basis
partition functions (and the EIE) can be reliably computed at a set® was used for the H atoms attachedat P or a Catom, as

Hy + |—ML,

reasonable cost. well as for carbon atoms. The phosphorus atoms were described
_ _ with the 6-31G(d) basis sét.For the chlorine atom in the
. Calculational Details osmium complex a 6-31G(d) basis Sewvas used. Finally, a

As stated in the Introduction, this work is devoted to obtain 6-31G(p) basis set was used for the free hydrogen molecule
equilibrium isotope effects. To this aim we have used a statistical Whose geometry has been optimized.
thermodynamic formulatidhas described in the next section. The Z-matrices of the minimum energy structures corre-
The molecular partition functions were first computed within sponding to the Kubas complex and the elongated dihydrogen
the ideal gas, rigid rotor, and harmonic oscillator models. Then complexes have been obtained from the authors of the ref 19
a treatment to introduce anharmonicity was employed. A and from our previous results, respectivély. Geometry
pressure of 1 atm and a temperature of 300 K have beenoptimizations have been performed using the Schlegel gradient
assumed in all the calculations. Two different types of quantum optimization algorithm using redundant internal coordin&tés.

results are required. Electronic structure calculations provide  For each minimum energy structure analytical second deriva-
the geometry of the minimum energy structures and permits t0 tives of the energy with respect to the Cartesian coordinates
build up a sizable part of the potential energy surface (PES). have been computed to obtain the frequencies and eigenvectors
Nuclear motion calculations have been carried out to determinatezssociated with each vibrational normal mode within the
vibrational wave functions. Some technical details of both sets of hseudopotentials this is a new feature included in GAUSSIAN
of calculations follows. , , 989 For those systems GAUSSIAN %4and previous versions

A. Electronic Structure Calculations. For saving compu-  opnjy allow numerical second derivatives calculation by finite
tational effort some modeling has been made on the experi- yitfarences of analytically computed first derivatives, this way
mental complexes. The three cyclohexyl groups in the Kubas i olving very time-consuming calculations. The fact that all
complex were changed by three hydrogen atoms; tidec the frequencies turn out to be real confirms that the located
unit and the four phenyl groups in the dppm ligand were points are actual minima of the PES.
substituted by a cyclopentadienyl and four hydrogen atoms, The normal modes have been recalculated for each dideu-
respectively, in the ruthenium complex; finally, in the osmium . i .

dterated minimum energy structure in order to obtain the

complex the four phenyl groups in the dppe ligand were change . . . . .
by four hydrogen atoms. As a result the dihydrogen complexes frequencies and eigenvectors corresponding to the isotopically

that have actually been studied are W(Q®NHs)2(r2-H>), substituted species.
[Ru(H:+-H)(CsHs)(H,PCHPH,)] ™ and trans[Os(H-++H)CI- B. Nuclear Motion Calculations. As explained in the next
(HoPCHCHPH),] . section, introducing the anharmonicity effects in the elongated

All electronic structure calculations have been carried out with dihydrogen transition-metal complexes requires the solution of
the GAUSSIAN 98 series of prograrig.o solve the electronic  the nuclear Sclidinger equation (vibrational energy levels and
Schralinger equation, the density-functional theory (DFT)  wave functions) over a suitable PES built up from electronic
methodology has been used. This methodology meets thecalculations. Concretely, we have chosen a two-dimensional PES
requirements of high accuracy and reasonable cost, and has bee@ds a function of the interatomic distance between the two
employed with great success to study several organometallichydrogen (deuterium) atoms of the D) unit of the complex
systems, including dihydrogen and polyhydride compléxéx!t and the distance between the metal atom and the point halfway
The three-parameter hybrid functional of Becke and the Lee, between those two hydrogen (deuterium) atoms. These two
Yang and Parr's correlation functional, widely known as parameters behave as orthogonal coordinates, in such a way
Becke3LYP!2 have been used. that no coupled terms between them appear in the nuclear kinetic

