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A diabatic correlation diagram procedure, first applied (Rose, J. P.; Kellman, M. E.,J. Chem. Phys.1996,
105, 7348) to H2O, is used to classify energy and intensity patterns in the highly excited bending spectrum
of C2H2, modeled by an effective spectroscopic fitting Hamiltonian. Analysis with polyad phase spheres
accounts for the observed patterns in terms of classical phase space structure and bifurcations of the low-
energy normal modes.

Introduction

This paper is about detecting and understanding new kinds
of patterns in spectra in which very high vibrations are excited,
in particular, in the molecule C2H2. With sufficient excitation,
the low-energy normal modes analysis becomes severely
inadequate, due to the interplay of anharmonicity and multiple
resonance couplings. Dramatic changes take place in the
dynamics, including the abrupt birth of new anharmonic modes
in bifurcations from the original normal modes, and the onset
of widespread chaotic classical dynamics. This results in severe
disturbance of the spectral patterns associated with normal
modes.

Here, we explore novel patterns in high-energy spectra as
represented by an effective spectral fitting Hamiltonian, devel-
oped by a number of workers to analyze experiments on the
C2H2 molecule. We use a version of the Hamiltonian employed
by Field and co-workers.1,2

Several groups,3-5,8-10 following early indications11,12on the
basis of theoretical analysis of the C2H2 spectroscopic Hamil-
tonian, have succeeded in unraveling the spectrum into distinct
sets of levels characterized by the “polyad”, or total vibrational
quantum number. Here, we seek to identify and understand
patternswithin the polyads. There is no a priori justification to
search for patterns at the subpolyad level, since there are no
rigorous quantum numbers known that would be related to such
patterns, even at the level of approximation inherent in the
structure of the spectroscopic Hamiltonian. Nonetheless, we have
easily succeeded in identifying approximate subpolyad patterns
in H2O, using a correlation diagram technique.13

Nearly simultaneously with the present paper, we have
devised a “dressed basis” approach14 to highly excited vibrations,
and tested it with success on H2O. The dressed basis approach
puts the empirical correlation diagram procedure on a much
sounder conceptual footing. Here, we proceed again in a frankly
empirical vein with correlation diagram techniques for C2H2,
but now making appeal to dressed basis ideas.

We find that there are novel energy and intensity patterns
within subpolyads of the polyads with 10, 12, and 14 quanta of
bending vibration. We are able to account for these patterns
with a Hamiltonian that describes energy flow along the

“primary” energy transfer pathway induced by an effective
Darling-Dennison coupling. This success in a portion of the
spectrum strongly motivates a quest for a comprehensive
analysis for the entire spectrum, even up to the barrier to
isomerization to vinylidene, using a technique such as the
dressed basis.

II. Are There Novel Patterns in Highly Excited Spectra?

To be as concrete as possible, we examine some suggestive
features of the C2H2 spectrum predicted in a simulation of the
dispersed fluorescence spectrum using the spectroscopic Hamil-
tonian. This is an effective Hamiltonia used to fit experimental
data. This Hamiltonian has been developed over several decades
by a variety of workers. Since the 1990s, it has been progres-
sively refined to fit large quantities of high-energy data obtained
in absorption, dispersed fluorescence, and SEP experiments.
(Absorption probes regions of phase space complementary to
those accessed by fluorescence and SEP experiments.) We use
a version of the Hamiltonian employed by Field and co-
workers1,2 at a particular stage of refinement of the empirical
fitting parameters. The Hamiltonian is described in full detail
in section IV.

After the calculations reported in this paper, these parameters
have been modified somewhat by various workers4,6-10 in
response to new experimental data, and in all likelihood will
be refined further. We are confident that all the basic conclusions
here will stand as the Hamiltonian is further refined in response
to new data.

Figure 1 shows a stick-spectrum simulation, using the
spectroscopic Hamiltonian, of part of the experimental dispersed
fluorescence spectrum. In these experiments, a Franck-Condon
transition from an upper electronic state follows excitation from
the electronic ground state. This results in excitation of a
vibrational wave packet on the ground state, i.e., a superposition
of excited “bright” zero-order vibrational states, with zero quanta
in all modes except the C-C stretchν2 and the trans-bendν4.
Figure 1 shows the portion of the spectrum withn2 ) 0 andn4

) 8-16, with the vibrational angular momentuml ) 0. It should
be compared with the correspondingn2 ) 0 part of Figure 2 of
ref 3 of Solina et al. (Comparisons of direct absorption and
dispersed fluorescence spectra of very similar polyads were
reported contemporaneously by Herman and co-workers.9) Their
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figure exemplifies an analysis in which experimental spectra
were “unzipped” into polyads of levels, each polyad originating
from a different zero-order bright state. (That each polyad
originates from asinglezero-order bright state is a simplification
which certainly does not necessarily hold in general, but which
has proven empirically3-5 to be valid for the C2H2 dispersed
fluorescence spectra considered here.) Each of the five clumps
of levels in Figure 1 is a distinct polyad withn2 ) 0, and labeled
by the number ofν4 quanta () 8-16) in the zero-order bright
state from which the polyad originates. The spectrum of Figure
1 is complicated, with intensity in many features, because the
resonance couplings in the spectroscopic Hamiltonian break the
ν4 quantum number, and “fractionate” the intensity of each
bright zero-order state (0, 0, 0,n4, 0).

