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We present a rigorous theoretical basis of the kinetic method, commonly used for thermochemical
determinations in mass spectrometry, based on finite heat bath theory (FHBT) developed by Klots. A simple
analytical expression for the branching ratio is derived from FHBT formalism. This expression simplifies to
the expression given by the absolute reaction rate theory (1) for very large clusters or (2) for reactions having
a negligible kinetic shift. The reacting population is described by two different temperatures rather than by
the “effective” temperature as suggested previously. Simulations performed using both RRKM and FHBT
revealed that the kinetic plots are slightly nonlinear. The observed curvature is related to the changes in the
transition state temperature as a function of the critical energy for fragmentation. The curvature of the plots
decreases for larger clusters. We show that the “effective” temperature closely resembles the average value
of the transition state temperature. This allows us to assign a new definition of the effective temperature and
predict its properties. The results of simulations confirm that the extended version of the kinetic method
introduced by Fenselau and co-workers provides accurate relative energetics for competitive reactions for
both small and large ions. However, accurate thermochemical information can be obtained from the kinetic
method only if reactions under investigation have negligible reverse activation energies. A new approach for
extracting relative fragmentation energetics and entropy differences for two competing reactions is proposed.
This approach requires a measurement of kinetic energy release distributions (KERDs) for the two fragmentation
channels; the relative energetics and dynamics can be extracted from asinglemeasurement.

Introduction

The gas-phase basicity (GB) and the proton affinity (PA) are
defined as the negative of the free energy change (-∆G) and
the enthalpy change (-∆H), respectively, for the reaction

Experimental methods used to determine these important
thermochemical properties comprise equilibrium measurements,
threshold measurements, the bracketing method, and the kinetic
method. The basic assumptions of the above methods, their
limitations and applications to numerous chemical systems, have
been extensively reviewed1-4 and will not be discussed here.

The kinetic method introduced by Cooks and co-workers5,6

is probably the most widely used mass spectrometric method
for thermochemical determinations. The kinetic method is
particularly attractive because it is (1) easy to use (can be
implemented on any tandem mass spectrometer); (2) can be
applied to nonvolatile and thermally labile species; (3) is
sensitive to small differences in thermochemical properties, and
(4) does not require any theoretical modeling. As a result, this
method has been used for acquiring information on therelatiVe
values of various thermochemical quantities including proton
and electron affinities, ionization energies, metal ion affinities,
and heterolytic bond dissociation energies of a wide variety of
molecules.1-3

The relative proton affinity and the gas-phase basicity of a
molecule (B1) are evaluated by monitoring the branching ratio
upon fragmentation of a proton bound dimer [B1-H+-B2]

where B2 is a reference base with known proton affinity. Two
monomers composing the dimer will compete for the proton
based on their relative proton affinities. It follows that the
difference in proton affinities of B1 and B2 will be reflected in
the experimentally measured branching ratio [B1H+]/[B2H+].
From the absolute reaction rate theory the branching ratio can
be expressed as follows:

where Q1
‡ and Q2

‡ refer to the partition functions of the
transition states of the two competing dissociation channels,Teff

is the so-called “effective” temperature that is defined as the
temperature of the canonical ensemble for which fragmentation
would yield the same branching ratio as observed experimen-
tally, and

where∆H1, ∆E1 and∆H2, ∆E2 are the enthalpy and the critical
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energy for reactions 2a and 2b, respectively. Equation 3 is valid
(1) for the system in thermal equilibrium and (2) assuming that
reactions 2a and 2b have negligible reverse activation energies.

The ratio of the partition functions, Q1‡/Q2
‡, is characteristic

of the differences in entropy of the two competing reactions.
Equation 3 can be simplified assuming that the entropy effects
for reactions 2a and 2b are similar and cancel each other (Q1

‡

) Q2
‡)

In this case the plot of ln(k1/k2) vs PA(B2) (the kinetic plot) is
a straight line with the slope given by-1/RTeff and the intercept
given by PA(B1)/RTeff. Therefore the proton affinity of B1 can
be determined from the slope and the intercept of the kinetic
plot.

The assumption of similar entropy effects for reactions 2a
and 2b used to derive eq 4 is valid if B1 and B2 are structurally
similar bases. However, eq 4 cannot be used if the fragmentation
of a proton-bound dimer composed of structurally dissimilar
bases is examined or if one of the products has internal hydrogen
bonds. Fenselau and co-workers introduced an important exten-
sion of the kinetic method to account for the differences in the
entropy effects of reactions 2a and 2b.7-9 Assuming that ln-
(Q1

‡/Q2
‡) is constant over the range of effective temperatures

sampled experimentally, one obtains

where∆(∆S) ) ∆S2
‡ - ∆S1

‡. According to eq 5, the slope of
the kinetic plot yields 1/RTeff and the intercept will be given by