To reduce the cost of the computations an effective core operator of the corresponding nuclear Sclimger equation, that
operator has been used to replace the 60 innermost electrons ofs,
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—h29? K% A. Harmonic EIE. First of all, within the harmonic ap-
252 | 2u 8y2 (1) proximation, we have used the molecular partition functions
y provided by GAUSSIAN 98 for each chemical species in
where x and y stand for the HH and M—H, distances, Scheme 1 to evaluate the harmonic EIE’s. In addition, we have
respectively. decomp_osed eac_h EIE as _the_product of three factors: the
When calculating the PES, global relaxation of the rest of translatlona_l-rotatlonal contr_lbut_lon (TRANSROT); the chtor
geometrical parameters has been allowed. Some additionacorresponding to the contribution of the ground vibrational
details concerning the PES are given in the next section. states, thatis, only including the zero-point energy levels (ZPE);
To solve the nuclear Schdinger equation a discrete variable and the factor that appears when the excited wbrauqnal energy
representation (DVR}22 has been used. This method has levels are taken into account (EXC). The corresponding results
already been applied with success in the field of organometallic &€ _sShown in Table 1. Our harmonic EIE for the complex
chemistry” Computationally, the DVR has great advantages over W(COX(PHs)a(17*-Hs) turns out to be inverse, although numeri-
the more traditional variational basis representation, in which Cally is somewhat lesser (that is to say, the isotope effect turns
the energy levels are obtained by diagonalization of the matrix Out t0 be more intense) than the value calculated by Bender,
representation of the projection of the Hamiltonian operator on Kubas, Hoff and co-workefsfrom the infrared spectra. The
a given basis set. In short, the DVR is a grid-point representation dlfferer_me Stems_fundamen_tally from the _ZPE factor, which is
instead of a basis set representation, and thus it facilitates theth€ main responsible of the inverse behavior. On the other hand,
calculation of the potential energy integrals. In this repre-  the complexes [Ru(H-H)(CsHs)(HaPCHPH,)]™ and trans:

T=

sentation, the potential energy matrix is diagonal, [Os(H+*H)CI(H.PCHCHPHy)-] * also give inverse harmonic
EIE’s, with figures that do not qualitatively differ from those

Vi = 0;:V(X) @) corresponding to the Kubas complex. Then, our theoretical

results seem to confirm the inverse deuterium EIE as a rule for

and the kinetic energy matrix is very simple, the formation of the transition-metal dihydrogen complexes, at

least within the harmonic approximation.

B. Anharmonic EIE. We wondered what the effect of the
(3) anharmonicity on the EIE’s would be, specially for the elongated
dihydrogen complexes. Theoretical harmonic vibrational fre-
guencies are, in general, overestimaidgcause of incomplete
|eading to a very sparse Hamiltonian matrix easier to incorporation of electron correlation, the use of finite basis sets
diagonalize than those coming from a basis set representationand, as a major source of error, the neglect of anharmonicity
effects. For this reason, scaling factors are often applied prior
+ Tjj:0yir + ;.05 V(X;, ;) (4) to the use of the frequencies in the EIE calculations. Scaling
factors for obtaining fundamental vibrational frequencies, low-
In this paper the generic DVR proposed by Colbert and Miler ~ energy vibrations, zero-point vibrational energies and thermal
has been used. Once the grid-point representation of the nucleacontributions to enthalpy and entropy from theoretical harmonic
Hamiltonian has been built up, the nuclear energy levels and frequencies have been determined by Scott and R&dbyn
wave functions are found through diagonalization of this matrix. fitting to experimental values. To our knowledge, no scaling
The nuclear wave functiondl; are obtained as a linear factors have been explicitly developed for calculating isotope
combination of associated basis functiafis effects through vibrational partition functions. Perhaps the
scaling factors recommended for the prediction of the zero-
No point vibrational energies or the thermochemical quantities, at
W= Zcij¢j (5) the Becke3LYP/6-31G(d) level, could be appropriate (0.9806,
= 0.9989, and 1.0015 for the zero-point vibrational energies, the
thermal contribution to enthalpy and the thermal contribution
to entropy, respectively’t Note that in this formalism we are
looking for anharmonically corrected frequencies that provide
good results when used in the harmonic expression of the

