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Equilibrium isotope effects (EIE) on the binding of H2 and D2 to transition metal complexes are calculated
for a modeled version of W(CO)3(PCy3)2(η2-H2), [Ru(H‚‚‚H)(C5Me5)(dppm)]+ and trans-[Os(H‚‚‚H)Cl-
(dppe)2]+. Being probably unsatisfactorily described by the harmonic approach (specially in the elongated
dihydrogen complexes), the thermodynamic contribution of the H-H stretching related modes is evaluated
by means of nuclear motion quantum calculations. The Discrete Variable Representation (DVR) methodology
is applied to obtain the anharmonic vibrational spectrum on the bidimensional B3LYP potential surface.
From these results, the associated partition function is calculated and used to correct the harmonic EIE and
other thermodynamic magnitudes. In agreement with experimental results, the anharmonically corrected EIE
for the W complex turns out to be inverse (0.534 at 300 K). On the contrary, the corrected EIE for the Ru
and Os complexes is clearly normal (1.217 and 1.685 at 300 K, respectively), predicting an unusual behavior
for ML nH2 compounds. Comparison with the pure harmonic EIE’s leads to the conclusion that the harmonic
approach is inadequate to describe the properties of the elongated dihydrogen complexes.

I. Introduction

Isotope effects provide useful information about the molecular
properties (structure and reactivity) of the organometallic
compounds,1 specially in fluxional (nonrigid) transition-metal
complexes involving dihydrogen or/and hydride ligands. In
particular, isotope effects have become a very important tool
in the mechanistic study of the reversible oxidative addition of
molecular hydrogen to transition-metal complexes, one of the
most interesting and characteristic reactions of transition-metal
chemistry. Several papers have recently appeared concerning
deuterium equilibrium isotope effects (EIE’s) for the addition
of H2 and D2 to various transition-metal complexes in solution
to form either metal dihydride/dideuteride complexes2 or
dihydrogen/dideuterium complexes.3 EIE’s are defined asKH/
KD, where KH is the equilibrium constant for the perprotio
reaction andKD stands for the equilibrium constant of the
isotopically substituted reaction. By definition, an EIE is normal
if it is greater than unity, whereas it is inverse if it is less than
unity. Observed EIE’s for H2 versusD2 addition turn out to be
usually inverse,4 with typical values ofKH/KD around 0.50 or
less, showing that metal complexes bind D2 better than they do
H2 over a large temperature range.

Of special interest is the very recent study4 of the EIE on H2

binding to the dihydrogen complex W(CO)3(PCy3)2(η2-H2), one
of the so-called Kubas complexes (the first isolable dihydrogen
complexes). In that paper Bender, Kubas, Hoff and co-workers
use the measured vibrational frequencies arising from the
corresponding infrared spectra to obtain the molecular transla-
tional, rotational and vibrational partition functions ratios as
described in the general treatment of equilibrium isotope effects
by Bigeleisen and Goeppert-Mayer.5 From their calculations they
get a modest inverse EIE value of 0.78 at 300 K. In addition,
by comparison of the equilibrium constants for displacement
of N2 by H2 or D2 in the complex W(CO)3(PCy3)2(N2) in THF

solution they obtain an EIE value of 0.70( 0.15 at 295 K. At
first glance these results seem counterintuitive because the large
decrease in the H-H (D-D) stretching frequency due to the
H2 (D2) binding to the complex should produce a large normal
EIE. However, Bender, Kubas, Hoff and co-workers show that
the contributions of the five new vibrational modes that appear
in the addition product (coming from the original five transla-
tional and rotational degrees of freedom in the free hydrogen
molecules) overcome the normal contributions of the H-H (D-
D) stretching mode and the translational and rotational degrees
of freedom, this way leading to an overall inverse EIE.

At this point, an inverse deuterium EIE seems the rule rather
than the exception for the addition of molecular hydrogen to
suitable metal complexes to form either dihydride or dihydrogen
transition-metal complexes. However, we wondered what the
EIE would be for the formation of the particular group of
transition-metal dihydrogen complexes known as elongated
dihydrogen complexes.6 These complexes fill the gap between
classical polyhydrides (with H-H distances at or above 1.6 Å)
and nonclassical dihydrogen complexes (which have H-H
distances below 1.0 Å). Some of us7a,b have recently used a
combined electronic Density Functional Theory plus nuclear
dynamics study of two complexes to prove that the existence
and several properties of the elongated dihydrogen complexes
can be explained taking into account the quantum vibrational
motion of the hydrogen nuclei on a very anharmonic potential
energy surface.