To obtain information both on the proton affinity of the
unknown and∆(∆S) for reactions 2a and 2b, the branching ratios
are measured at different collision energies, corresponding to
different effective temperatures. The effective temperatures can
be extracted from the slopes of the kinetic plots. The plot of
the intercepts obtained from the energy-dependent kinetic plots
vs the corresponding slopes will give a straight line, where now
the slope and the intercept correspond to the proton affinity,
PA(B1), and the entropy difference for the competing reactions,
∆(∆S), respectively. This approach allows determining of the
thermochemical quantities of molecules for which a set of
structurally similar reference bases does not exist.8-12

The kinetic method has been extensively used to determine
proton affinities and gas-phase basicities; most of the proton
affinities obtained using this method are within 2 kcal/mol of
values obtained using alternative methods.1,3 However, sub-
stantial discrepancies (more than 10 kcal/mol) between the
results from the bracketing and the kinetic method were found
in determining proton affinities of polyglycines and polyala-
nines.2 This result challenges whether the kinetic method is
generally capable of providing accurate proton affinities of
peptides.

Despite wide use of the kinetic method, its theoretical basis
has not been clearly established. Its basic assumptions were
examined in several key publications.4,13-17 The main assump-
tions are: (1) reactions 2a and 2b have negligible reverse
activation barriers; (2) the fraction of ions that undergo
fragmentation can be characterized by an effective temperature;
(3) the proton bound dimer is a weakly bound complex, and

(4) reactions 2a and 2b are the only fragmentation channels
observed in the experiment. Furthermore, eqs 4 and 5, employed
by the kinetic method, are derived from the absolute reaction
rate theory and are rigorously valid only for systems in thermal
equilibrium. However, an ensemble of ions undergoing meta-
stable or collision-induced decay in a tandem mass spectrometer
cannot be characterized by a thermal distribution of energies.

It has been shown by several groups that eq 4 can be derived
from RRK formalism without assuming thermal equilibrium for
the ensemble of ions undergoing fragmentation in a mass
spectrometer.18-20 RRKM simulations performed by Brauman
and co-workers demonstrated that the branching ratio for
competing reactions depends exponentially on the difference
in the barrier heights for these reactions (∆∆E).19 This observa-
tion provided a strong support of the validity of eq 4. They
further concluded that the exponential behavior of the branching
ratio on∆∆E requires that∆∆E is small relative to the excess
internal energy above the fragmentation threshold. These authors
also pointed out that RRKM calculations could not establish
that eq 4 should be valid.

Although the validity of use of the effective temperature,Teff,
in eqs 4 and 5 has been extensively discussed,13-15 the physical
meaning of the effective temperature remains unclear. This led
Holmes and co-workers to suggest discontinuing the use of the
term “effective” temperature as having no physical meaning.15

They also pointed out that the ensemble of ions undergoing
competing dissociation should be characterized by two different
temperatures rather than by a single “effective” temperature.15

Drahos and Ve´key have presented a detailed analysis of the
meaning of the effective temperature.13 They concluded that it
is not a thermodynamic quantity and that it depends on the
average internal energy of the ensemble of decomposing ions
(not to the internal energy distribution in the ion source), the
critical energy for fragmentation and the experimental time
window. Surprisingly, they further found thatTeff approaches
0 K when the mean internal energy of fragmenting ions is close
to the fragmentation threshold. Ervin derived an analytical
expression for the effective temperature using classical RRK
theory.20 He found that the effective temperature is directly
proportional to the average activation energy for cluster
fragmentation, inversely proportional to the number of vibra-
tional degrees of freedom in the cluster, and depends both on
the time-window sampled experimentally and on the product
of preexponential factors for the two competing reactions.

Finite heat bath theory (FHBT) developed by Klots21-29

employs the steepest descent approximation30 to calculate the
microcanonical rate constant as a function of internal energy.
This theory has been used to explore various aspects of
unimolecular reaction dynamics. These include extracting
fragmentation energetics from kinetic energy release distribu-
tions (KERDs);31-36 exploring the influence of angular mo-
mentum,23,24excess internal energy and reaction threshold24,27,28

on the microcanonical rate constant, and the branching ratio
for competing reactions.24,37 Until now FHBT has been most
extensively used to study consecutive fragmentation of clusters
and for quantifying magic numbers in cluster ion mass
spectra.25,26,33Recent advances in applications of FHBT have
been summarized in several reviews.38,39 In the present work
we use FHBT to provide a rigorous theoretical basis of the
kinetic method and resolve remaining uncertainties on its general
applicability and limitations.

FHBT Formalism

It is well known that a canonical rate constant,k(T), can be
obtained upon averaging of a microcanonical rate constant,k(E),

ln(k1

k2
) )

PA(B1) - PA(B2)

RTeff
(4)

ln(k1

k2
) )

PA(B1) - PA(B2)

RTeff
-

∆(∆S)
R

(5)

intercept) PA(B1)/RTeff - ∆(∆S)/R (6)
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over a thermal distribution of energies. Finite heat bath theory,
alternatively called thermal kinetics in small systems, provides
a simple analytical relationship between the two rate constants
that is valid for all finite sizes of the energized medium (finite
heat bath) and ensures thatk(E) would approachk(T) as the
system becomes large enough to serve its own heat bath (infinite
heat bath).