H;iw = T;0

i ii"Ojj’

whereN; is the total number of points in the grid. In a general
two-dimensional case whose two dimensions are labebaul
y, ¢; are functions of the form

_ _ vibrational partition function. As a matter of fact this is the
X
Sin(n( X"‘)) i (n(y y"‘)) approach adopted by Bender, Kubas, Hoff and co-wotkengn
o(xy) = AX Ay (6) introducing the measured vibrational frequencies from the
. (X = Xq) 7Y = V) infrared spectra (and so including anharmonicity) in the

_ _ harmonic treatment of Bigeleisen and Goeppert-Mayéow-
beingxm andym the &, y) coordinates of the grid point associated ever, we decided not to use any scaling factors in this paper for

with the basis functio;, andAx and Ay the spacings in the two reasons. First of all, the above indicated scaling factors are
and y directions of the grid. The wave function has to be very close to one and they do not appreciably modify the
normalized prior to any calculation involving it. calculated EIE’s indicated in Table 1. Second, those scaling
) ) factors have not been fitted to reproduce properties of transition

Ill. Results and Discussion metal complexes and even less to account for the high degree

According to the well-known formulas of the statistical Of anharmonicity found in the elongated dihydrogen complexes.
thermodynamic§,we will calculate the deuterium equilibrium Instead of calculating anharmonically corrected frequencies,
isotope effect as the equilibrium constarKp(Kp) of the in the present paper we will try to determine directly the
equilibrium displayed in Scheme 1. For the three cases studiedanharmonic vibrational energy levels. Assuming an independent
in this work ML, stands for W(CQ)(PH)z, [RU(GsHs)(H2PCH,- normal-mode framework (i.e., no modenode coupling), the

PH)]* andtrans[OsCI(H,PCH,CH,PH,),] *. vibrational partition function of the molecule is separable as a
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TABLE 1: Harmonic EIE’s and Contributions to Them

W(CO)(PHs)2(n*Hz) [Ru(H-+H)(CsHs)(HPCHPH,)] trans{Os(H:+-H)CI(H.PCHCHPH,),] *
TRANSROT 5.519 (5.77) 5.470 5.553
ZPE 0.131 (0.20) 0.135 0.189
EXC 0.675 (0.67) 0.729 0.665
EIE 0.486 (0.78) 0.538 0.696

Numbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff and co-workers from the infrared spectra.

product of the contributions corresponding to each individual H H OH OH
; ; >~ SN S(MHy)
normal mode. The potential energy along a single mode could ¢:> I/ML,, W(HH) (Aq) |:> ‘ /MLn e (B
be expanded in a series of powers of the associated normal H H OH ©H i
coordinate with coefficients given by the second, third, fourth - 4
and higher numerical directional d_envz_atlves of the_potgnnal | | SSML, v A Y HS M) @)
energy along the normal-mode direction. If the vibrational H i J:’\ /M‘-n astrer
energy level&™ of the one-dimensional potential energy along H H
the mode m can be determined in some way, the vibrational T
partition function for mode mq) can be calculated as H N OH OH
T \-:>T/ML.1 M) (@) = [ ML M) ()
— —E"lkgT H H frane ®OH ®H
Un=e '° @

Figure 1. Symmetry coordinates associated with the dihydrogen ligand
along with their irreducible representation inGa, symmetry point

wherekg is the Boltzmann’s constant. To avoid the calculation 9group. For the three cases studied in this workMands for W(CQ}

of high numerical derivatives (with the associated lack of (PH)z [RU(GHs)(HPCHPH,)]" andtrans[OsCI(HPCHCHPH,)] "
accuracy) it is better to build up a one-dimensional potential . . .
energy surface as a function of each normal coordinate. ThenSuitable displacement coordinates adapted to symmetry, which
we can solve the nuclear S¢klinger equation by means of are p|ctur_ed in F_|gure_ 1. These symmetry coord|r_1ates correspond
the DVR method to find the vibrational energy levels, which (O the unique vibrational mode (the-HH stretching) and the
incorporate the anharmonicity associated with each normal modelost translational and rotational degrees of freedom for free

