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The overlap between nonorthogonal wave functions of resonance (Siegert) states is analyzed. Their asymptotic
behavior, which controls the extent of nonorthogonality, is shown to be directly related to the residues of the
energyS matrix. This allows one to estimate overlap integrals using solely positions and widths of resonance
states, without the explicit calculation of the wave functions. This assessment, as applied to NO2, suggests
that resonances in the molecule are only slightly nonorthogonal and decay independently of one another.

I. Introduction

This paper substantiates the model used in our previous study
for the analysis of the time-dependent decay of NO2 molecules
excited above the first dissociation thresholdD0 (see ref 1, to
be referred to as paper I). Experimental time delay curves were
successfully simulated by computing the survival probability,1

wherepν is the probability amplitude of finding a molecule in
a resonance stateν at timet. The key assumption of the model
was that the survival probability could be expressed in a simple
multiexponential form:

Here,Γν denotes the width of theνth resonance state, known
from the numerical solution of the Schro¨dinger equation;|Aν|2
measures the probability for exciting this resonance state with
laser light. For a chaotic molecule, such as NO2, the coefficients
|Aν|2 are determined by the form of the pump pulse,1 and the
summation in eq 2 runs over those states that fall within the
spectral bandwidth of the laser. The chief value of eq 2 is that
it uses a limited amount of information for transforming a
resonance spectrum into a time-dependent decay: only the
positions and the widths of resonances are required, but not the
corresponding wave functions. This was of importance to the
previous study1 since the wave functions of the resonance states
have not been calculated. At the same time, such a “diagonal
approximation”, in which states decay independently of one
another, requires justification, at least in the case of NO2 where
resonances are known to overlap. For the spectrum, calculated
in paper I, the overlap parameterê, composed of the average
resonance width〈Γ〉 and the density of statesF,

varies between 1 and 3. Is it permissible to neglectthis overlap
in P(t)?

In the present paper we shall explain why the “diagonal
approximation”, eq 2, provides a reliable estimation of the

survival probability P(t). The problem will be tackled by
considering the asymptotic properties of resonance eigen-
functions: exact solutions of the Schro¨dinger equation. In this
respect, our approach is different from the more familiar one,
in which the decay of overlapping resonances is studied after
statistical averaging over the energy window containing many
states.2-6

The accuracy of the approximation depends on the extent to
which resonance wave functions are orthogonal. LetΦ(t ) 0;
R) be the initial wave packet describing the molecule above
the dissociation threshold (vectorR denotes a set of internal
coordinates; Jacobi coordinatesR, r, andγ defined in section
III of paper I are used throughout this work). Assume further
thatΦ(t ) 0; R) can be expanded over a set of resonance wave
functionsψν:7

The probability amplitudepµ in eq 1 is a projection of the wave
packet at timet, Φ(t), onto stateµ. In the most general form,
this projection can be written as

Here, dΩ is a volume element;Eν ) Eν
0 - iΓν/2 is a complex

resonance energy;ψ̃µ is a function of thedual space9 (in Dirak
notation,ψ̃µ

/ is nothing but abra-vector). The dual functionψ̃µ
coincides withψµ if the eigenvalue is real; otherwise,ψ̃µ and
ψµ are two distinct functions (see discussion below). If the
overlap betweenψ̃ν

/ andψµ is zero, the two states are said to
be bi-orthogonal. Were all statesν and µ bi-orthogonal, the
amplitude pµ would be equal toAµe-iEµt and the survival
probability P(t) would take on a “diagonal” form, as in eq 2.
If, however,ν and µ are not bi-orthogonal, bothpµ and P(t)
depend on the elements of the overlap matrixN:

andP(t) contains not only exponential decays but also oscillating
cosine terms describing interference between pairs of resonance
states.