The first purpose of this paper is to theoretically study the
deuterium equilibrium isotope effect for the addition of molec-
ular hydrogen to a complex leading to an elongated dihydrogen
transition-metal complex. To this aim we will calculate the
equilibrium constants of the several equilibria of the type
pictured in Scheme 1. Concretely, we will study the EIE
corresponding to the formation of the elongated dihydrogen

7898 J. Phys. Chem. A2000,104,7898-7905

10.1021/jp001327p CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/01/2000



complexes [Ru(H‚‚‚H)(C5Me5)(dppm)]+ andtrans-[Os(H‚‚‚H)-
Cl(dppe)2]+ (dppm) bis(diphenylphosphino)methane; dppe)
1,2-bis(diphenylphosphino)ethane). For the sake of comparison,
the case corresponding to the formation of the dihydrogen
complex W(CO)3(PCy3)2(η2-H2) will also be considered. On the
other hand, it has to be emphasized that, as mentioned above,
the interesting properties of the elongated dihydrogen complexes
arise from the high anharmonicity of the H-H stretching and
that the related vibrational modes are very sensitive to it. As a
consequence, any theoretical calculation of the EIE for these
complexes should include vibrational anharmonicity in a reliable
way. So, the second purpose of this paper is to devise an
effective strategy which allows for the practical calculation of
the anharmonic vibrational levels that influence the EIE in
dihydrogen transition-metal complexes, so that the vibrational
partition functions (and the EIE) can be reliably computed at a
reasonable cost.

II. Calculational Details

As stated in the Introduction, this work is devoted to obtain
equilibrium isotope effects. To this aim we have used a statistical
thermodynamic formulation8 as described in the next section.
The molecular partition functions were first computed within
the ideal gas, rigid rotor, and harmonic oscillator models. Then
a treatment to introduce anharmonicity was employed. A
pressure of 1 atm and a temperature of 300 K have been
assumed in all the calculations. Two different types of quantum
results are required. Electronic structure calculations provide
the geometry of the minimum energy structures and permits to
build up a sizable part of the potential energy surface (PES).
Nuclear motion calculations have been carried out to determinate
vibrational (anharmonic) energy levels and their associated
vibrational wave functions. Some technical details of both sets
of calculations follows.

A. Electronic Structure Calculations. For saving compu-
tational effort some modeling has been made on the experi-
mental complexes. The three cyclohexyl groups in the Kubas
complex were changed by three hydrogen atoms; the C5Me5

unit and the four phenyl groups in the dppm ligand were
substituted by a cyclopentadienyl and four hydrogen atoms,
respectively, in the ruthenium complex; finally, in the osmium
complex the four phenyl groups in the dppe ligand were changed
by four hydrogen atoms. As a result the dihydrogen complexes
that have actually been studied are W(CO)3(PH3)2(η2-H2),
[Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and trans-[Os(H‚‚‚H)Cl-
(H2PCH2CH2PH2)2]+.

All electronic structure calculations have been carried out with
the GAUSSIAN 98 series of programs.9 To solve the electronic
Schrödinger equation, the density-functional theory (DFT)10

methodology has been used. This methodology meets the
requirements of high accuracy and reasonable cost, and has been
employed with great success to study several organometallic
systems, including dihydrogen and polyhydride complexes.7a,7b,11

The three-parameter hybrid functional of Becke and the Lee,
Yang and Parr’s correlation functional, widely known as
Becke3LYP,12 have been used.

To reduce the cost of the computations an effective core
operator has been used to replace the 60 innermost electrons of

the tungsten atom in the Kubas complex. For the 14 outer
electrons of the metal atom the basis set was that associated
with the pseudopotential of Hay and Wadt13 with a standard
valence double-ê LANL2DZ contraction.14 The basis set for
the hydrogen atoms directly attached to the metal was a double-ê
supplemented with a polarization p shell.15,16 A 6-31G basis
set15 was used for the H atoms attached to a P or a Catom, as
well as for carbon and oxygen atoms. The phosphorus atoms
were described with the 6-31G(d) basis set.17

Most of the electronic results for the two elongated dihydro-
gen complexes have been taken from our previous papers.7a,7b,18

However, a few new electronic calculations have been carried
out for these two complexes using the same level of calculation
described there. That is, an effective core operator replacing
the inner electrons (28 and 60 in the ruthenium and osmium
atoms, respectively), and the basis set associated with the
pseudopotential of Hay and Wadt13 with a standard valence
double-ê LANL2DZ contraction14 for the 16 outer electrons in
both ruthenium and osmium atoms.The basis set for the
hydrogen atoms directly attached to the metal was a double-ê
supplemented with a polarization p shell.15,16 A 6-31G basis
set15 was used for the H atoms attached to a P or a Catom, as
well as for carbon atoms. The phosphorus atoms were described
with the 6-31G(d) basis set.17 For the chlorine atom in the
osmium complex a 6-31G(d) basis set17 was used. Finally, a
6-31G(p) basis set was used for the free hydrogen molecule
whose geometry has been optimized.