Close inspection of Figure 1 hints at patternswithin the
individual polyads. As an example, Figure 2 shows a detail of
polyad 14 from Figure 1. It appears as if there might be a
sequence of levels of especially high intensity, as well as one
or more sequences of less intense levels. These patterns are not
as clear-cut as in low-energy spectra, where sequences are
typically “cleaner” in appearance, and clearly identifiable by
means of normal modes quantum number assignments. In Figure
2, several possible sequences are plausibly identifiable. How-
ever, this identification is by no means clear-cut, and there are
several reasonable possibilities. Another revealing view of the
spectrum comes with a logarithmic plot. This is shown in Figure
16b, which will be the focus of detailed discussion and
interpretation in section X. One of our goals is a more systematic
method in place of this “eyeball” pattern identification.

We make use of an earlier15 bifurcation analysis of highly
excited acetylene bends coupled by a single Darling-Dennison
resonance. This work showed that the bending dynamics exhibits
a new type of correlated motion called “precessional” modes,
in addition to the more familiar normal and local modes.

Although the work in ref 15 used a simplified, single-
resonance model, it is decisive here for understanding the

observed energy and intensity patterns of the experimental
spectrum, within a framework that now takes account of the
other degrees of freedom and resonant couplings. This requires
the diabatic correlation diagram technique, which is outlined
next.

III. Assigning Spectra Beyond Polyads

The correlation diagram technique developed out of an
approach to highly excited spectra using bifurcation analysis
of the spectroscopic Hamiltonian. In bifurcations, the low-energy
normal modes become unstable and branch into new anharmonic
modes, due to the interplay of the anharmonicity of the normal
modes and their mutual couplings.

Figure 1. Simulation of dispersed fluorescence spectrum of C2H2 with ν2 ) 0 andν4 ) 6-18. The clusters of levels are polyads originating from
a zero-order bright state for eachν4.

Figure 2. Detail from Figure 1 of polyad withν4 ) 14. The same
spectrum is shown on a logarithmic scale in Figure 16b.
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Knowledge of the internal molecular dynamics decoded from
the spectrum via the bifurcation analysis is used to construct
“dynamical” assignments of quantum numbers for the newly
identified modes. These assignments are then used to identify
spectral patterns.16 This approach was first applied15-26 to a
number of systems with a single-resonance coupling and
nonchaotic dynamics.

A key extension was analysis of three modes coupled by
multiple resonances with classical chaos, as in H2O. One of
the salient findings27 was that for many systems, including H2O,
the bifurcation structure can be decomposed into a sequence of
independent two-mode bifurcations, similar, despite the non-
integrability and chaos of the system, to those observed for
systems with a single resonance between two modes.

This simplification led to an empirical assignment procedure
using diabatic correlation diagrams.13 The result is assignment
of a complete, though approximate and nonrigorous, set of
“nominal” or “effective” quantum numbers. These quantum
numbers can be used to group the levels in various ways into
sets of subpolyads, or sequences.

To better understand the physical meaning of this subpolyad
classification with nominal assignments, we have investigated
a “dressed basis” approach.14 The zero-order basis is dressed
by all the resonance couplings in the effective Hamiltonian,
except for a residual couplingV̂ i. Acting within subpolyads of
the dressed basis, an effective couplingV̂ i

eff is defined in
correspondence to the residualV̂ i.

The goal of the dressed basis is to incorporate as much as
possible the effects of nonintegrability, while retaining much
of the simplicity of integrable systems via the effective residual
single-resonance coupling. This is useful to the extent that the
eigenstates of the spectroscopic Hamiltonian are approximated
by those of the new effective Hamiltonian. Numerical testing14

shows that the procedure works remarkably well.
In the next two sections we describe the spectroscopic

Hamiltonian and how it leads to natural organizations of the
zero-order spectrum into subpolyads, as a prelude to applying
the diabatic correlation diagram assignment to classify and
interpret spectral patterns of the eigenstate spectrum of the full
Hamiltonian.

IV. Spectroscopic Hamiltonian

This section describes the spectroscopic Hamiltonian for
acetylene, taking advantage of an important simplification, the
separation of stretch and bend modes, which is justified6,15 for
the spectra we want to analyze, where all the excitation is placed
initially in the bend modes.

Acetylene has seven vibrational modes: symmetric C-H
stretch ν1, C-C stretchν2, antisymmetric C-H stretch ν3,
doubly degenerate C-H trans-bendν4, and doubly degenerate
C-H cis-bendν5. The degenerate bend modes can be repre-
sented in either a rectilinear zero-order basis with modesνja

andνjb or in an angular momentum basis with modesνj+ and
νj- (j ) 4, 5). In this paper we will use the angular momentum
basis. In this basis the states are designated by the quantum
numbersnj ) nj+ + nj- andlj ) nj+ - nj-. With these quantum
numbers, the zero-order states are labeled by the quantum
numbers (n1, n2, n3, n4, l4; n5, l5).

The full spectroscopic Hamiltonian for the highly excited,
J ) 0 vibrational energy levels of acetylene consists of a
diagonal part,Ĥ0, and an off-diagonal part,V̂:

The diagonal part represents the harmonic and anharmonic
contributions to the vibrational energy levels

whereωj is the harmonic frequency for modej, nj is the number
of vibrational quanta in modej, dj is the zero-point energy
contribution for modej (dj ) 1/2 for j ) 1-3 anddj ) 1 for
j ) 4, 5), andøjk is the anharmonicity constant between modes
j andk.