The chief cause of nonorthogonality of resonance wave
functions is the following. SinceEν has a negative imaginary
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Φ(t ) 0; R) ) ∑
ν

Aνψν(R)

pµ ) ∫ ψ̃µ
/Φ(t) dΩ ) ∑

ν

Aνe
-iEνt∫ ψ̃µ

/ψν dΩ

Nµν ) ∫ ψ̃µ
/ψν dΩ (4)

P(t) ) ∑
ν

|pν|2 (1)

P(t) ) ∑
ν

|Aν|2e-Γν t (2)

ê ) 〈Γ〉F (3)
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part, the amplitude ofψν(R) exponentially grows in the
asymptotic region (R f ∞).10 In fact, the integrals in eq 4 do
not exist! They are only meaningful if taken over a “bounded
interaction region”,R e Rmax (see, for example, ref 8). When
defined in this way, the overlap integrals do not diverge but
are not zero either; by the same token, the normalization
integrals, i.e., the diagonal elementsNνν, differ from unity. It is
these matrix elementsNµν that we are going to estimate for NO2

from first principles, using only calculated positions and widths
of the resonance states. Of crucial importance is the fact that
we can expressNµν through the residues of theS matrix at
energiesEµ andEν (cf. eq 25 below). The residues, in turn, can
be estimated without reference to the resonance wave functions.

The plan of the paper is the following. In section II we outline
the most important features of Siegert states. The asymptotic
behavior of resonance eigenfunctions is analyzed in section III.
Finally, the results of section III are further used in section IV
for estimating the overlap matrixN for NO2.

II. Siegert States

Let us briefly review what is known about the resonance wave
functions. Since several in-depth introductory texts are available
(see, for example, refs 8, 10, and 11) and, additionally, the
subject was recently addressed by a number of research
groups,12-14 we have restricted the consideration to the proper-
ties essential for our model.

Resonance statesψν (also called Siegert states, ref 15) are
solutions of the Schro¨dinger equation with “radiation” boundary
conditions:

Here, Ĥ is the molecular Hamiltonian; the (complex) wave
vector is given bykν ) (2Eν)1/2 and the resonance energy is
measured from the first dissociation threshold (in what follows
we assumep ) µR ) 1, whereµR is the mass associated with
the coordinateR). The boundary condition (5b) is imposed in
the asymptotic region of the potentialV, where rotation and
vibration of NO are already separated from the (free) transla-
tional motion along the dissociation coordinateR. Siegert
functions are the residues of the energy Green’s functionG (E),
which is written as

The eigenfunctions defined in eqs 5a, 5b, or 6 form a suitable
basis for expanding wave packets and studying their temporal
evolution. The simplicity of the energy dependence of the
Green’s function guarantees that the evolution operator [energy
Fourier transform ofG (E)] is diagonal in theψν representation.
It is these states that we shall use for calculating the overlap
matrix N. In the strict sense, the Schro¨dinger equation, which
we solved numerically in paper I,approximatesthe problem
(5a) and (5b) but is different from it. Recall that the resonance
spectrum was calculated using the optical model16 with the
Hamiltonian

Boundary condition (5b) was not imposed individually on every

resonance state; instead, an energy-dependent imaginary po-
tential -iVopt(E) was introduced. This potential was meant for
absorption of incoming waves and simulation of the correct
asymptotic behavior. The eigenvalues and eigenfunctions of the
problem solved in paper I and the problem defined in eqs 5a
and 5b are known to be closely related ifVopt depends weakly
on energy.2,8,17For NO2 this is indeed the case. The change in
Vopt(E) over a given energy intervalδE is roughly proportional
to ∼δE/∆H, where∆H is the spectral range of the Hamiltonian
Ĥ. Since∆H is about 30 eV for the spatial grid used in the
calculations, while the considered energy range isδE ≈ 2000
cm-1, the relationδE/∆H , 1 and, hence,|∂Vopt/∂E| , 1 is
satisfied. This means that the optical potential is almost
independent of energy within the entire energy range studied.
Consequently, the choice between the Schro¨dinger equation with
a real Hamiltonian and complex boundary conditions (as in eqs
5a and 5b) and the Schro¨dinger equation with a complex
Hamiltonian (as in the optical model, eq 7) becomes a matter
of convenience: for numerical computations, the absorbing
potential appears to be a sound alternative today, while the
analysis of properties of resonance wave functions can be
performed with eq 5a.