in a natural way. hydrogen. Assuming that the hydrogen nuclei move under the
Our three dihydrogen transition-metal complexes have be- fiéld of a heavy point center (Mj) formed by the rest of the
tween 17 and 28 nuclei, what implies dealing with-4%8 complex, their symmetry point group@,. Figure 1 also shows

vibrational normal modes. Application of the above outlined the irreducible representation to which each symmetry coordi-

procedure to each normal mode is a task out of reach. Instead,ate belongs. There are two totally symmetrical coordinateks (A

to account for the anharmonicity in a practical way, we propose WO coordinates with symmetry species, Bne B symmetry

an attainable strategy that works in the following fashion: coordinate and one Asymmetry coordinate. Each normal
(@) The most anharmonic vibrational normal modes are coordinate has to be a linear combination of the symmetry

previously chosen (they will be called anharmonic modes from coor_dlnates that beI_ong to the_ same irreducible represe_ntatlon

here on). of this normal coordinate. For instance, the normal coordinates

(b) For each anharmonic normal mode a one-dimensional PESO the o A modes are linear combination of the twa A
as a function of the corresponding normal coordinate is built SYmmetry coordinates (the+H stretching and the symmetric
up. M—H, stretching).

(c) The DVR method is used to solve the nuclear Sdimger The major anharmonicity effect is probably related to the
equation over the PES associated with each anharmonic normaH—H stretching (specially for the elongated dihydrogen com-
mode, therefore obtaining the corresponding anharmonic vi- plexes), which participates in the two, Aormal modes. Then

brational energy levels. both A normal modes have to be considered as anharmonic
(d) The anharmonic vibrational partition function for each modes in the sense defined above. In addition, it is expected
anharmonic normal mode is computed through eq 7. that anharmonicity couples significantly the two modes of the

(e) The anharmonic vibrational partition function of the Same symmetry. Therefore, we will assume the independent
molecule is calculated as a product of the anharmonic vibrational Normal-mode framework neglecting all the medeode cou-
partition functions corresponding to the anharmonic normal plings but the coupling between the twa fodes, that will
modes and the harmonic vibrational partition functions corre- not be separated in our treatment. This assumption slightly
sponding to the remaining normal modes (the ones that can bemodifies the above introduced-a working scheme, in the sense
considered harmonic modes). As a matter of fact, this is done that both anharmonic normal modes are studied together over
by substituting the original harmonic contributions of the @ two-dimensional PES as a function of the two symmetry
anharmonic modes in the totally harmonic vibrational partition coordinates that define the corresponding normal coordinates.
function of the molecule by their corresponding anharmonic This leads to a two-dimensional anharmonic vibrational partition
vibrational partition functions. function that will substitute the two original one-dimensional

What are the main sources of anharmonicity in the dihydrogen harmonic contributions of the anharmonic modes in the har-
transition-metal complexes that can influence the EIE’s? Indeed monic vibrational partition function of the molecule, in this way
they will be associated with the dihydrogen ligand. Owing to leading to the anharmonic vibrational partition function of the
the large mass difference between the light hydrogen (or molecule.
deuterium) nuclei and the heavy rest of the complex, the normal A series of electronic structure calculations have been
modes involving the hydrogen (or deuterium) nuclei consist performed to construct the two-dimensional PES for the complex
fundamentally of their motion. There are 6 such vibrational W(CO)(PHs)2(17%-H>). A collection of 120 points, each corre-
modes’ The associated normal coordinates can be defined from sponding to a different set of +H and W-H, distances, has
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W(CO)4(PH,),(17H,) trans{Os(H---H)CI(H,PCH,CH,PH,),|*

2.0 1

CANNE

\32
S a2

1.2

0.8 1.2 16 2.0
d(H-H) d(H-H)