The off-diagonal partV̂ contains the spectroscopically
significant collection of mode-mode resonance couplings, i.e.,
those needed to fit the data to the desired or attainable level of
detail and accuracy. Parameters for the coupling strengths are
determined in the fitting of the spectrum. Many resonances have
been detected in acetylene spectra using various excitation
techniques.28-30

It is found empirically that the pure bend zero-order bright
states whose spectra we are analyzing are coupled only to zero-
order states that involve the four bend modes. This means that
for bright states that are pure bending, the system can be viewed
as decoupled from the stretches, and analyzed independently,
as noted previously.6,15 We can therefore work with just the
pure bend portionĤbend of the full Hamiltonian:

The bend-bend resonance couplings ofĤbend are listed in
detail in Table 1. TheV̂DD-I, V̂DD-IIa, andV̂DD-IIb resonances
are referred to as 2:2 Darling-Dennison resonances because
they exchange two quanta of action between the trans- and cis-
bend modes. We will refer to the symmetry pairV̂DD-IIa and
V̂DD-IIb together asV̂DD-II . Independently these two resonances
are not symmetry allowed, but together they have the correct
symmetry. The couplingV̂vib-l does not look quite like a 2:2
Darling-Dennison resonance, but rather like a product of 1:1
resonances, that is, a 1:1 resonance between the two degenerate
trans-bend modes (∆n4+ ) ∆n4- ) (1) and simultaneously a
1:1 resonance between the two degenerate cis-bend modes
(∆n5+ ) -∆n5- ) (1).

The values for the spectroscopic parameters, including
diagonal terms of eq 2 as well as the strengths of the resonance
couplings in Table 1, are given in Table 2. These parameters
are those reported by Jonas et al.,1 and subsequently modified
very slightly by Jonas.2

V. Subpolyads and Coupling Pathways

This section describes “slicings” of the polyads ofĤ0 into
subpolyads, arising naturally from the coupling pathways of the

Ĥ ) Ĥ0 + V̂ (1)

TABLE 1: Bend-bend Resonance Couplings for Acetylene

1. Darling-Dennison bend
resonance I

V̂DD-I ) KDD-I[a4+
† a4-

† a5+a5- + h.c.]
∆n4 ) -∆n5 ) 2, ∆l4 ) ∆l5 ) 0

2. Darling-Dennison bend
resonance II

V̂DD-II ) V̂DD-IIa + V̂DD-IIb

V̂DD-IIa ) 1/4KDD-II [a4+
† a4+

† a5+a5+ + h.c.]
∆n4 ) -∆n5 ) 2, ∆l4 ) -∆l5 ) 2
V̂DD-IIb ) 1/4KDD-II [a4-

† a4-
† a5-a5- + h.c.]

∆n4 ) -∆n5 ) 2, ∆l4 ) -∆l5 ) -2

3. vibrational-l resonance V̂vib-l ) Kvib-l[a4+
† a4-a5+a5-

† + h.c.]
∆n4 ) ∆n5 ) 0, ∆l4 ) -∆l5 ) 2

Ĥ0 ) ∑
j)1

5

ωj(nj + dj) +

∑
j)1

5

∑
k)j

5

øjk(nj + dj)(nk + dk) + ∑
j)4

5

∑
k)j

5

gjkljlk (2)

Ĥbend) Ĥ0 + V̂DD-I + V̂DD-IIa + V̂DD-IIb + V̂vib-l (3)
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empirical spectroscopic Hamiltonian, that will be useful later
in uncovering and analyzing spectral patterns. The focus in
this section is on polyads and subpolyads of the zero-order
Hamiltonian Ĥ0; this subpolyad organization will form a
template for classifying the eigenstates ofĤbend in section VI
and beyond.

The polyad numbers are constants of motion of the spectro-
scopic Hamiltonian that remain after taking into account the
resonance couplings, which break the individual normal modes
quantum numbers. The polyads describe small sets of states in
which the spectroscopic Hamiltonian is diagonal. The method
for finding the polyad numbers has been described earlier11,31

and used extensively for acetylene.3-5,8-12

The polyad numbers are special combinations of the zero-
order quantum numbers. For example, for C2H2 in a simplified
five-mode notation that neglects the vibrational angular mo-
mentum, the total polyad number

is a constant of the spectroscopic Hamiltonian.
For our system, there are five quantities that are conserved

by Ĥbend: n1, n2, n3, and

P is the total number of quanta in the bend modes, andl the
total vibrational angular momentum. These are very convenient
for spectra of the bends-only HamiltonianHbend. A “total”
quantum number such as (4) or its seven-mode generalization8,9

for the HamiltonianĤ of (3) can easily be constructed from
combinations of the quantum numbers{n1, n2, n3, P, l}.

For the polyads treated in this paper,n1 ) n2 ) n3 ) l ) 0.
Consequently, we can specify the different polyads by the single,
total bend quantum numberP. Within polyads, zero-order states
are specified by the quantum numbers (n4, l4; n5, l5).

It is convenient to define slicings of the polyad into
subpolyads by the action of the resonance couplings of the
spectroscopic Hamiltonian. Each of the resonancesV̂DD-I,
V̂DD-II , V̂vib-l of Ĥbend in (3) couples states within a particular
kind of subpolyad slicing (or “net”, in the case ofV̂DD-II.) These
coupling pathways are shown for polyad 10 in Figure 3. The
Darling-Dennison-I resonanceV̂DD-I is shown as the vertical
bold coupling, indicating the “primary” energy transfer pathway
from the bright zero-order state.V̂DD-I is primary because the
other couplings are weaker in their effect on the energy
spectrum, or else do not connect directly to the bright zero-
order state. In Figure 3,V̂DD-I couples levels in the “stack”
(n4, l4; n5, l5) ) (10,0;0,0), (8,0;2,0) . . . (0,0;10,0).