The Z-matrices of the minimum energy structures corre-
sponding to the Kubas complex and the elongated dihydrogen
complexes have been obtained from the authors of the ref 19
and from our previous results, respectively.7a,b Geometry
optimizations have been performed using the Schlegel gradient
optimization algorithm using redundant internal coordinates.14,20

For each minimum energy structure analytical second deriva-
tives of the energy with respect to the Cartesian coordinates
have been computed to obtain the frequencies and eigenvectors
associated with each vibrational normal mode within the
harmonic approximation. For complexes described by means
of pseudopotentials this is a new feature included in GAUSSIAN
98.9 For those systems GAUSSIAN 9414 and previous versions
only allow numerical second derivatives calculation by finite
differences of analytically computed first derivatives, this way
involving very time-consuming calculations. The fact that all
the frequencies turn out to be real confirms that the located
points are actual minima of the PES.

The normal modes have been recalculated for each dideu-
terated minimum energy structure in order to obtain the
frequencies and eigenvectors corresponding to the isotopically
substituted species.

B. Nuclear Motion Calculations. As explained in the next
section, introducing the anharmonicity effects in the elongated
dihydrogen transition-metal complexes requires the solution of
the nuclear Schro¨dinger equation (vibrational energy levels and
wave functions) over a suitable PES built up from electronic
calculations. Concretely, we have chosen a two-dimensional PES
as a function of the interatomic distance between the two
hydrogen (deuterium) atoms of the H2 (D2) unit of the complex
and the distance between the metal atom and the point halfway
between those two hydrogen (deuterium) atoms. These two
parameters behave as orthogonal coordinates, in such a way
that no coupled terms between them appear in the nuclear kinetic
operator of the corresponding nuclear Schro¨dinger equation, that
is,

SCHEME 1
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where x and y stand for the H-H and M-H2 distances,
respectively.

When calculating the PES, global relaxation of the rest of
geometrical parameters has been allowed. Some additional
details concerning the PES are given in the next section.

To solve the nuclear Schro¨dinger equation a discrete variable
representation (DVR)21,22 has been used. This method has
already been applied with success in the field of organometallic
chemistry.7 Computationally, the DVR has great advantages over
the more traditional variational basis representation, in which
the energy levels are obtained by diagonalization of the matrix
representation of the projection of the Hamiltonian operator on
a given basis set. In short, the DVR is a grid-point representation
instead of a basis set representation, and thus it facilitates the
calculation of the potential energy integralsVij. In this repre-
sentation, the potential energy matrix is diagonal,

and the kinetic energy matrix is very simple,

leading to a very sparse Hamiltonian matrix easier to
diagonalize than those coming from a basis set representation,

In this paper the generic DVR proposed by Colbert and Miller22

has been used. Once the grid-point representation of the nuclear
Hamiltonian has been built up, the nuclear energy levels and
wave functions are found through diagonalization of this matrix.
The nuclear wave functionsΨi are obtained as a linear
combination of associated basis functionsφj

whereNp is the total number of points in the grid. In a general
two-dimensional case whose two dimensions are labeledx and
y, φj are functions of the form

beingxm andym the (x, y) coordinates of the grid point associated
with the basis functionφj, and∆x and∆y the spacings in thex
and y directions of the grid. The wave function has to be
normalized prior to any calculation involving it.

III. Results and Discussion

According to the well-known formulas of the statistical
thermodynamics,8 we will calculate the deuterium equilibrium
isotope effect as the equilibrium constant (KH/KD) of the
equilibrium displayed in Scheme 1. For the three cases studied
in this work MLn stands for W(CO)3(PH3)2, [Ru(C5H5)(H2PCH2-
PH2)]+ and trans-[OsCl(H2PCH2CH2PH2)2]+.

A. Harmonic EIE. First of all, within the harmonic ap-
proximation, we have used the molecular partition functions
provided by GAUSSIAN 98 for each chemical species in
Scheme 1 to evaluate the harmonic EIE’s. In addition, we have
decomposed each EIE as the product of three factors: the
translational-rotational contribution (TRANSROT); the factor
corresponding to the contribution of the ground vibrational
states, that is, only including the zero-point energy levels (ZPE);
and the factor that appears when the excited vibrational energy
levels are taken into account (EXC). The corresponding results
are shown in Table 1. Our harmonic EIE for the complex
W(CO)3(PH3)2(η2-H2) turns out to be inverse, although numeri-
cally is somewhat lesser (that is to say, the isotope effect turns
out to be more intense) than the value calculated by Bender,
Kubas, Hoff and co-workers4 from the infrared spectra. The
difference stems fundamentally from the ZPE factor, which is
the main responsible of the inverse behavior. On the other hand,
the complexes [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and trans-
[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ also give inverse harmonic
EIE’s, with figures that do not qualitatively differ from those
corresponding to the Kubas complex. Then, our theoretical
results seem to confirm the inverse deuterium EIE as a rule for
the formation of the transition-metal dihydrogen complexes, at
least within the harmonic approximation.