Figure 2. Contour plot of the two-dimensional potential energy surface Figure 3. Contour plot of the two-dimensional potential energy surface
for the complex W(CQ)PHs)(572-Hy). Distances are givenin A. Energy  for the complexrans[Os(H---H)CI(H.PCHCH:PH;,)2] *. Distances are
contours appear every 5 kcal/mol. The arrows indicate the position of given in A. Energy contours appear every 5 kcal/mol. The arrows
the minimum energy structurg(—H) = 0.832 A andd(M—H,) = indicate the position of the minimum energy structw@—H) = 1.071
1.872 A). A andd(M—H,) = 1.567 A).

been calculated. The ranges covered have been from 0.6 to 2.Ga way that none of the two //ormal modes can be identified
A for the H—H distance, and from 1.4 to 2.5 A for the distance at all with one of the A symmetry coordinates depicted in
between the tungsten atom and the midpoint halfway betweenFigure 1. Along the normal mode that is roughly parallel to the
the two hydrogen atoms. The resulting points have been fitted energetically smooth oblique valley, the stretching of thetH

into a two-dimensional cubic splines functional fofPryhich bond leads to shortening of the-MH, distance, and vice versa.

is a smooth and continuous function. Figure 2 depicts the two- On the other hand, the other normal mode is orthogonal to the

dimensional PES as a contour plot. first one and consists of the simultaneous stretching (or
Analogous two-dimensional PE®ere built up for the two compression) of both the HH bond and the M-H; distance.

elongated dihydrogen complexes in two previous paffésor Apart from the obliqgueness of the two; Aormal modes that

the complex [Ru(rt-H)(CsHs)(H.PCH:PH,)]* the range for the  imposes a global treatment, this valley is highly anharmonic,

H—H distance covered from 0.59 to 2.29 A, while the-Rdp this being a crucial factor in determining the interesting

distance covered from 1.00 to 2.20 A. As for the compifers- properties of the elongated dihydrogen transition metal-

[Os(H:+-H)CI(H,PCH,CH,PH,),] *, the intervals were from 0.6 ~ complexes.

to 2.2 A and from 1.0 to 2.2 A for the HH and the OsH, Once the two-dimensional cubic splines that define the' PES

distances, respectively. From those two works we have borrowedhave been obtained, the corresponding nuclear “Salger
the corresponding fitted two-dimensional cubic splines. The equations can be solved using the DVR method. First of all, a
PES for the complexes [Ru(H-H)(CsHs)(H.PCHPH,)]* and certain reduced mass has to be assigned to each degree of

trans[Os(H:+*H)CI(H.PCHCH2PH,)5] ™ turn out to be quali-  freedom in the Hamiltonian. As in our previous worRe®;18
tatively similar and for the sake of conciseness only the secondthe reduced masses for the motion along the symmetry
one has been pictured in Figure 3. coordinates have been calculated (for the perprotio complexes)

Comparison between Figures 2 and 3 discloses importantas
differences. The first one concerns to the position of the

minimum energy structure. For the Kubas complex it is found 1 _ 1 4 1

atd(H—H) = 0.832 A andd(W—H,) = 1.872 A, whereas the Har-r) My Mye)

corresponding values of the minimum energy structure for the

complextrans[Os(H-++H)CI(H.PCH.CH,PH,),]* are 1.071 and 1 1., 1 ®)
1.567 A, respectively. However, the most important point is Ham-Hy)  Mh, M

the shape of the PES in the region next to the minima. Around

the minimum energy structure of the Kubas complex, a normal  Note that the reduced masses of the dideuterated complexes
dihydrogen complex, the potential energy valley is quite parallel can be calculated in an analogous way. Then, the matrix
to the W—H, axis with a trend to curve along the-HH direction representation of the nuclear Hamiltonian over a rectangular
as the W-H,, distance shortens (Figure 2). As a consequence, grid of equally spaced points has been constructed. Different
the two normal modes of Asymmetry, although mixed to some  sizes of each grid have been tested until convergence of the
extent (as already pointed out by Bender, Kubas, Hoff and co- energy levels has been achieved. The characteristics of the final
workerd), can be still identified, respectively, with the twq A grids chosen for the different systems have been as follows:
symmetry coordinates. That is to say, one normal mode is 35 x 27 = 945 for both the perprotio and the dideuterated
basically the H-H stretching and the other one is essentially complexes W(CQ)PHs) (17%-Hy); 29 x 21 = 609 for both the

the symmetric M-H stretching. This is, probably, a common perprotio and the dideuterated complexes [ReH)(CsHs)-
feature of the normal dihydrogen transition-metal complexes. (H.PCHPH,)]*"; and 33x 25 = 825 and 37x 27 = 999 for