FHBT uses the RRKM expression for the microcanonical rate
constant

whereF(E) is the density of states of the reactant,W‡(E - E0)
is the sum of states of the transition state,E0 is the critical
energy, h is Plank’s constant, andσ is the reaction path
degeneracy.

The transformation between the internal energy domain and
the temperature domain is achieved using the first-order steepest
descent approximation30 to calculate the sums and densities of
states (see Appendix of ref 27 for more details). The density of
states of the reactant can be calculated using the steepest descent
expression modified by Klots:27

where Q(T) is the partition function,kB is the Boltzmann
constant, andC is the heat capacity of the molecule evaluated
at temperatureT. The internal energy,E, and the temperature,
T, are related through the following expression:27

whereE(T) is the average energy of the reactant evaluated at
temperatureT.

The steepest-descent approximation provides a simple rela-
tionship between the sum and the density of states30

where nowE andT are related through eq 11

It can be concluded based on eqs 8 and 9 that the sum of states
can be thought of as a density of states of a system with one
additional vibrational degree of freedom. As a result, one has

The sum of states in the transition state,W‡(E - E0),
characterized by internal energyE - E0 and temperatureT‡

can be written as

where now

and E‡(T‡) is the average energy of the transition state
evaluated at temperatureT‡.

The microcanonical rate constant can be expressed as

Branching Ratios

Replacing the critical energyE0 with the critical energies∆E1

and ∆E2 for reactions 2a and 2b, respectively in eq 15, the
branching ratio,k1(E)/k2(E), is given by

The logarithmic branching ratio, assuming thatC1
‡ ≈ C2

‡, is

Equation 17 is perfectly general provided the steepest descent
approximation is valid. Hoare and Ruijgrok have demonstrated
that the accuracy of the first-order steepest descent approxima-
tion increases for larger molecules.30 Comparison of steepest
descent (SD) and direct count calculations for a small molecule
with 15 vibrational degrees of freedom showed that SD sum of
states is calculated with less than 5% error for internal energies
above 0.1 eV.40 However, according to Hoare and Ruijgrok,30

the sum of states for cyclopropane (N ) 21) for the excess
internal energy of 10 kcal/mol (0.43 eV) calculated using the
first-order steepest descent approximation is 10% lower than
the value obtained using direct count. In this study we present
simulation results for systems with more than 50 vibrational
degrees of freedom, for which the steepest-descent approxima-
tion provides quite accurate results.

An interesting observation that emerges from eq 17 is that
the slope of the plot of BR vs∆E2 (the kinetic plot) is given by
1/kBT2

‡. It follows that the kinetic plot is linear only ifT2
‡ is

constant over the range of experimental conditions for which
the branching ratios are measured. Note that the same result
can be obtained using a basic theorem of FHBT21

What is the physical meaning of the transition state temper-
ature? Klots has shown that for reactions proceeding via a loose
transition state,T‡ is characteristic of the kinetic energy
distribution of departing fragments.24,28Even the fragmentation
of a pure microcanonical ensemble results in formation of
fragments with a distribution of kinetic energies. Thus the
transition state temperature has a clear physical meaning
regardless of the initial internal energy distribution of the
ensemble of decomposing ions.

At this point it is interesting to examine two limiting cases,
for which eq 17 simplifies to the commonly used kinetic method
eq 3:

(1) Equation 3 is obtained from eq 17 ifT1
‡ ) T2

‡. This will
happen either in the trivial case where∆E1 ) ∆E2 or for an
infinite heat bath, i.e., for very large ions or for ions having a

k(E) )
σW‡(E - E0)

hF(E)
(7)

F(E) )
Q(T)exp(E/kBT)

kBTx2π(C - 1)
(8)

E ) E(T) - kBT (9)

W(E) ) kBTF(E) (10)

E ) E(T) (11)

W(E) )
Q(T)exp(E/kBT)

x2π(C - 1)
(12)

W‡(E - E0) )
Q‡(T‡)exp((E - E0)/kBT‡)

x2πC‡
(13)

E - E0 ) E‡(T‡) (14)

k(E) )
σkBT

h
Q‡(T‡)

Q(T) (C - 1

C‡ )1/2 e(E-E0)/kBT‡

eE/KBT
(15)

k1(E)

k2(E)
)

Q1
‡(T1

‡)

Q2
‡(T2

‡) (C2
‡

C1
‡)1/2

e(E-∆E1)/kBT1
‡

e(E-∆E2)/kBT2
‡

(16)

BR ≡ ln
k1(E)

k2(E)
) ln(Q1

‡(T1
‡)

Q2
‡(T2

‡)) + E( 1

kBT1
‡

- 1

kBT2
‡) -

∆E1

kBT1
‡

+
∆E2

kBT2
‡

(17)

∂ ln k(E,E0)

∂E0
) - 1

kBT‡
(18)
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thermal distribution of energies. These limiting case conditions
were not met in experiments where the kinetic method has been
successfully used.