A remark is in order concerning Green’s function, eq 6, and
the boundary condition in eq 5b. Representation ofG (E) as a
meromorphic function (i.e., as a sum over simple poles) is
appropriate only if the decay proceeds via a single product
channel.11,18 If the number of channels is larger than one (as
happens with NO2 roughly 3.5 cm-1 above the dissociation
threshold),G (E) contains branch points, and the Riemann
surface can no longer be mapped onto the complexk plane
(examples of multichannel Green’s functions andS matrices
are discussed in chapter 17 of ref 18). At the same time, we
remind the reader, that the “single-channel” eq 6 is at the heart
of the harmonic inversion algorithm employed in paper I for
solving the Schro¨dinger equation. Moreover, when quantum
results obtained with different methods are compared, it is
apparent that eq 6 works well for multichannel decay: the
spectrum behaves as if there were only one threshold in the
reactions the first dissociation thresholdD0. Therefore, in what
follows we shall use the single-channel approximation. Con-
sistent with this, the boundary condition, eq 5b, is also written
for one channel only. Generalization to the multichannel case
will be given elsewhere.19

The functional space of solutions of eq 5a is non-Hermitian,
because the boundary condition is complex. The scalar product
in this space is also non-Hermitian,8,20so that integrals involving
resonance states contain unusualbra-functions, as in eq 4. This
formal mathematical definition is physically significant: for
example, combinationsψ̃ν

/ψν are shown to enter perturbation
series for resonance states.11,17The functionψ̃ν satisfies the same
Schrödinger equation asψν, but with a boundary condition
corresponding to a purely incoming wave:8,21

Thus, ψ̃ν corresponds to the eigenvalueEν
/. It can be easily

shown thatψ̃ν andψν are related through

Therefore, the overlap matrix, eq 4, can be rewritten as

Ĥψν ≡ [T̂ + V(R,r,γ)] ψν ) Eνψν (5a)

[∂ψν

∂R]R)Rmax

) ikνψν (5b)

G (E) ) ∑
ν

ψ̃ν
/ψν

E - Eν

(6)

Ĥopt(E) ) Ĥ - iVopt(E) (7)

[∂ψ̃ν

∂R]R)Rmax

) -ikν
/ψ̃ν (8)

ψ̃ν ) ψν
/ (9)

Nµν ) ∫ReRmax
ψµψν dΩ (10)
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Resonance wave functions enter the integral without complex
conjugation, as do the bound eigenfunctions. This shows, by
the way, that all matrix elementsNµν, including the normaliza-
tion constantsNνν are complex (the significance of the complex
norm is discussed in ref 17). The time dependence of the dual
state vectors is given by

Note that eq 9 holds only for the coordinate partψ̃ν of the time-
dependent functionΨ̃ν(t;R). By means of the dual functions
one can define the norm of a state, expectation values of
operators, and the probability current density. For example, an
analogue of the continuity equation reads as

The integral on the right-hand side (rhs) is evaluated along
Jacobi coordinatesr and γ over the surfaces defined by the
conditionR ) Rmax.

The overlap matrix, eq 10 can be cast in a different form.8

Just as in the one-dimensional case,8 one considers two wave
equations forψ̃µ andψν, multiplies them with (respective) dual
functions and applies Green’s formula to their difference. The
result of these transformations is the following convenient
expression forN:

Equation 13 shows that the overlap is sensitive to the “tails” of
resonance wave functions on the surfaceR ) Rmax where the
boundary condition, eq 5b, is imposed. Thus, to calculateN
one has to exactly knowψν at large interfragment distances.