Next, we use diabatic correlation diagrams to classify the
eigenstatesof the spectrum ofHbendinto subpolyads analogous
to the slicings of the zero-order Hamiltonian byV̂DD-I and
V̂vib-l. A very preliminary account along these lines for C2H2

has appeared previously.32

VI. Diabatic Correlation Diagram Assignments

Figure 4 starts withadiabaticcurves for a relatively simple
case, polyad 10. The original zero-order states ofĤ0 are
completely labeled by the bend quantum numbers (n4, l4; n5,
l5). The bright state of the polyad is the zero-order state (10, 0;
0, 0). For economy, Figure 4 does not actually show the zero-
order energies, but merely indicates the zero-order states with
common (n4, n5) at the left and right; the zero-order levels
happen to cluster into these sets. For example, (8, 2) represents
the three zero-order levels (8,-2; 2, 2), (8, 0; 2, 0), and (8, 2;
2, -2). We then turn on the resonance couplings in various
sequences. One sequence is shown at the left in Figure 4 starting
with the least important resonance couplingV̂DD-II turned on
first, i.e., its strength is started at zero and increased to 100%
of its value in the spectroscopic HamiltonianHbend. We next
turn on V̂DD-I, the Darling-Dennison coupling between the

TABLE 2: Molecular Constants (cm-1)

ω1 ) 3509.895 ø12 ) -12.62 ø24 ) -12.48 ø11 ) -2.406
ω2 ) 2012.51 ø13 ) -105.09 ø25 ) -1.57 ø11 ) -2.335
ω3 ) 3414.745 ø14 ) -15.58 ø33 ) -27.41 g44 ) 0.759
ω4 ) 622.768 ø15 ) -10.85 ø34 ) -6.96 g45 ) 6.541
ω5 ) 746.801 ø22 ) -7.39 ø35 ) -8.69 g55 ) 3.49
ø11 ) -25.87 ø23 ) -6.10 ø44 ) 3.082
KDD-I ) -10.0 KDD-I ) 6.844 Kvib-l ) -6.238

N ) 5n1 + 3n2 + 5n3 + n4 + n5 (4)

P ) n4+ + n4- + n5+ + n5- ) n4 + n5 (5)

l ) n4+ - n4- + n5+ - n5- ) l4 + l5 (6)

Figure 3. Resonance coupling pathways in polyad 10.V̂DD-I, shown
as vertical bold coupling, is the primary energy transfer pathway from
the bright zero-order state (10, 0; 0, 0).V̂vib-l is horizontal coupling
pathway;V̂DD-IIa,b is diagonal coupling pathway.

Figure 4. Adiabatic correlation diagram for polyad 10 showing levels
of various partial Hamiltonians, with levels of full bend Hamiltonian
in center.
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bends. Finally, to getĤbend, we switch onV̂vib-l and obtain the
levels at the center of the diagram. A second sequence is shown
from the right, again starting withĤ0 + V̂DD-II . The couplings
V̂vib-l and V̂DD-I are then switched on in order, again ending
in the center withĤbend. It is evident that it isV̂vib-l that actually
has the most pronounced effect on the energy levels of the
polyad, even though the Darling-Dennison couplingV̂DD-I is
primary in the sense that it is source of the initial transfer of
energy from the zero-order bright state (10, 0; 0, 0).

Figures 5 and 6 show the analogous adiabatic curves forP )
12 and 14.

Figure 7 shows thediabatic curves forP ) 10. These are
nearly identical in appearance to the adiabatic curves of Figure
4; the curves are easy to follow across the avoided crossings.
The diabatic curves forP ) 12, omitted for brevity, are less
straightforward because the avoided crossings are becoming
larger. P ) 14, whose diabatic curves are again omitted for
brevity, is more difficult still, but it was possible to pick out
diabatic curves; we will return toP ) 14 shortly.

When difficulties arise because of large or multiple avoided
crossings, following the “two-sided” adiabatic correlation
diagrams of Figures 4-6 helps resolve the ambiguities. How-
ever, experimentation shows that there can be easier ways to
follow the diabatic curves than turning on the couplings
sequentially. A way we have found that seems to work well is
to switch on all the couplings together, a proposal also
successfully used by Jacobson et al.33 This method is shown in
Figures 8 and 9 for polyadsP ) 12, 14. Following the diabatic
curves is “cleaner” than in Figures 5 and 6, because putting in
all the couplings together tends to minimize troubles with large
avoided crossings caused by any single coupling.

At each step in the diabatic correlation diagrams we possess
an “assignment” of every level in terms of a set of nominal
or effective quantum numbers (n4, l4; n5, l5)nom obtained by

continuing the labels (n4, l4; n5, l5) of a zero-order level along
its diabatic curve, the procedure used previously for H2O in ref
13. The multiplicity of ways of forming the correlation diagrams
enables consistency checks of the nominal assignments that are
made, when large or multiple avoided crossings make an

Figure 5. Adiabatic correlation diagram for polyad 12 showing levels
of various partial Hamiltonians, with levels of full bend Hamiltonian
in center.

Figure 6. Adiabatic correlation diagram for polyad 14 showing levels
of various partial Hamiltonians, with levels of full bend Hamiltonian
in center.

Figure 7. Diabatic correlation diagram for polyad 10 showing levels
of various partial Hamiltonians, with levels of full bend Hamiltonian
in center. Nominal assignments from diabatic correlation, described in
section VI, are shown for three of the levels.
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assignment problematic in any individual correlation diagram.
As examples, Figure 7 shows detailed assignments (n4, l4; n5,
l5)nom for the three levels of the cluster (2, 8) of polyad 10. The
object of the rest of this paper is to understand the use and
meaning of these assignments.