The scenario for thérans[Os(H-+-H)CI(H,PCH,CH,PHy),]+ the perprotio and the dideuterated complexass[Os(H:--H)-
clearly differs (Figure 3). In this case the potential energy valley CI(H,PCH,CH,PH,),]*, respectively (the format used is: num-
surrounding the minimum energy structure is oblique, in such ber of points along the HH coordinatex number of points
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TABLE 2: Anharmonic EIE’s (see text) and Contributions to Them

W(CO)s(PHs)o(17*H) [Ru(H-+-H)(CsHs)(HPCHPH,)] trans{Os(H:+-H)CI(H:PCHCHPH,);] *
TRANSROT 5.519 5.470 5.553
ZPE 0.143 0.323 0.505
EXC 0.676 0.689 0.601
EIE 0.534 1.217 1.685

TABLE 3: Thermodynamic Functions (300 K) Corresponding to the Equilibria of the Type Pictured in Scheme #

W(CO)(PHs)2(17?-Hy) [Ru(H:+-H)(CsHs)(H.PCHPH) trans-[Os(H:+-H)CI(H,PCH.CH,PH,),] ™

har anhar har anhar har anhar
AHP 0.906 0.871 0.912 0.350 0.688 0.041
AS 1.587 1.663 1.806 1.555 1.584 1.157
AGP 0.431 0.373 0.370 —-0.117 0.216 —0.314

aHar and Anhar stand for the Harmonic and Anharmonic aproximations, respectiveligcalmol=2. ¢ In caktmol-%-K~1

along the M-H, coordinate= total number of points). Diago-  normal modes in the dihydrogen complex leads to an inverse
nalization of the corresponding 6 matrices provides the 6 sets ZPE factor (a value smaller than unity), this effect being smaller
of vibrational wave functions (eigenvectors) and anharmonic as the HH/DD gap is more reduced in the dihydrogen complex.
energy levels (eigenvalues). These energy levels permit theAs a consequence of all this, anharmonicity increases the
calculation of the anharmonic vibrational partition function of numerical values of the ZPE factors associated with the
each molecule according to the procedure outlined above anddihydrogen ligand (the normal and inverse factors become more
then the anharmonic EIE’s are obtained. normal and less inverse, respectively), so tending to produce a

Table 2 exhibits the anharmonic EIE’s and their decomposi- nhormal EIE. This effect is so important in the highly anharmonic
tion in factors (evidently the TRANSROT contribution is the €longated dihydrogen transition-metal complexes that the EIE
same as in Table 1). Comparison of Tables 1 and 2 shows thatbecomes normal.
anharmonicity does not significantly alter the EXC factor. The  Finally, we have to remark that the anharmonic corrections
important changes only concern the ZPE factor. For the complex calculated in this paper are based on a two-dimensional
W(CO)(PHs)2(17%-H2) anharmonicity augments just slightly the — approach. Indeed, this reduction of dimensionality is a limitation.
ZPE contribution and, therefore, the EIE. The anharmonic EIE, However, the results obtained at the 2D approximation sounds
still clearly inverse, is somewhat closer to the experimental reasonable. As a matter of fact, the major source of anhar-
values than the harmonic EIE. Taking into account the range monicity is related with the HH stretching, which participates
of uncertainty of the experimental valdg®.78 from infrared in the two A normal modes. Given the size of the systems,
spectra or 0.70+ 0.15 from displacement of ) and that inclusion of more dimensions (Biormal modes) would be out
anharmonicity has been only partially incorporated, the agree- of reach. On the other hand, incorporation of coupling would
ment is rather good. Anyway, we have shown that anharmonicity be desireable but it is not probably necessary in order to obtain
tends to favor the addition of HThis effect is magnified in a reasonable prediction that can be useful for experimentalists.
the two highly anharmonic elongated dihydrogen complexes. C. Thermodynamic Functions. We have calculated the
The anharmonic EIE’s for the complex [Ru{+H)(CsHs)- thermodynamic functions at 300 K corresponding to the
(H.PCH,PH,)]* and, specially, for the compleirans[Os- equilibria of the type pictured in Scheme 1. The harmonic values
(H-+-H)CI(H,PCH,CH,PH,);]* (even more anharmonic than the are obtained from the harmonic molecular partition functions
complex of ruthenium) become clearly normal. Then, we predict according to the suitable statistical thermodynamic forméilas.
theoretically that the deuterium equilibrium isotope effect for We have determined the anharmonic values by substituting in
the addition of molecular hydrogen to a transition-metal complex the corresponding expressions the contributions of the two