(2) Another limiting case arises when the internal energy of
the reacting population is just above the fragmentation threshold
for reaction 1; i.e.,E ≈ ∆E1. Substituting∆E1 for E in eq 17
yields eq 3. Thus the kinetic method should be successful for
all reactions that exhibit a very small kinetic shift! However, it
is not apparent whether the kinetic method would yield accurate
results for larger systems, for which the kinetic shift is not
negligible. We address this question in the simulations presented
below.

RRKM and FHBT Calculations

RRKM and FHBT calculations were performed to address
two questions: (1) Is the kinetic plot linear or, alternatively, is
the transition state temperature,T2

‡ constant over a range of
critical energies for reaction 2b (∆E2) typically sampled
experimentally? (2) Will the kinetic method yield accurate
thermochemical information for large molecules such as pep-
tides?

Simulations were performed using the peptide frequency
model developed by Griffin and McAdoo.41 The results
presented below were insensitive to the exact values of
frequencies employed, and the conclusions are general inde-
pendent of the frequency model used. To model transition states
for reactions 2a and 2b, one frequency, 1200 cm-1, was chosen
to represent the reaction coordinate, and eight other frequencies
in the range 100-1200 cm-1 were varied to yield the desired
transition state entropy (∆S‡). Calculations were performed for
molecular ions having 50,100, 150, 200, 300, and 500 vibrational
degrees of freedom (DOF). Three different transition state
models were used to represent the difference in transition state
entropies for reactions 2a and 2b (∆(∆S‡) ) ∆S2

‡ - ∆S1
‡):

The critical energy for reaction 2a (∆E1) was kept at a constant
value of 1 eV, while ∆E2 was changed in the range
∆E1 - 0.1 eV < ∆E2 < ∆E1 + 0.1 eV.

The simulation scheme was as follows:
(1) Calculate rate-energy dependencies for reactions 2a

(k1(E)) and 2b (k2(E)).
(2) CalculateEh1

‡(T‡) and Eh2
‡(T‡) based on the frequencies

of the corresponding transition states (νi
‡):

whereN is the number of vibrational degrees of freedom in the
transition state.

(3) Find the internal energy (Emp) that gives the most probable
rate constant sampled experimentally (kmp). For a system of two
competing reactions,kmp is given by:

The most probable rate constant is determined by the geometry
of the mass spectrometer and by the type of experiment
performed. For example, metastable decay in a mass spectrom-
eter is characterized by a lowerkmp than is collision-induced
dissociation (CID). Simulations were performed for the most
probable rate constants of 5× 104, 1 × 105, and 5× 105 s-1

that represent, respectively, metastable and CID fragmentation
at two different collision energies.

(4) CalculateEmp - ∆E1 andEmp- ∆E2 and findT1
‡ andT2

‡

using the known relationship betweenE‡ andT‡.
(5) CalculateQ1

‡ andQ2
‡ using eq 21

(6) Calculate ln(k1/k2) from eq 17.

Results and Discussion

Kinetic plots obtained from RRKM and FHBT calculations
using Model 1 (∆(∆S‡) ) 0), kmp ) 1 × 105 s-1, andN ) 50
and 100 are shown in Figure 1a,b. Results obtained using FHBT
are in fairly good agreement with RRKM calculations. For larger
clusters (N > 50), the difference in branching ratios obtained
using the two methods is less than 2%. The agreement between
RRKM and FHBT calculations becomes somewhat worse when
the excess energy above the fragmentation threshold is below
0.1 eV. The deviation probably results from the deficiency of
the steepest descent approximation and is most apparent for

Model 1: ∆S1
‡ ) 6 e.u. and∆S2

‡ )

6 e.uw ∆(∆S‡) ) 0 e.u.

Model 2: ∆S1
‡ ) 6 e.u. and∆S2

‡ )

3 e.uw ∆(∆S‡) ) -3 e.u.

Model 3: ∆S1
‡ ) 6 e.u. and∆S2

‡ )

9 e.uw ∆(∆S‡) ) 3 e.u.

Eh‡(T‡) ) ∑
i)1

N hνi
‡

exp(hνi
‡/kBT‡) - 1

(19)

Figure 1. Kinetic plots obtained using RRKM (O) and FHBT (0)
calculations for (a)N ) 50 and (b)N ) 100. The solid line corresponds
to a linear fit of FHBT results, whereas the dotted line represents a
linear fit of RRKM results.

kmp ) k1(Emp) + k2(Emp) (20)

Q‡(T‡) ) ∏
i)1

N 1

1 - exp(-hνi
‡/kBT‡)

(21)
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N ) 50 and lowkmp (5 × 104 s-1). Nevertheless, both methods
yield the same qualitative picture of fragmentation even for
smaller clusters.