VII. Subpolyads of the Resonances

It is evident from inspection of the diabatic correlation
diagrams that the levels ofĤbendfall into fairly regular groupings
or clusters, just as the intensities in Figure 2 suggested regular
patterns. We want to explore the nature of both the energy and
intensity patterns.

The groupings most immediately apparent in Figures 4-9
are the clusters of levels strongly split by thel-resonance at the
final stage of the diabatic correlation diagram. They have
common values of (n4, n5)nombut different (l4, l5)nom. The clusters
are therefore analogous to a sequence or subpolyad in the
nominal quantum numbers (l4, l5)nom. Each subpolyad can be
labeled by its nominaln4 because the total number of bend
quantaP ) nbend) n4 + n5 is fixed. (Labeling with the nominal
n5 of course is completely equivalent.)

Polyad 10 is broken out into then4 subpolyads in Figure 10a.
It is evident from Figures 4-6 that the splittings within then4

subpolyads are determined predominantly by the vibrational
l-resonance couplingVvib-l, and we speak of then4 subpolyads
also as “subpolyads of thel-resonance”.

Although thel -resonance has the largest effect on the energy
level pattern of the spectrum, the Darling-Dennison resonance
V̂DD-I is source of the primary coupling pathway out of the
zero-order bright state (n4 ) nbend ) P, n5 ) l4 ) l5 ) 0), as
discussed earlier. As such, it is expected to be the dominant
factor in the intensity pattern. An alternative grouping is then
into “subpolyads of the DD-I resonance”. This is a grouping
into sets with common value of the nominal quantum numbers
(l4, l5)nom. This subpolyad organization is shown for polyad 10
in Figure 10b. The subpolayds are labeled by the nominal value
of |l4|; we could equally well use the nominal|l5|.

Viewed through the lens of either then4 or the l4 subpolyad
classification, there are evident regularities in the spectral

Figure 8. Diabatic correlation diagram for polyad 12, starting with
Ĥ0 + V̂DD-II at left and switching onV̂DD-I andV̂vib-l together to give
levels of full bend HamiltonianĤbend at right.

Figure 9. Diabatic correlation diagram for polyad 14, starting with
Ĥ0 + V̂DD-II at left and switching onV̂DD-I andV̂vib-l together to give
levels of full bend HamiltonianĤbend at right.

Figure 10. Polyad 10 spectrum organized into subpolyads. (a)n4

subpolyad classification, or “subpolyads of thel-resonance”; (b)l4
subpolyad classification, or “subpolyads of the Darling-Dennison-I
resonance”. The leftmost column in (b) is the primary subpolyad. See
section VII for terminology.
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patterns of Figure 10. How can we account for these? We will
think about the problem in terms of dressed basis ideas, which
we will then apply in a simplified way to interpret the patterns
in detail.

In the context of the dressed basis, we can think about then4

subpolyad groupings in a picture in which eachn4 subpolyad
originates in a sequence of zero-order states dressed by the
resonancesV̂DD-I andV̂DD-II . These dressed zero-order states
are then coupled to each other by a residual effective resonance
V̂vib-l

eff . This gives approximate subpolyads that one hopes
would be close to then4 “subpolyads of thel resonance” of the
full bend HamiltonianĤbend, the organization of the spectrum
introduced in Figure 10a.

Following this line of reasoning, does it make sense to think
of the l4 “subpolyads of the DD-I resonance” of Figure 10b in
terms of an alternate dressed basis? This would have zero-order
states dressed by the resonancesV̂vib-l and V̂DD-II , with the
dressed zero-order states coupled by an effective residual
Darling-Dennison resonanceV̂DD-I

eff .
Perhaps, then, in forming the dressed basis one can “slice”

the polyad into subpolyads whichever way one likes. This is
what we have found14 in numerical tests of the dressed basis
idea on H2O. Then the choice of the subpolyad slicing with its
V̂ i

eff is made for convenience, that is to say, according to the
particular questions about the spectrum one is trying to answer.

For analyzing the C2H2 spectrum of Figure 2 and ref 3, the
l4 subpolyads with residualV̂DD-I

eff are probably most useful,
because the couplingV̂DD-I of Ĥbenddominates the intensities,
being the primary pathway of energy transfer from the initially
excited bright state. We proceed to use thel4 subpolyads and
the notion of an effective couplingV̂DD-I

eff , to identify and
account for regularities in both the energies and intensities, and
analyze their dynamical meaning.

VIII. Patterns in the Subpolyads

We focus on the primaryl4 subpolydads of eigenlevels, that
is, the subset of eigenlevels from each polyad with nominal
quantum numberl4

nom ) 0, in analogy to the primary sub-
polyad slice of the zero-order spectrum. For polyad 10 this is
the column of levels labeled|l4| ) 0 at the left in Figure 10b.
We focus on the primary subpolyad because it dominates the
intensities in each polyad; the example that will be examined
in detail is the spectrum seen in Figure 2 for polyad 14. We
will look at how the energy and intensity patterns can be
understood in terms of the notion of an effective Darling-
Dennison couplingV̂DD-I

eff , acting on a basis of zero-order
states dressed by the other couplingsV̂vib-l and V̂DD-II .

First, the energy level patterns. In Figures 11-13, the primary
subpolyad for polyads 10, 12, and 14 is shown as successive
terms in the Hamiltonian are turned on: at the left,Ĥ0; then
V̂DD-I; thenV̂DD-II; and at the right the full bending Hamiltonian
Ĥbend obtained with addition ofV̂vib-l. It is evident that the
couplingsV̂DD-I and V̂vib-l exert a strong influence, with the
influence ofV̂DD-II very small.