leading to the formation of [Ru(+H)(CsHs)(H.PCHPH,)| T original one-dimensional harmonic vibrational partition functions
or trans[Os(H-+-H)CI(H,PCH,CH,PH,),]* is clearly normal. of the two anharmonic modes by the contribution of the two-
That is to say, H binds better than Pto both [Ru(GHs)- dimensional anharmonic vibrational partition function. Results

(H2PCHPH,)]T and [OsCI(HPCH,CH,PH,),] ™, and this con- are shown in Table 3. Note th#&H also gives the reaction
clusion is probably general for the formation of any elongated enthalpy difference AAH) between the addition of Hto a
dihydrogen transition metal complex. transition-metal complex leading to the formation of a dihy-
Why anharmonicity tends to favor the addition ofHsotopic ~ drogen complex and the corresponding addition flhe same
substitution by deuterium lowers the vibrational energy levels is true for the entropy and the Gibbs energy.
corresponding to normal modes that consist fundamentally of For the complex W(CQJPHs)2(17%-H,) it is clear that, as
motion of hydrogen nuclei, that is, the 6 normal modes already found by Bender, Kubas, Hoff and co-workeid;
associated with the dihydrogen ligand (Figure 1). The key is binding is enthalpically favored over jHbinding, but it is
that the larger the anharmonicity of the normal modes sensitive disfavored entropically. Anharmonic values are somewhat closer
to the isotopic substitution in the dihydrogen complex, the to the experimental thermodynamic functiotdH{ = 0.64 kcal
smaller the gap between the equivalent HH and DD vibrational mol~* and AS = 1.7 cal mot! K1), the agreement being
energy levels. Along the addition, the change in the HH/DD excellent. Our corresponding EIE’s (see above) have been
zero-point energy gap for the normal mode corresponding apparently not so good in comparison with the experimental
originally to the H-H (D—D) stretching in the free hydrogen results, but it has to be recalled that EIE’'s are measured as
molecule gives a normal ZPE factor (a value greater than unity). equilibrium constants, that is, as exponential function&Gf
This effect is larger as the HH/DD gap is smaller in the and, indeed, they are much more sensitive to small errors
dihydrogen complex. On the contrary, conversion of the 5 (theoretical or experimental). On the other hand, anharmonicity
translational and rotational modes in free hydrogen to vibrational lowers the endothermicity of equilibria indicated in Scheme 1
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Figure 5. Contour plots of the vibrational wave functions associated
with the ground vibrational state (G) and the first (1), second (2) and
third (3) excited states for the complérans[Os(H:+-H)CI(H.PCH-
CH,PH,),]*. Distances are given in AH) and () refer to the sign of

the vibrational wave function in order to indicate where the nodes are.

functions along the HH direction suggests that the symmetric
W—H; stretching normal mode mixes more and more with the
H—H stretching normal mode as the order of the excitation

1.2
d(H-H)