Typical output obtained from FHBT simulations for∆E1 )
1 eV, ∆E2 ) 1.1 eV, ∆(∆S‡) ) 0, kmp ) 1 × 105 s-1 is
summarized in Table 1. As expected, the most probable internal
energy (Emp) sampled experimentally rises linearly with the
number of degrees of freedom in the molecular ion (N). An
interesting result that follows from the data presented in Table
1 is that there are two distinct temperatures (T1

‡ andT2
‡) that

characterize two reactions in competition. As mentioned earlier,
Holmes and co-workers have proposed previously the existence
of two different temperatures rather than one effective temper-
ature characterizing competing reactions.15 Figure 2 shows the
dependence of the two transition state temperatures (T1

‡ and
T2

‡) on N. A sharp rise inT‡ for small values ofN is followed
by a much slower increase for largeN. This indicates that the
transition state temperature is approaching asymptotically the
value characteristic of an infinite heat bath as the molecular
ion becomes large. Moreover, with increase in the number of
degrees of freedom,T1

‡ and T2
‡ approach each other. The

difference betweenT1
‡ andT2

‡ is about 30% forN ) 50, less
than 7% forN ) 100, and decreases to about 1% forN ) 500.
In this exampleT1

‡ is greater thanT2
‡ for all values ofN. This

is because the critical energy for reaction 2b (∆E2) is higher
than∆E1 and, as a result, the excess internal energy for reaction
2b is always smaller than the excess internal energy for reaction
2a.

The last column in Table 1 corresponds to a maximum value
for the difference in the critical energies for reactions 2a and
2b that can be observed experimentally,∆(∆E)max. We defined
∆(∆E)max as the difference in critical energies for reactions 2a
and 2b that would give rise to a formation of 1% of B2H+

(fragmentation following reaction 2b) and 99% of B1H+

(fragmentation following reaction 2a). For small systems the

value of∆(∆E)max is low. For example,∆(∆E)max ) 0.002 for
N ) 30. Since microcanonical rate constants rise sharply with
internal energy for relatively small clusters, two competing
reactions can be observed simultaneously only in a very narrow
range of∆(∆E)max. For larger ions, however, microcanonical
rate constants rise much slower with internal energies. As a
result, a broader range of∆(∆E)s can be sampled experimentally
(see Figure 3).

Kinetic plots were created for the three different transition
state models described in the previous section. The values of
BR covered the range between-4.5, corresponding to B1H+/
B2H+ ) 0.011, and 4.5, corresponding to B1H+/B2H+ ) 90.
The critical energy for reaction 2a,∆E1, and the difference in
the transition state entropies for reactions 2a and 2b,∆(∆S‡),
were extracted from the kinetic plots using the extended version
of the kinetic method (equations 5 and 6). The results obtained
using FHBT and RRKM calculations are summarized in Table
2. Effective temperatures (Teff) determined from the slopes of
the kinetic plots will be considered later in this section. The
critical energy obtained from the simulations is in remarkably
good agreement with the input value of 1 eV for∆E1. For all
cases examined in the simulations, the deviation between the
calculated and the correct value is less than 3%. The deviation
in proton affinity (data not shown) from the assumed value of
230 kcal/mol was found to be less than 1 kcal/mol.These results
demonstrate that high-quality thermochemical information can
be obtained using the extendedVersion of the kinetic method
for any cluster size, proVided both competing reactions haVe
negligible reVerse actiVation barriers.

The values of∆(∆S‡) are also in a good agreement with the
differences in the transition state entropies assumed in the
modeling. The reason for a larger deviation of∆(∆S‡) obtained
from FHBT calculations forN ) 50 will become clear from
the following considerations. A closer examination of the kinetic

TABLE 1: Results of FHBT Simulations for ∆E1 ) 1 eV; ∆E2 ) 1.1 eV; ∆(∆Sq) ) 0; kmp ) 1 × 105 s-1

N Emp
a Emp - ∆E1 T1

q Emp - ∆E2 T2
q

E( 1

kBT1
q

- 1

kBT2
q) ln(Q1

q

Q2
q) ∆E1

kBT1
q

∆E2

kBT2
q ln(k1

k2
) ∆(∆E)max

b

50 1.233 0.233 305.1 0.133 233.8 -14.29 1.98 38.00 54.55 4.24 0.1
100 1.837 0.837 421.6 0.737 394.8 -3.42 1.38 27.50 32.30 2.76 0.15
150 2.472 1.472 462.5 1.372 445.9 -2.31 1.27 25.07 28.60 2.49 0.17
200 3.106 2.106 482.1 2.006 470.1 -1.91 1.21 24.05 27.13 2.38 0.18
300 4.393 3.393 502.5 3.293 494.8 -1.59 1.16 23.07 25.78 2.28 0.19
500 6.985 5.985 519.3 5.885 514.8 -1.37 1.13 22.33 24.77 2.20 0.2

a All energies are in eV, all temperatures are in K.b For N ) 30 ∆(∆E)max ) 0.002 eV.