B. Anharmonic EIE. We wondered what the effect of the
anharmonicity on the EIE’s would be, specially for the elongated
dihydrogen complexes. Theoretical harmonic vibrational fre-
quencies are, in general, overestimated23 because of incomplete
incorporation of electron correlation, the use of finite basis sets
and, as a major source of error, the neglect of anharmonicity
effects. For this reason, scaling factors are often applied prior
to the use of the frequencies in the EIE calculations. Scaling
factors for obtaining fundamental vibrational frequencies, low-
energy vibrations, zero-point vibrational energies and thermal
contributions to enthalpy and entropy from theoretical harmonic
frequencies have been determined by Scott and Radom24 by
fitting to experimental values. To our knowledge, no scaling
factors have been explicitly developed for calculating isotope
effects through vibrational partition functions. Perhaps the
scaling factors recommended for the prediction of the zero-
point vibrational energies or the thermochemical quantities, at
the Becke3LYP/6-31G(d) level, could be appropriate (0.9806,
0.9989, and 1.0015 for the zero-point vibrational energies, the
thermal contribution to enthalpy and the thermal contribution
to entropy, respectively).24 Note that in this formalism we are
looking for anharmonically corrected frequencies that provide
good results when used in the harmonic expression of the
vibrational partition function. As a matter of fact this is the
approach adopted by Bender, Kubas, Hoff and co-workers4 when
introducing the measured vibrational frequencies from the
infrared spectra (and so including anharmonicity) in the
harmonic treatment of Bigeleisen and Goeppert-Mayer.5 How-
ever, we decided not to use any scaling factors in this paper for
two reasons. First of all, the above indicated scaling factors are
very close to one and they do not appreciably modify the
calculated EIE’s indicated in Table 1. Second, those scaling
factors have not been fitted to reproduce properties of transition
metal complexes and even less to account for the high degree
of anharmonicity found in the elongated dihydrogen complexes.

Instead of calculating anharmonically corrected frequencies,
in the present paper we will try to determine directly the
anharmonic vibrational energy levels. Assuming an independent
normal-mode framework (i.e., no mode-mode coupling), the
vibrational partition function of the molecule is separable as a

T̂ ) -p2
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∂
2

∂x2
+ -p2

2µy

∂
2

∂y2
(1)

Vii ′ ) δii ′V(xi) (2)

Tii ′ )
p2(-1)i-i′

2m∆x2 {π2/3 i ) i′
2

(i - i′)2 i * i′ } (3)
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product of the contributions corresponding to each individual
normal mode. The potential energy along a single mode could
be expanded in a series of powers of the associated normal
coordinate with coefficients given by the second, third, fourth
and higher numerical directional derivatives of the potential
energy along the normal-mode direction. If the vibrational
energy levelsEi

m of the one-dimensional potential energy along
the mode m can be determined in some way, the vibrational
partition function for mode m (qm) can be calculated as

wherekB is the Boltzmann’s constant. To avoid the calculation
of high numerical derivatives (with the associated lack of
accuracy) it is better to build up a one-dimensional potential
energy surface as a function of each normal coordinate. Then
we can solve the nuclear Schro¨dinger equation by means of
the DVR method to find the vibrational energy levels, which
incorporate the anharmonicity associated with each normal mode
in a natural way.

Our three dihydrogen transition-metal complexes have be-
tween 17 and 28 nuclei, what implies dealing with 45-78
vibrational normal modes. Application of the above outlined
procedure to each normal mode is a task out of reach. Instead,
to account for the anharmonicity in a practical way, we propose
an attainable strategy that works in the following fashion:

(a) The most anharmonic vibrational normal modes are
previously chosen (they will be called anharmonic modes from
here on).

(b) For each anharmonic normal mode a one-dimensional PES
as a function of the corresponding normal coordinate is built
up.

(c) The DVR method is used to solve the nuclear Schro¨dinger
equation over the PES associated with each anharmonic normal
mode, therefore obtaining the corresponding anharmonic vi-
brational energy levels.

(d) The anharmonic vibrational partition function for each
anharmonic normal mode is computed through eq 7.

(e) The anharmonic vibrational partition function of the
molecule is calculated as a product of the anharmonic vibrational
partition functions corresponding to the anharmonic normal
modes and the harmonic vibrational partition functions corre-
sponding to the remaining normal modes (the ones that can be
considered harmonic modes). As a matter of fact, this is done
by substituting the original harmonic contributions of the
anharmonic modes in the totally harmonic vibrational partition
function of the molecule by their corresponding anharmonic
vibrational partition functions.

What are the main sources of anharmonicity in the dihydrogen
transition-metal complexes that can influence the EIE’s? Indeed
they will be associated with the dihydrogen ligand. Owing to
the large mass difference between the light hydrogen (or
deuterium) nuclei and the heavy rest of the complex, the normal
modes involving the hydrogen (or deuterium) nuclei consist
fundamentally of their motion. There are 6 such vibrational
modes.4 The associated normal coordinates can be defined from

suitable displacement coordinates adapted to symmetry, which
are pictured in Figure 1. These symmetry coordinates correspond
to the unique vibrational mode (the H-H stretching) and the
lost translational and rotational degrees of freedom for free
hydrogen. Assuming that the hydrogen nuclei move under the
field of a heavy point center (MLn) formed by the rest of the
complex, their symmetry point group isC2V. Figure 1 also shows
the irreducible representation to which each symmetry coordi-
nate belongs. There are two totally symmetrical coordinates (A1),
two coordinates with symmetry species B1, one B2 symmetry
coordinate and one A2 symmetry coordinate. Each normal
coordinate has to be a linear combination of the symmetry
coordinates that belong to the same irreducible representation
of this normal coordinate. For instance, the normal coordinates
of the two A1 modes are linear combination of the two A1

symmetry coordinates (the H-H stretching and the symmetric
M-H2 stretching).