In Polyad 10, Figure 11,Ĥ0 by itself has a pattern of
monotonically increasing spacing of adjacent levels. The pattern
of spacings of adjacent levels has been identified as a key to
decoding internal molecular dynamics from spectra;16 the
monotonic pattern of Figure 11 is indicative of an undivided
classical phase space. Adding the couplingV̂DD-I in Figure 11b
changes the pattern slightly, as does adding the small coupling
V̂DD-II in Figure 11c. However, addingV̂vib-l in Figure 11d
has a telling effect: the top pair in the subpolyad are pushed

together, suggesting that a separatrix has been formed in the
phase space ofHbend.

In polyad 12, the effect ofV̂vib-l is even more apparent in
Figure 12d, with a clear minimum in the level spacing for both
the top and bottom pairs. In polyad 14, in Figure 13b,V̂DD-I

causes a minimum in spacing between levels 2 and 3. But in
Figure 13d, with the full bend Hamiltonian,V̂vib-l has made
this disappear; nor is a minimum at the bottom pair strongly
evident, unlike polyads 10 and 12. However,V̂vib-l again causes
a minimum at the top pair.

Clearly, the presence of the various resonance couplings,
alone and in combination, causes subtle but perhaps significant
changes in the energy level patterns, of a kind that indicates
important phase space structure when observed in single-
resonance systems.

Now, the intensity patterns. These are calculated from the
eigenvectors of the spectroscopic Hamiltonian. The intensities
within each polyad are assumed to originate from a single,
distinct zero-order bright state, with the intensity of each level
determined by the contribution of the polyad bright state to the
given eigenvector. As noted above in section II, it is an
assumption that each polyad originates from asinglezero-order
bright state; however, this simplification has proven empirically3-5

to be valid for the C2H2 bends spectra considered here.
The intensities are shown in Figures 14-16. The top panel

of each figure shows the intensities of the primary subpolyad
calculated with just the termsĤ0 + V̂DD-I. The middle panel

Figure 11. Spectrum of primary subpolyad of polyad 10 for various
Hamiltonians includingĤ0 at left and full bend HamiltonianĤbend at
right, with partial Hamiltonians in middle columns.

Figure 12. Spectrum of primary subpolyad of polyad 12 for various
Hamiltonians includingĤ0 at left and full bend HamiltonianĤbend at
right, with partial Hamiltonians in middle columns.

Figure 13. Spectrum of primary subpolyad of polyad 14 for various
Hamiltonians includingĤ0 at left and full bend HamiltonianĤbend at
right, with partial Hamiltonians in middle columns.
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shows the intensities of the entire polyad calculated with the
full bending HamiltonianĤbend. The bottom panel again shows
the intensities of the primary subpolyad alone, but calculated
with the full bend HamiltonianĤbend.

For polyad 10, the intensities with justV̂DD-I in Figure 14a
monotonically decrease. The pattern is little changed in part c
with V̂vib-l. For polyad 12, withV̂DD-I alone in Figure 15a, the
second level is most intense, but withV̂vib-l added in part c,
the first level is most intense. For polyad 14 in Figure 16a,V̂DD-I

alone makes the third level most intense, but withV̂vib-l in part
c, the second level is significantly more intense.

Is there really dynamical meaning nested in these energy and
intensity patterns? If so, we would like to give an account in
terms of the notion of an effectiveV̂DD-I

eff acting on “zero-
order” states which enfoldV̂vib-l and V̂DD-II .

IX. Single-Resonance Fit of the Primary Subpolyads

One way to test this would be to fit the entire spectrum with
a dressed basis Hamiltonian with an effective Darling-
Dennison-I coupling

with

Here we have attempted something simpler, which nonethe-
less shares some aspects of the dressed basis idea. Rather than

a global fit with a dressed basis, we fit a subset of the levels
with a very simple, six-parameter single-resonance Hamiltonian:

Note the use in (9) of a zero-order energy formula given in the
standard way by terms linear and quadratic in the zero-order
quantum numbers, which here are to be understood in the sense
of nominal quantum numbers for a dressed basis which is not
explicitly defined or calculated. In a true dressed basis approach,
the dressed zero-order HamiltonianĤ0

dr would not be given by
a polynomial in the quantum numbers. The price we pay for
using the simplified zero-order energy formula (9) instead of a
true dressed basis is that we can only fit a subset of levels of
the entire spectrumsotherwise a multiresonance fitting Hamil-
tonian like Ĥbend would not have been necessary in the first
place. Still, this fit should have something of the dressed basis
idea built into it, because the zero-order energies obtained in
the fit to (9) definitely must be strongly influenced by and reflect
the resonance couplingsV̂vib-l and V̂DD-II . The Darling-
Dennison couplingV̂DD-1

fit in (9) therefore plays a role like a
residual effective couplingV̂DD-1

eff in a true dressed basis fit.
We included in the data set the 21 levels of the primary

subpolyads of polyads 10, 12, and 14. We fit only the energies,
leaving the intensities as predictions of the fit. If the fit can
reproduce both the energy level and intensity patterns of the
subpolyads, a further test will be whether the semiclassical
dynamics inferred from the fit give a coherent explanation of
the observed spectral patterns.