Figure 2. Dependence ofT1
‡(O) andT2

‡(9) on the number of degrees
of freedom in the cluster.

Figure 3. Maximum measurable difference in the critical energies for
reactions 2a and 2b as a function of the number of degrees of freedom
in the cluster.
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plots shown in Figure 1 reveals that, although the kinetic plots
are well approximated by straight lines, the points systematically
deviate from the corresponding linear fits. Figure 4 shows the
kinetic plot for N ) 100 with a linear and second-order
polynomial fits. Although the linear regression presented in the
figure shows a reasonable agreement with the results of
simulations, the polynomial fit shows a better correlation with
the data points. RRKM calculations performed using both
Whitten-Rabinovitch semiclassical approximation42 and direct
count Beyer-Swinehart algorithm42 confirmed that, regardless
of the approach used to calculate the microcanonical rate
constants, the kinetic plots show a nonlinear behavior. It should
be mentioned also that the curvature of the kinetic plots has
been previously pointed out by Ervin20 based on RRK calcula-
tions. In the present work we found that the curvature of the
calculated kinetic plots could increase substantially when lower
level approximations are used to calculate the sums and densities
of states. It was apparent that the steepest descent approximation
provided much lower quality results forN ) 50 and lower
reaction rate constants than the Whitten-Rabinovitch or direct
count procedures. Since RRK is incapable of providing correct
rate constants even within an order of magnitude40 we expect
that the results of RRK calculations will strongly overestimate
the curvature.

Since the slope of the kinetic plot is given by 1/kBT2
‡,

examining the behavior of the transition state temperature for
reaction 2b (T2

‡) provides a better understanding of the origin
of the observed curvature of the kinetic plot. The dependence
of T2

‡/Teff on the critical energy for reaction 2b (∆E2) obtained
using Model 1 andkmp ) 1 × 105 s-1 is shown in Figure 5. It
is clear that the transition state temperature is not constant over
the range of critical energies for reaction 2b examined in the
simulations. Following the increase in∆E2, T2

‡ first increases,
then passes through a maximum and drops down. The maximum

is much more pronounced for smaller size clusters and is only
barely distinguished forN ) 500.

What are the factors that govern this peculiar behavior of
T2

‡? The transition state temperature is derived from the
difference between the most probable internal energy for a
system of competing reactions and the reaction threshold. Figure
6 shows the change ofEmp as a function of∆E2 for Model 1
and kmp ) 1 × 105 s-1. The most probable energy rises are
with increase in∆E2 in the range of critical energies where
reaction 2b either dominates or competes efficiently with
reaction 2a. However, when∆E2 becomes greater than∆E1 and
reaction 2a becomes dominant,Emp levels off to the value of
the kinetic shift for reaction 2a. The dashed line in Figure 6
represents the change in∆E2 (slope ) 1). The difference
betweenEmp and ∆E2 will increase for small values of∆E2

TABLE 2: Binding Energy for Reaction 2a and the Entropy Difference Obtained from Calculated Kinetic Plots Using the
Extended Version of the Kinetic Method7-9

Model 1 Model 2 Model 3

FHBT RRKM FHBT RRKM FHBT RRKM

N ∆E1 ∆(∆Sq) ∆E1 ∆(∆Sq) ∆E1 ∆(∆Sq) ∆E1 ∆(∆Sq) ∆E1 ∆(∆Sq) ∆E1 ∆(∆Sq)

50 0.999 0.29 1.004 -0.13 1.008 -1.86 1.013 -2.43 1.003 1.53 0.992 2.74
100 1.003 0.11 1.004 0.01 1.019 -2.39 1.017 -2.65 0.987 2.68 0.984 3.12
150 1.001 0.18 0.999 0.27 1.023 -2.56 1.021 -2.74 0.981 2.97 0.980 3.34
200 1.003 0.18 1.000 0.32 1.026 -2.66 1.021 -2.76 0.990 2.51 0.989 2.85
300 1.002 0.19 0.999 0.32 1.027 -2.72 1.021 -2.77 0.988 2.62 0.988 2.90
500 1.001 0.22 0.998 0.34 1.028 -2.78 1.022 -2.78 0.985 2.71 0.987 2.94

Figure 4. Second-order polynomial fit (solid line) and a linear fit
(dotted line) to the kinetic plot obtained using Model 1,kmp ) 1 × 105

s-1 andN ) 100.

Figure 5. Reduced transition state temperature for reaction 2b as a
function of∆E2 for Model 1 andkmp ) 1 × 105 s-1; (9) N ) 50, (0)
N ) 100, (4) N ) 200, and (2) N ) 500.