The major anharmonicity effect is probably related to the
H-H stretching (specially for the elongated dihydrogen com-
plexes), which participates in the two A1 normal modes. Then
both A1 normal modes have to be considered as anharmonic
modes in the sense defined above. In addition, it is expected
that anharmonicity couples significantly the two modes of the
same symmetry. Therefore, we will assume the independent
normal-mode framework neglecting all the mode-mode cou-
plings but the coupling between the two A1 modes, that will
not be separated in our treatment. This assumption slightly
modifies the above introduced a-e working scheme, in the sense
that both anharmonic normal modes are studied together over
a two-dimensional PES as a function of the two symmetry
coordinates that define the corresponding normal coordinates.
This leads to a two-dimensional anharmonic vibrational partition
function that will substitute the two original one-dimensional
harmonic contributions of the anharmonic modes in the har-
monic vibrational partition function of the molecule, in this way
leading to the anharmonic vibrational partition function of the
molecule.

A series of electronic structure calculations have been
performed to construct the two-dimensional PES for the complex
W(CO)3(PH3)2(η2-H2). A collection of 120 points, each corre-
sponding to a different set of H-H and W-H2 distances, has

TABLE 1: Harmonic EIE’s and Contributions to Them

W(CO)3(PH3)2(η2-H2) [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+

TRANSROT 5.519 (5.77) 5.470 5.553
ZPE 0.131 (0.20) 0.135 0.189
EXC 0.675 (0.67) 0.729 0.665
EIE 0.486 (0.78) 0.538 0.696

Numbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff and co-workers from the infrared spectra.

Figure 1. Symmetry coordinates associated with the dihydrogen ligand
along with their irreducible representation in aC2V symmetry point
group. For the three cases studied in this work MLn stands for W(CO)3-
(PH3)2, [Ru(C5H5)(H2PCH2PH2)]+ andtrans-[OsCl(H2PCH2CH2PH2)2]+.

qm ) ∑
i

e-Ei
m
/kBT (7)
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been calculated. The ranges covered have been from 0.6 to 2.0
Å for the H-H distance, and from 1.4 to 2.5 Å for the distance
between the tungsten atom and the midpoint halfway between
the two hydrogen atoms. The resulting points have been fitted
into a two-dimensional cubic splines functional form,25 which
is a smooth and continuous function. Figure 2 depicts the two-
dimensional PES as a contour plot.

Analogous two-dimensional PES′ were built up for the two
elongated dihydrogen complexes in two previous papers.7a,bFor
the complex [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ the range for the
H-H distance covered from 0.59 to 2.29 Å, while the Ru-H2

distance covered from 1.00 to 2.20 Å. As for the complextrans-
[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+, the intervals were from 0.6
to 2.2 Å and from 1.0 to 2.2 Å for the H-H and the Os-H2

distances, respectively. From those two works we have borrowed
the corresponding fitted two-dimensional cubic splines. The
PES′ for the complexes [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and
trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ turn out to be quali-
tatively similar and for the sake of conciseness only the second
one has been pictured in Figure 3.

Comparison between Figures 2 and 3 discloses important
differences. The first one concerns to the position of the
minimum energy structure. For the Kubas complex it is found
at d(H-H) ) 0.832 Å andd(W-H2) ) 1.872 Å, whereas the
corresponding values of the minimum energy structure for the
complextrans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ are 1.071 and
1.567 Å, respectively. However, the most important point is
the shape of the PES in the region next to the minima. Around
the minimum energy structure of the Kubas complex, a normal
dihydrogen complex, the potential energy valley is quite parallel
to the W-H2 axis with a trend to curve along the H-H direction
as the W-H2 distance shortens (Figure 2). As a consequence,
the two normal modes of A1 symmetry, although mixed to some
extent (as already pointed out by Bender, Kubas, Hoff and co-
workers4), can be still identified, respectively, with the two A1

symmetry coordinates. That is to say, one normal mode is
basically the H-H stretching and the other one is essentially
the symmetric M-H2 stretching. This is, probably, a common
feature of the normal dihydrogen transition-metal complexes.
The scenario for thetrans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+

clearly differs (Figure 3). In this case the potential energy valley
surrounding the minimum energy structure is oblique, in such

a way that none of the two A1 normal modes can be identified
at all with one of the A1 symmetry coordinates depicted in
Figure 1. Along the normal mode that is roughly parallel to the
energetically smooth oblique valley, the stretching of the H-H
bond leads to shortening of the M-H2 distance, and vice versa.
On the other hand, the other normal mode is orthogonal to the
first one and consists of the simultaneous stretching (or
compression) of both the H-H bond and the M-H2 distance.
Apart from the obliqueness of the two A1 normal modes that
imposes a global treatment, this valley is highly anharmonic,
this being a crucial factor in determining the interesting
properties of the elongated dihydrogen transition metal-
complexes.