Figure 4. Contour plots of the vibrational wave functions associated

with the ground vibrational state (G) and the first (1), second (2), third

(3) and fourth (4) excited states for the complex W(&{BMs)2(1?-
H,). Distances are given in A+) and ) refer to the sign of the
vibrational wave function in order to indicate where the nodes are.

grows. On the other hand, the fourth excited state displays only
one (although somewhat sinuous) nodal line and corresponds
to the first excitation of the HH stretching normal mode (the

steepest direction around the minimum on the PES). In this case

an important mixing with the symmetric YWH, stretching
ormal mode is present as indicated by the expansion of the

because it also reduces the gap among the equivalent HH an ave function along the WH, direction.

DD vibrational energy levels in the dihydrogen complexes. This

: o L : The scenario is different for the compl&éans[Os(H:--H)-
effect is again highly amplified in the two elongated dihydrogen . .
complexes, for which that endothermicity becomes quite small C/(H2PCHCHPHy)Z ™. In this case, the ground and the excited

(only when anharmonicity is introduced). In these cases the W&V€ functions spread al_ong the energetically smooth, long
entropic term £ TAS) dominates at this temperature and the °Plique valley (compare Figures 3 and 5). The first and second
EIE becomes normal. It becomes manifest that anharmonicity €XCited states possess one and two nodal lines, respectively,

is cleary required to describe correctly the thermodynamic of "oughly perpendicular to the major axis of the almost elliptic
the process for the elongated dihydrogen transition-metal valley. These states are vibrationally excited states corresponding
complexes. to progressive excitations of the normal mode roughly parallel

D. Anharmonic Vibrational Wave Functions. A final point to the valley. On the other hand, the third excited state has only
concerns the anharmonic vibrational wave functions obtained ©n€ nodal line approximately along the major axis of the valley
as eigenvectors of the DVR matrices. For the sake of brevity, @1d corresponds to the first excitation of the seconsérmal
we will only comment the vibrational wave functions corre- mode (the one that vibrates along the steepest direction). It has
sponding to the perprotio complexes W(G@EHs)2(7%-Hz) and to be underlined that_, for the elongated dihydrogen complexes,
trans[Os(H++-H)CI(H.PCHCH:PH,),] *. Figures 4 and 5 present the degree of coupling between both Aormal modes does
the contour plots of the wave functions associated with the Not seem to change as the order of the excitation goes up, at
ground vibrational state and the first excited states for both the least for the lower excited states analyzed here.

Kubas complex and the elongated dihydrogen complex, respec-

tively. The ground wave function spreads on the low-energy V. Conclusions

basin around the minimum energy structure on the PES.

Conversely, excited wave functions tend to progressively expand [N this paper we have theoretically calculated the deuterium
toward higher energy regions. As a matter of fact the wave equilibrium isotope effect for the binding ofénd Dy to three
functions reflect the shape of the corresponding PES. So, thedihydrogen transition-metal complexes: W(GE)Cys)2(17%-Ho),
ground wave function for the Kubas complex surrounds rather [Ru(H-*-H)(CsMes)(dppm)]" andtrans-[Os(H:+-H)Cl(dppe}] .
symmetrically the minimum (compare Figures 2 and 4), showing Concretely, we have taken the complexes W (§Rbk)2(17*

a slight deviation along the HH direction as the WH; Hy), [Ru(H-+H)(CsHs)(H.PCH.PH,)] ™ andtrans[Os(H:--H)-
distance shortens. The wave functions associated with the first,CI(Ho.PCH.CH:PH,),] ™, respectively, as realistic models of
second and third excited states present one, two and three noddhem. The last two complexes are known to be elongated
lines, respectively. These states are all vibrationally excited statesdihydrogen complexes for which the high anharmonicity related
corresponding to progressive excitations of the normal mode to the H-H stretching is a crucial feature that determines many
that is basically the WH, stretching which is the direction  of their special properties. In this paper, we propose an attainable
with smoothest slope around the minimum on the PES. strategy to account for the effects of anharmonicity in a practical
However, the progressive expansion of the excited wave and reliable way. In short, the procedure consists of using a
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