Figure 14. Intensities (log10 scale, arbitrary units) of polyad 10 states
(a) for levels of primary subpolyad, calculated with partial Hamiltonian
Ĥ0 + V̂DD-I; (b) for all levels, calculated with full bend Hamiltonian
Ĥbend; (c) for levels of primary subpolyad, calculated with full bend
HamiltonianĤbend. Fixed points notation: north pole NP; south pole
SP (see also Figure 17).

Figure 15. Intensities (log10 scale, arbitrary units) of polyad 12 states
(a) for levels of primary subpolyad, calculated with partial Hamiltonian
Ĥ0 + V̂DD-I; (b) for all levels, calculated with full bend Hamiltonian
Ĥbend; (c) for levels of primary subpolyad, calculated with full bend
HamiltonianĤbend. Fixed points notation: north pole NP; south pole
SP (see also Figure 17).

Ĥbend
dr ) Ĥ0

dr + V̂DD-I
eff (7)

Ĥ0
dr ) Ĥ0 + V̂vib-l + V̂DD-II (8)

Ĥfit ) Ĥ0
fit + V̂DD-1

fit ) ω4
0n4 + ω5

0n5 + ø44n4
2 + ø45n4n5 +

ø55n5
2 + K[a4+

† a4-
† a5+a5- + h.c.] (9)
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The results of the fit are shown in Tables 3 and 4. The values
of the fitted parameters forĤfit seemingly differ little from their
corresponding values inĤbend. Does thisĤfit account for the
observed patterns in the energy levels and intensities? And do
the differences between corresponding parameters inĤfit and
Ĥbend have intelligible dynamical significance?

X. Phase Spheres

To answer this, we used the fit to construct polyad phase
spheres, a way of representing and visualizing the spectrum in
phase space. The phase sphere was first developed for a system
of two modes coupled by a single resonance;21 didactic
presentations can be found in refs 17 and 18. The phase sphere
projects out the conserved polyad number and its conjugate
angle, leaving a semiclassical representation of each energy level
of a polyad on a reduced phase space, which is properly
represented on a sphere.34,35

The spheres for polyads 10, 12, and 14 are shown in Figure
17. The spheres show considerable phase space structure, with
separatrices dividing regions of vibrational motion of different
character. The three kinds of motion observed are local and
normal bend modes, and the “precessional modes” identified15

in a single-resonance model of the acetylene bends as an instance
of a novel kind of vibrational motion36 for the Darling-
Dennison Hamiltonian.

How well do the phase spheres account for the observed
energy and intensity patterns? The sphere for polyad 10 has a
separatrix at the north pole, dividing a tiny local mode region
from a normal mode region that covers most of the sphere. Near
the south pole, another separatrix divides the normal region from

a tiny precessional modes region. All the quantum states
correspond to trajectories of normal mode character, but the
separatrices are expected to influence the spectral pattern. A
classical separatrix is predicted16 to induce a minimum in the
level spacing, and this minimum has been observed in several
systems.37,38 In polyad 10, the separatrices near the north and
south poles are at the low and high energy ends of the subpolyad.

Figure 16. Intensities (log10 scale, arbitrary units) of polyad 14 states
(a) for levels of primary subpolyad, calculated with partial Hamiltonian
Ĥ0 + V̂DD-I; (b) for all levels, calculated with full bend Hamiltonian
Ĥbend; (c) for levels of primary subpolyad, calculated with full bend
HamiltonianĤbend. Fixed points notation: north pole NP; south pole
SP (see also Figure 17).

Figure 17. Polyad phase spheres from fit of primary subpolyads of
polyad 10, 12, 14 to a single-resonance Hamiltonian, described in
section IX. Each sphere shows the primary subpolyad from one polyad
10, 12, or 14. Fixed points notation: north pole NP; south pole SP;
local mode LM; precessional mode PM.
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This is consistent with the minima in the level spacings noted
in Figure 11d. In particular, this accounts for the formation of
the minimum in the spacing at the high energy pair in going
from Figure 11a-c to Figure 11d, so the spectral fit with
V̂DD-1

fit accounts nicely for the energy pattern of the subpolyad.
Now we consider the intensities. In the phase sphere for the

zero-order system, a circumpolar trajectory near the north pole
corresponds to the quantum zero-order bright state. In the phase
sphere withV̂DD-1

fit in Figure 17a, the states corresponding to
trajectories nearest the north pole are expected to have the
greatest intensity, with a rapid intensity falloff from the lowest
energy (nearest north pole) state of the subpolyad. This is exactly
what was noted in Figure 14.

The phase sphere for polyad 12 in Figure 17b again has two
separatrices. Now there is a quantum level almost on the
separatrix near the north pole, and a precessional level inside
the separatrix near the south pole. The prediction is that the
level spacing minima at the top and bottom of the subpolyad
should be quite distinct, exactly what was noted for polyad 12
in Figure 12d. The prediction for the intensities is that state 1
should be most intense, since it is very near the north pole,
with monotonically decreasing intensity for the other states. This
is exactly what was observed in Figure 15c. Note that the
HamiltonianĤ0 + V̂DD-I in Figure 15a did not get this right:
it has state 2 highest in intensity. This shows that the small
differences in Table 3 for the parameters of the two Hamilto-
nians do lead to subtly distinct but meaningful spectral patterns,

with the HamiltonianĤfit giving the correct pattern, which is
then explained by the phase sphere inferred fromĤfit .