Once the two-dimensional cubic splines that define the PES′
have been obtained, the corresponding nuclear Schro¨dinger
equations can be solved using the DVR method. First of all, a
certain reduced mass has to be assigned to each degree of
freedom in the Hamiltonian. As in our previous works,7a,b,18

the reduced masses for the motion along the symmetry
coordinates have been calculated (for the perprotio complexes)
as

Note that the reduced masses of the dideuterated complexes
can be calculated in an analogous way. Then, the matrix
representation of the nuclear Hamiltonian over a rectangular
grid of equally spaced points has been constructed. Different
sizes of each grid have been tested until convergence of the
energy levels has been achieved. The characteristics of the final
grids chosen for the different systems have been as follows:
35 × 27 ) 945 for both the perprotio and the dideuterated
complexes W(CO)3(PH3)2(η2-H2); 29 × 21 ) 609 for both the
perprotio and the dideuterated complexes [Ru(H‚‚‚H)(C5H5)-
(H2PCH2PH2)]+; and 33× 25 ) 825 and 37× 27 ) 999 for
the perprotio and the dideuterated complexestrans-[Os(H‚‚‚H)-
Cl(H2PCH2CH2PH2)2]+, respectively (the format used is: num-
ber of points along the H-H coordinate× number of points

Figure 2. Contour plot of the two-dimensional potential energy surface
for the complex W(CO)3(PH3)2(η2-H2). Distances are given in Å. Energy
contours appear every 5 kcal/mol. The arrows indicate the position of
the minimum energy structure (d(H-H) ) 0.832 Å andd(M-H2) )
1.872 Å).

Figure 3. Contour plot of the two-dimensional potential energy surface
for the complextrans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+. Distances are
given in Å. Energy contours appear every 5 kcal/mol. The arrows
indicate the position of the minimum energy structure (d(H-H) ) 1.071
Å and d(M-H2) ) 1.567 Å).

1
µd(H-H)

) 1
mH(A)

+ 1
mH(B)

1
µd(M-H2)

) 1
mH2

+ 1
m[ML n]

(8)
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along the M-H2 coordinate) total number of points). Diago-
nalization of the corresponding 6 matrices provides the 6 sets
of vibrational wave functions (eigenvectors) and anharmonic
energy levels (eigenvalues). These energy levels permit the
calculation of the anharmonic vibrational partition function of
each molecule according to the procedure outlined above and
then the anharmonic EIE’s are obtained.

Table 2 exhibits the anharmonic EIE’s and their decomposi-
tion in factors (evidently the TRANSROT contribution is the
same as in Table 1). Comparison of Tables 1 and 2 shows that
anharmonicity does not significantly alter the EXC factor. The
important changes only concern the ZPE factor. For the complex
W(CO)3(PH3)2(η2-H2) anharmonicity augments just slightly the
ZPE contribution and, therefore, the EIE. The anharmonic EIE,
still clearly inverse, is somewhat closer to the experimental
values than the harmonic EIE. Taking into account the range
of uncertainty of the experimental values4 (0.78 from infrared
spectra or 0.70( 0.15 from displacement of N2) and that
anharmonicity has been only partially incorporated, the agree-
ment is rather good. Anyway, we have shown that anharmonicity
tends to favor the addition of H2. This effect is magnified in
the two highly anharmonic elongated dihydrogen complexes.
The anharmonic EIE’s for the complex [Ru(H‚‚‚H)(C5H5)-
(H2PCH2PH2)]+ and, specially, for the complextrans-[Os-
(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ (even more anharmonic than the
complex of ruthenium) become clearly normal. Then, we predict
theoretically that the deuterium equilibrium isotope effect for
the addition of molecular hydrogen to a transition-metal complex
leading to the formation of [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+

or trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ is clearly normal.
That is to say, H2 binds better than D2 to both [Ru(C5H5)-
(H2PCH2PH2)]+ and [OsCl(H2PCH2CH2PH2)2]+, and this con-
clusion is probably general for the formation of any elongated
dihydrogen transition metal complex.