III. Asymptotic Behavior of Resonance Wave Functions
and Residues of the S Matrix

The interaction between the decay products vanishes on the
surfaceR ) Rmax. Therefore, at large distancesR the function
ψν has the following form consistent with the boundary
condition (5b):

Here,Cν(kν) is a complex number [Cν(kν) ) Cν
/(-kν

/), because
of the symmetry property (9)];φn(r,γ) is a wave function of
the NO fragment, andn denotes its vibrational and rotational
quantum numbers. Sinceφn(r,γ) is a real and quadratically
integrable function, the surface integral inNµν (eq 13) is unity,
and the overlap matrix reduces to

The coefficientsCν control the norm, as well as the overlap.
We show now thatCν is related to the residue of theS matrix
at the polekν. Explicitly: If the Smatrix near the pole is written
as22

thenCν is given by

This is one of the main results of this paper. It generalizes an
analogous relation obtained earlier in ref 11 for wave functions
of bound states.23 Equation 17 implies that the information about
the asymptotic behavior of resonance wave functions lurks in
scattering phases.

Here is the proof of eq 17. Let us consider a regular solution
of the wave equation above the dissociation threshold. At large
interfragment distances it can be written as

At k ) kν this solution goes over into the eigenfunctionψν.
Therefore, in a small vicinity of the complex polekν,

where the pole expansion, eq 16, is valid, the functionø must
assume the following form:

This form can be enforced uponø by adjusting the constant
factor in eq 18. Now we use the “continuity equation” (12) near
the polekν. Let one of the functions, on which the current density
is built, be the functionø. Another one can be chosen to be the
dual functionψ̃ν. Since it corresponds to a distant pole-kν

/, its
asymptotic behavior remains unchanged ask f kν:

Then, the continuity equation forø and ψ̃ν reads as

HereEε is the energy associated with the wave vectork:

Let us estimate both sides of eq 20 to first order inε. On the
left-hand side (lhs) we find:

In the last equality we take into account that the norm ofψν is
given by eq 15 withµ ) ν. Estimating the rhs of eq 20, one
has to keep in mind thatI φn

2 ds ) 1 and the normal derivative
to the surfaces coincides with ∂/∂R. Then, after simple
transformations one gets

Ψ̃ν(t;R) ) ψ̃νe
-iEν

*t (11)

∂

∂t ∫ReRmax
Ψ̃µ

/Ψν dΩ ) - i
2

IR)Rmax
[Ψν∇Ψ̃µ

/ - Ψ̃µ
/∇Ψν] ds

(12)

Nµν ) δµν - i
kµ + kν

IR)Rmax
ψµψν ds (13)

[ψν(R,r,γ)]RgRmax
) Cν(kν)e

ikνRφn(r,γ) (14)

Nµν ) δµν - i
kµ + kν

Cµ(kµ) Cν(kν)e
i(kµ+kν)Rmax (15)

S(k) )
gν

k - kν
(16)

Cν
2 ) igν (17)

ø(R,r,γ) ) const [e-ikR - S(k) eikR] φn(r,γ) (18)

k ) kν + ε, |ε| f 0

ø(R,r,γ) ≈ Cν[eikR - ε

gν
e-ikR] φn(r,γ) (19)

ψ̃ν(R,r,γ) ) Cν(-kν
/)e-ikν

*R
φn(r,γ) )

Cν(-kν
/)e-i(k*-ε*)R

φn(r,γ)

∂

∂t ∫ReRmax
ψ̃ν

/ ø eiEνte-iEεt dΩ )

- i
2
eiEνte-iEεt IR)Rmax

[ø∇ψ̃ν
/ - ψ̃ν

/∇ø] ds (20)

Eε ) 1
2

(kν + ε)2 ≈ Eν + kν ε + O(|ε|2)