Finally, the phase sphere for polyad 14 has two separatrices.
States 1 and 2 are on opposite sides of the separatrix at the
north pole, so at the low end of the subpolyad, a clear minimum
is expected, just as observed in Figure 13(d). At the high energy
end, state 7 is barely outside the separatrix, with state 8 well
on the other side of the separatrix. This predicts a minimum
between states 7 and 8, but one which is not too pronounced,
and this is what was noted in Figure 13d. For the intensities,
state 2 is nearest the north pole, so should be most intense,
exactly as observed in Figure 16(c). Note that the naive
HamiltonianĤ0 + V̂DD-I predicts that state 3 should be most
intense, as in Figure 16a, showing again how distinct spectral
markers arise from subtle parameter differences in the Hamil-
tonianĤfit .

XI. Conclusions

We have shown that we can identify energy and intensity
patterns in the pure bends spectrum of acetylene with diabatic
correlation diagrams and the nominal effective quantum number
assignment procedure, classifying the spectrum into subpolyad
sequences. Fits of the spectra to a resonance Hamiltonian with
some of the features of the dressed basis approach14 yield polyad
phase spheres. The phase spheres give a successful account of
all the regularities observed in the energy and intensity patterns,
in terms of phase space structure and bifurcations of the normal
modes.

This shows that there is great scope for detailed analysis of
high energy spectra involving many degrees of freedom, mul-
tiple resonances, and chaotic classical dynamics. The treatment
here with nominal assignments of subpolyad sequences and
phase spheres gives a novel view of energy and intensity patterns
within polyads of the acetylene bends spectrum. However, this
is certainly not yet near a complete treatment of the spectrum,
since only the primary subpolyads of polyads 10, 12, and 14
have been included. It was noted in section II that in Figure 2
there appear to be sequences visible to “eyeball” inspection, as
also in the logarithmic plot of the same spectrum in Figure 16b.
The primary subpolyad shown in Figure 16(c) in fact has been
revealed here as a kind of sequence. However, there are further
evident regularities in Figures 14b-16b awaiting scrutiny. In
the progression from polyad 10 to polyad 14, the degree of
classical chaos is increasing greatly, but in polyad 14 in Figure
16b, there is still evident regularity in the overall envelope of
the intensity pattern, and regularities in the detailed structure
of intensities within the envelope. Furthermore, the question of
regularity in the most chaotic portion of the pure bends spectrum
lies ahead at polyads 16-18. (At higher polyads, the spectrum
actually becomes more regular again.7)

Others have made considerable progress on semiclassical
analysis of the acetylene bends spectrum, in particular, using
bifurcation analysis. Jacobson and co-workers have shown33 that
the local modes representation is superior for higher polyad
numbers; with Taylor and Jung, they have given a bifurcation
analysis39 of the P ) 22 polyad. Prosmiti and Farantos40 have
considered numerically on a potential surface a number of the
periodic orbits born in bifurcations; McCoy and Sibert41 have
considered periodic orbits of a potential surface obtained from
the experimental spectrum.

A complete treatment of the spectrum along the lines
developed here is now a plausible goal. This will involve a full-
blown application of the dressed basis approach, combined with

TABLE 3: Fit Summary for Parameters

parameters (cm-1) Ĥbend Ĥ fit

605.258a 601.830
ω5

0 736.246b 731.897
ø44 3.082 3.050
ø45 -2.406 1.012
ø55 -2.335 -2.3348
K -10.0 -12.498

a In terms of the parameters from Table 2,ω4
0 ) ω4 + (ø14 + ø24 +

ø34)/2. b In terms of the parameters from Table 2,ω5
0 ) ω5 + (ø15 +

ø25 + ø35)/2.

TABLE 4. Fit summary of Energy Levels: RMS ) 9.25

energies (cm-1)

polyads assignmenta calculatedb fitted residual

10 (10,0;0,0) 6363.62 6364.15 -0.53
10 (8,0;2,0) 6487.74 6491.56 -3.82
10 (6,0;4,0) 6646.10 6647.06 -0.96
10 (4,0;6,0) 6811.98 6809.00 2.98
10 (2,0;8,0) 6967.38 6961.30 6.08
10 (0,0;10,0) 7079.10 7081.66 -2.56
12 (12,0;0,0) 7710.33 7690.53 19.80
12 (10,0;2,0) 7778.27 7793.90 -15.63
12 (8,0;4,0) 7924.04 7931.62 -7.58
12 (6,0;6,0) 8081.45 8083.30 -1.85
12 (4,0;8,0) 8239.33 8233.59 5.74
12 (2,0;10,0) 8374.31 8366.69 7.62
12 (0,0;12,0) 8455.53 8465.59 -10.06
14 (14,0;0,0) 8998.49 9016.01 -17.52
14 (12,0;2,0) 9115.40 9112.94 2.45
14 (10,0;4,0) 9234.49 9229.95 4.54
14 (8,0;6,0) 9379.74 9368.75 10.99
14 (6,0;8,0) 9518.59 9513.04 5.55
14 (4,0;10,0) 9657.77 9648.844 8.92
14 (2,0;12,0) 9762.47 9760.42 2.05
14 (0,0;14,0) 9845.63 9861.78 -16.15

a Nominal assignment from correlation diagrams. The quantum
number scheme is described in section VI.b From spectroscopic
HamiltonianĤbend.
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a complete bifurcation analysis of the spectroscopic Hamiltonian
of the kind already performed for triatomics.13,42 We are
currently pursuing this.

Future challenges for the diabatic assignment technique
include using spectra to elucidate the pathway to the acetylene-
vinylidene isomerization, and treatment of spectra with stretch
as well as bend vibrations. We have already obtained results
comparable to those here for a planar model of acetylene which
includes the stretch modes.43 The power of bifurcation analysis
of spectra for ultrafast intramolecular rearrangement processes
has been demonstrated for the isomerization spectrum of HCP.37
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