Why anharmonicity tends to favor the addition of H2? Isotopic
substitution by deuterium lowers the vibrational energy levels
corresponding to normal modes that consist fundamentally of
motion of hydrogen nuclei, that is, the 6 normal modes
associated with the dihydrogen ligand (Figure 1). The key is
that the larger the anharmonicity of the normal modes sensitive
to the isotopic substitution in the dihydrogen complex, the
smaller the gap between the equivalent HH and DD vibrational
energy levels. Along the addition, the change in the HH/DD
zero-point energy gap for the normal mode corresponding
originally to the H-H (D-D) stretching in the free hydrogen
molecule gives a normal ZPE factor (a value greater than unity).
This effect is larger as the HH/DD gap is smaller in the
dihydrogen complex. On the contrary, conversion of the 5
translational and rotational modes in free hydrogen to vibrational

normal modes in the dihydrogen complex leads to an inverse
ZPE factor (a value smaller than unity), this effect being smaller
as the HH/DD gap is more reduced in the dihydrogen complex.
As a consequence of all this, anharmonicity increases the
numerical values of the ZPE factors associated with the
dihydrogen ligand (the normal and inverse factors become more
normal and less inverse, respectively), so tending to produce a
normal EIE. This effect is so important in the highly anharmonic
elongated dihydrogen transition-metal complexes that the EIE
becomes normal.

Finally, we have to remark that the anharmonic corrections
calculated in this paper are based on a two-dimensional
approach. Indeed, this reduction of dimensionality is a limitation.
However, the results obtained at the 2D approximation sounds
reasonable. As a matter of fact, the major source of anhar-
monicity is related with the H-H stretching, which participates
in the two A1 normal modes. Given the size of the systems,
inclusion of more dimensions (B1 normal modes) would be out
of reach. On the other hand, incorporation of coupling would
be desireable but it is not probably necessary in order to obtain
a reasonable prediction that can be useful for experimentalists.

C. Thermodynamic Functions. We have calculated the
thermodynamic functions at 300 K corresponding to the
equilibria of the type pictured in Scheme 1. The harmonic values
are obtained from the harmonic molecular partition functions
according to the suitable statistical thermodynamic formulas.8

We have determined the anharmonic values by substituting in
the corresponding expressions the contributions of the two
original one-dimensional harmonic vibrational partition functions
of the two anharmonic modes by the contribution of the two-
dimensional anharmonic vibrational partition function. Results
are shown in Table 3. Note that∆H also gives the reaction
enthalpy difference (∆∆H) between the addition of H2 to a
transition-metal complex leading to the formation of a dihy-
drogen complex and the corresponding addition of D2. The same
is true for the entropy and the Gibbs energy.

For the complex W(CO)3(PH3)2(η2-H2) it is clear that, as
already found by Bender, Kubas, Hoff and co-workers,4 D2

binding is enthalpically favored over H2 binding, but it is
disfavored entropically. Anharmonic values are somewhat closer
to the experimental thermodynamic functions (∆H ) 0.64 kcal
mol-1 and ∆S ) 1.7 cal mol-1 K-1), the agreement being
excellent. Our corresponding EIE’s (see above) have been
apparently not so good in comparison with the experimental
results, but it has to be recalled that EIE’s are measured as
equilibrium constants, that is, as exponential functions of∆G
and, indeed, they are much more sensitive to small errors
(theoretical or experimental). On the other hand, anharmonicity
lowers the endothermicity of equilibria indicated in Scheme 1

TABLE 2: Anharmonic EIE’s (see text) and Contributions to Them

W(CO)3(PH3)2(η2-H2) [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+

TRANSROT 5.519 5.470 5.553
ZPE 0.143 0.323 0.505
EXC 0.676 0.689 0.601
EIE 0.534 1.217 1.685

TABLE 3: Thermodynamic Functions (300 K) Corresponding to the Equilibria of the Type Pictured in Scheme 1a

W(CO)3(PH3)2(η2-H2) [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+

har anhar har anhar har anhar

∆Hb 0.906 0.871 0.912 0.350 0.688 0.041
∆Sc 1.587 1.663 1.806 1.555 1.584 1.157
∆Gb 0.431 0.373 0.370 -0.117 0.216 -0.314

a Har and Anhar stand for the Harmonic and Anharmonic aproximations, respectively.b In kcal‚mol-1. c In cal‚mol-1‚K-1
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because it also reduces the gap among the equivalent HH and
DD vibrational energy levels in the dihydrogen complexes. This
effect is again highly amplified in the two elongated dihydrogen
complexes, for which that endothermicity becomes quite small
(only when anharmonicity is introduced). In these cases the
entropic term (-T∆S) dominates at this temperature and the
EIE becomes normal. It becomes manifest that anharmonicity
is cleary required to describe correctly the thermodynamic of
the process for the elongated dihydrogen transition-metal
complexes.

D. Anharmonic Vibrational Wave Functions. A final point
concerns the anharmonic vibrational wave functions obtained
as eigenvectors of the DVR matrices. For the sake of brevity,
we will only comment the vibrational wave functions corre-
sponding to the perprotio complexes W(CO)3(PH3)2(η2-H2) and
trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+. Figures 4 and 5 present
the contour plots of the wave functions associated with the
ground vibrational state and the first excited states for both the
Kubas complex and the elongated dihydrogen complex, respec-
tively. The ground wave function spreads on the low-energy
basin around the minimum energy structure on the PES.
Conversely, excited wave functions tend to progressively expand
toward higher energy regions. As a matter of fact the wave
functions reflect the shape of the corresponding PES. So, the
ground wave function for the Kubas complex surrounds rather
symmetrically the minimum (compare Figures 2 and 4), showing
a slight deviation along the H-H direction as the W-H2