Figure 6. Most probable energy giving rise to the most probable rate
constant of 1× 105 s-1 for N ) 50 (9, -). The dotted line shows the
change is∆E2.
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since the slope ofEmp vs ∆E2 is greater than unity. However,
at some point along the curve, the slope ofEmp vs∆E2 becomes
smaller than unity and, as a result,Emp - ∆E2 decreases. In
contrast, since∆E1 is constant, the transition state temperature
for reaction 2a (T1

‡) will show a different behavior. We expect
Emp - ∆E1 andT1

‡ to increase steadily with increase in∆E2.
The change in the excess internal energy for reactions 2a (E1

exc)
and 2b (E2

exc) as a function of∆E2 for different cluster sizes is
presented in Figure 7. While for small clusters there is a
substantial difference betweenE1

exc and E2
exc, the excess

energies almost overlap forN ) 500.This clearly demonstrates
that a single temperature can effectiVely characterize fragmen-
tation of large clusters.

Why is the slope ofEmp vs ∆E2 greater than unity? Klots
has shown that the slope of the plot ofEmp vs ∆E2 is given
by27

where the right-hand side is a so-called Carnot-Kelvin factor.
This factor is, of course, greater than unity. As a result, small
variations in the reaction threshold can lead to a much more
prominent change in the internal energy needed to maintain a

most probable rate constant characteristic of a particular
experimental setup. For relatively small clusters, for whichT‡

is much smaller thanT, the Carnot-Kelvin factor is close to
unity and the amplification effect is not very marked. However,
when the transition state temperature becomes comparable with
T, this factor can be much greater than unity. It is clear now
that because for large clusters the most probable energy changes
much faster than∆E2 (∆E2 becomes effectively constant
compared toEmp), the behavior ofT2

‡ is mainly determined by
Emp. As a result, the plot ofT2

‡ vs ∆E2 for N ) 500 does not
exhibit a pronounced maximum (see Figure 5).

Table 3 shows a comparison of the average values ofT2
‡

with the “effective” temperatures derived from linear fits of the
kinetic plots. The deviation between the average transition state
temperature and the effective temperature is less than 5% in
most of the cases. It follows that the effective temperature
derived from the kinetic plot closely resembles the average
transition state temperature for reaction 2b. It also follows from
the above discussion that the “effective” temperature is indeed
a semiempirical parameter.15 However, the correspondence
between the effective temperature and the average value of the
transition state temperature allows us to attribute some meaning
to the former. Thus we conclude that it is a good approximation

Figure 7. Excess internal energy for reactions 2a (O) and 2b (9) as a function of∆E2 for different values ofN.

TABLE 3: Comparison between the Average Value forT2
q and the Effective Temperature (Teff) Obtained from Kinetic Plots

Model 1 Model 2 Model 3

kmp ) 5 × 104 s-1 kmp ) 5 × 105 s-1 kmp ) 5 × 104 s-1 kmp ) 5 × 105 s-1 kmp ) 5 × 104 s-1 kmp ) 5 × 105 s-1

N T2
q Teff T2

q Teff T2
q Teff T2

q Teff T2
q Teff T2

q Teff

50 244.2 242.8 318.4 317.9 262.9 256.7 341.4 346.2 224.5 232.1 290.8 317.9
100 370.2 363.5 436.5 430.1 386.4 367.8 456.1 439.5 354.9 375.4 416.5 436.8
150 414.6 412.2 478.5 480.1 427.7 419.5 494.7 486.8 400.1 416.7 457.9 477.7
200 437.4 429.9 494.5 487.0 444.9 427.0 509.7 491.7 421.1 438.1 480.6 500.8
300 460.6 454.0 515.7 509.1 466.0 450.0 529.0 512.1 445.4 462.6 503.4 523.3
500 479.2 473.2 532.5 526.3 483.0 468.2 544.5 528.2 464.8 481.7 521.3 541.3

( ∂E
∂∆E)k

) T

T - T‡
(22)

Kinetic Method from the Finite Heat Bath Theory J. Phys. Chem. A, Vol. 104, No. 38, 20008835



to assign the effective temperature to the transition state
temperature for reaction 2b. More important,Teff shows the same
behavior as the transition state temperature as a function of
various experimental parameters. One would expect thatTeff

(1) is correlated with the average energy of the reacting
population (Emp) through the average excess internal energy
Emp - <∆E2>; (2) is independent of the temperature of the
ion source as long as the latter is high enough to maintain an
initial energy distribution much wider than the internal energy
distribution of the population of reacting ions; (3) approaches
zero at reaction threshold (in agreement with the results of
RRKM calculations by Drahos and Ve´key13 that showed that
the “effective” temperature approaches zero at the reaction
threshold); (4) decreases with increasing the reaction time
sampled experimentally; and (5) rises with increasing cluster
size. Drahos and Ve´key13 and Ervin20 have drawn some of these
conclusions previously. However, the microscopic analysis bared
upon FHBT we have just presented provides a more general
rational for these conclusions.