∂

∂t ∫ReRmax
ψ̃ν

/ øe-ikνεt dΩ98
ε f 0

(-ikνε)∫ReRmax
ψ̃ν

/ψν dΩ )

(-ikνε)[1 -
iCν

2

2kν
e2ikνRmax] (21)

(-ikνε)[-
iCν

2

gν
-

iCν
2

2kν
e2ikνRmax] (22)
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Comparing eqs 21 and 22, we see that

which coincides with eq 17.
A related expression for the asymptotic form of a resonance

wave function was previously obtained for radials-wave
scattering in ref 24. However, the final result was expressed
through a combination of Jost functions, and this limited its
applicability to one-dimensional problems for which the Schro¨-
dinger equation is an ordinary differential equation. Moreover,
the derivation was based on specific properties of 1D Green’s
functions. The asset of eq 17 is that it is valid for any number
of dimensions and, as such, is based on the most general
properties of the wave equation.

IV. Estimation of the Overlap Matrix in NO 2.

The theorem we just proved can be utilized to estimate the
matrix elementsNµν for the resonances of NO2 employed in
calculation of the decay curves (they are shown in Figure 3 of
paper I). The pole expansion of theS matrix (we return back to
the energy representation) reads as10,11,18

whereB(E) is a smooth background andGν is the residue at
energyEν, related to the residuegν of the previous section
through

The matrixN, eq 15, is, therefore

Let us first consider the diagonal elements. For the absolute
value of the “norm defect” one gets

This follows from the limitation on the maximum width of
resonances,Γmax, in our quantum mechanical calculations (cf.
eq 4 in paper I): the conditionΓ e Γmax, which holds for all
states, means exactly 2ImkνRmax e 1.

Care is required in the estimation ofGν. If, as is customary,10

this residue is assumed to be equal to the product of the
resonance width and the nonresonant phase,Γν exp[2iδ0(Eν)],
the “norm defect” amounts toΓν/4Eν

0. For all converged
resonances of NO2 this ratio never exceeds 0.01. The same is
also true for the overlap integrals: deviations from bi-
orthogonality are less than 0.02. Thus, the set of resonance wave
functions appears to be bi-orthogonal with a high degree of
precision.

This result, however, is not exactly correct. The fact is that
|Gν| coincides withΓν only if the resonances are completely
isolated. Nearby states can change both the phaseδ0 and the
absolute value ofGν. We make this clear by representing the
single channelS matrix S(E) as a unitary product expansion,2,3

and taking the residue:

Here, we introduced two parameters that characterize the
resonance spectrum:êµ ) Γµ/(Eµ

0 - Eν
0) is analogous to the

overlap parameterê, eq 3;κµ ) (Γν - Γµ)/2Γµ is governed by
the amplitude of fluctuations of resonance widths. If allêµ ,
1 (the resonances do not overlap),|Gν| is indeed equal toΓν.
With growing êµ, |Gν| rises and becomes larger than the
resonance width. It is remarkable, however, that the condition
êµ . 1 alone does not yield large residues. For example, if the
overlapped resonances are broadly distributed,κµ . 1, |Gν| turns
out to be of the order ofΓν again. It could be beneficial to
analyze the bi-orthogonality of resonance wave functions by
averaging eq 28 over a statistical distribution function of widths
and positions of resonances.

In NO2, bothêµ andκµ vary over wide limits, and we estimate
|Gν| numerically. For everyν, only those resonances are
included in the product in eq 28, which lie within the window
of ∼200 cm-1 around Eν (this coincides with the average
spectral width of laser pulses used in the time-resolved experi-
ment). We find that the overlap of resonances causes|Gν| to
increase by about an order of magnitude with respect toΓν. As
a result, the maximum “norm defect” for the absolute majority
of resonance states rises to 0.1. This is still a tolerable deviation,
and the “diagonal” equation (2) provides a decent approximation
to the survival probability. The overall decay of the molecule
is very close to a sum of independent exponential decays.
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