distance shortens. The wave functions associated with the first,
second and third excited states present one, two and three nodal
lines, respectively. These states are all vibrationally excited states
corresponding to progressive excitations of the normal mode
that is basically the W-H2 stretching which is the direction
with smoothest slope around the minimum on the PES.
However, the progressive expansion of the excited wave

functions along the H-H direction suggests that the symmetric
W-H2 stretching normal mode mixes more and more with the
H-H stretching normal mode as the order of the excitation
grows. On the other hand, the fourth excited state displays only
one (although somewhat sinuous) nodal line and corresponds
to the first excitation of the H-H stretching normal mode (the
steepest direction around the minimum on the PES). In this case
an important mixing with the symmetric W-H2 stretching
normal mode is present as indicated by the expansion of the
wave function along the W-H2 direction.

The scenario is different for the complextrans-[Os(H‚‚‚H)-
Cl(H2PCH2CH2PH2)2]+. In this case, the ground and the excited
wave functions spread along the energetically smooth, long
oblique valley (compare Figures 3 and 5). The first and second
excited states possess one and two nodal lines, respectively,
roughly perpendicular to the major axis of the almost elliptic
valley. These states are vibrationally excited states corresponding
to progressive excitations of the normal mode roughly parallel
to the valley. On the other hand, the third excited state has only
one nodal line approximately along the major axis of the valley
and corresponds to the first excitation of the second A1 normal
mode (the one that vibrates along the steepest direction). It has
to be underlined that, for the elongated dihydrogen complexes,
the degree of coupling between both A1 normal modes does
not seem to change as the order of the excitation goes up, at
least for the lower excited states analyzed here.

IV. Conclusions

In this paper we have theoretically calculated the deuterium
equilibrium isotope effect for the binding of H2 and D2 to three
dihydrogen transition-metal complexes: W(CO)3(PCy3)2(η2-H2),
[Ru(H‚‚‚H)(C5Me5)(dppm)]+ andtrans-[Os(H‚‚‚H)Cl(dppe)2]+.
Concretely, we have taken the complexes W(CO)3(PH3)2(η2-
H2), [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and trans-[Os(H‚‚‚H)-
Cl(H2PCH2CH2PH2)2]+, respectively, as realistic models of
them. The last two complexes are known to be elongated
dihydrogen complexes for which the high anharmonicity related
to the H-H stretching is a crucial feature that determines many
of their special properties. In this paper, we propose an attainable
strategy to account for the effects of anharmonicity in a practical
and reliable way. In short, the procedure consists of using a

Figure 4. Contour plots of the vibrational wave functions associated
with the ground vibrational state (G) and the first (1), second (2), third
(3) and fourth (4) excited states for the complex W(CO)3(PH3)2(η2-
H2). Distances are given in Å. (+) and (-) refer to the sign of the
vibrational wave function in order to indicate where the nodes are.

Figure 5. Contour plots of the vibrational wave functions associated
with the ground vibrational state (G) and the first (1), second (2) and
third (3) excited states for the complextrans-[Os(H‚‚‚H)Cl(H2PCH2-
CH2PH2)2]+. Distances are given in Å. (+) and (-) refer to the sign of
the vibrational wave function in order to indicate where the nodes are.
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discrete variable representation to solve the nuclear Schro¨dinger
equation on the potential energy surface built up along the most
anharmonic vibrational normal modes. This provides the cor-
responding anharmonic vibrational energy levels and, from them,
an anharmonically corrected vibrational partition function of
the molecule can be calculated. This partition function is not
the complete anharmonic partition function of the molecule yet,
but it contains the anharmonicity contributions corresponding
to the considered modes.

We have proven, within the pure harmonic approach, that an
inverse deuterium equilibrium isotope effect is found for the
three complexes. However, anharmonicity tends to favor the
H2 binding. Anharmonicity in the complex W(CO)3(PH3)2(η2-
H2) is not important enough to change the preference for D2

binding (in good agreement with the experimental results), but
the deuterium equilibrium isotope effect is clearly normal for
the binding in [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and trans-
[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+. This is the first time that
the preference for the binding of H2 is predicted in elongated
dihydrogen transition-metal complexes. This result opens new
possibilities to separate hydrogen isotopes at room temperature
on metal complexes that reversibly bind molecular hydrogen
so that experimental work devoted to proving that theoretical
prediction would be very interesting

Finally, it has to be emphasized that anharmonicity has to be
taken into account in order to reproduce and theoretically predict
the experimental results concerning many properties of dihy-
drogen and, probably, polyhydride transition-metal complexes,
specially in what concerns the isotope effects. Since experi-
mental results in this field are not easy to obtain, we think that
the theoretical procedure we propose here can be very useful
to clarify many related problems as, for instance, whether
deuterium favors a classical versus a nonclassical site in
transition metal complexes. Work on this topic is now in
progress in our laboratory.
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