The above definition of the effective temperature should be
contrasted with a definition given by Drahos and Ve´key.13 These
authors define the effective temperature as a temperature
characteristic of a canonical ensemble that would give the same
branching ratio as observed experimentally. This definition
closely resembles the definition of the so-called bath temperature
(Tb) commonly used in FHBT. However, the temperature
defined in this way relates to the energy of the energized ion (
E) rather than to the excess internal energy above the frag-
mentation threshold (E‡) that determines the transition state
temperature. In contrast, our formulation demonstrates that the
effective temperature is a good measure of the average transition
state temperature for reaction, which depends on theexcess
internal energy above the fragmentation threshold rather than
on thetotal internal excitation of the ion.

Obtaining Relative Reaction Energetics from Kinetic
Energy Release Measurements.It can be shown using FHBT
that the microcanonical rate constant is given by the following
expression:21,38

whereC is the heat capacity of the energized ion. The branching
ratio is then given by

and therefore

Furthermore, from eq 14 one obtains

Equation 26 demonstrates that measuring the transition state
temperatures for the competing reactions would yield the
difference in critical energies for reactions 2a and 2b,∆(∆E),
and eq 25 allows to obtain the difference in the activation
entropies from the measured branching ratio.

The transition state temperature can be derived from the
kinetic energy release measurements. The kinetic energy release

distribution (KERD) can be represented by26,35

where l is a parameter (0< l < 1). Fitting the experimental
KERD with the above function will yield the transition state
temperature for reaction. The combination of eqs 23-27
provides the most general approach for deducing the relative
energetics and dynamics for competing reactions using the
kinetic method. This is an important consideration for complex
molecules, for which entropic factors are likely complications.

Conclusions

In the present work we have shown that the rigorous
theoretical basis of the kinetic method can be obtained using
finite heat bath theory (FHBT). A simple expression for the
branching ratio has been derived (eq 17). For a microcanonical
ensemble of ions, this expression can be simplified to eq 5,
commonly used in the applications of the kinetic method,
provided reaction 2a has a negligible kinetic shift or provided
the ion of interest is large enough to serve as its own infinite
heat bath. In all other cases, two different temperatures
characterize competitive decay of a cluster:T1

‡ describing
reaction 2a andT2

‡ describing reaction 2b. FHBT simulations
confirm that, for large enough clusters, these two temperatures
approach each other.

According to eq 17, 1/kBT2
‡ gives the slope of the kinetic

plot. It follows that a necessary condition for linearity of the
kinetic plot is thatT2

‡ is constant over a range of critical energies
for reaction 2b (∆E2) sampled experimentally. We have shown
that T2

‡ actually changes with∆E2. Consequently, the kinetic
plot is not linear, but can be well approximated by a straight
line. The curvature of the kinetic plot is more pronounced for
smaller clusters and lower reaction rate constants. Nevertheless,
our results show that the kinetic method is capable of providing
the relative binding energy for both small and large clusters
with less than 3% error. It should be noted that relative transition
state entropies determined using the extended version of the
kinetic method are in reasonably good agreement with the input
values used in our simulations.

Although the relative energetics for two competing reactions
can be obtained with very high accuracy, care should be taken
in deriving thermochemical data using the kinetic method. For
example, protonated peptide can rearrange to a more stable
structure through intramolecular hydrogen bonding. If this
occurs, elimination of a peptide molecule from a proton-bound
dimer can be associated with a nonnegligible reverse activation
barrier. If reaction 2a has substantial reverse activation energy,
the kinetic method necessarily overestimates the reaction
thermochemistry.

Measurement of the kinetic energy release upon fragmentation
provides an experimental measure of the degree of tightness or
looseness of the reaction transition state and should be used to
confirm the applicability of the kinetic method to a particular
system. In the present work we proposed an approach for
obtaining both the relative energetics and dynamics of two
competing reactions from kinetic energy release distributions
(KERDs). An advantage of the proposed approach is that it
requires only relative measurements of a compound with
unknown proton affinity vs asingle reference base. It is our
intention to test the accuracy of this method experimentally by
carrying out a systematic study of collision-induced and
metastable decay of proton-bound peptide dimers over a range
of proton affinities and reaction times.

k(E) )
ekBT

h
e∆S‡/kB(T‡

T)C

(23)

k1

k2
) e∆(∆S‡)/kB(T1

‡

T2
‡)C

(24)

ln(k1

k2) )
∆(∆S‡)

kB
+ C ln(T1

‡

T2
‡) (25)

∆E2 - ∆E1 ) E1
‡(T1

‡) - E2
‡(T2

‡) (26)

P(ε) ) ε
lexp(-ε/kBT‡) (27)
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