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A nonlinear parameter estimator with frequency-windowing for signal processing, called Decimated Signal
Diagonalization (DSD), is presented. This method is used to analyze exponentially damped time signals of
arbitrary length corresponding to spectra that are sums of pure Lorentzians. Such time signals typically arise
in many experimental measurements, e.g., ion cyclotron resonance (ICR), nuclear magnetic resonance or
Fourier transform infrared spectroscopy, etc. The results are compared with the standard spectral estimator,
the Fast Fourier Transform (FFT). It is shown that the needed absorption spectra can be constructed simply,
without any supplementary experimental work or concern about the phase problems that are known to plague
FFT. Using a synthesized signal with known parameters, as well as experimentally measured ICR time signals,
excellent results are obtained by DSD with significantly shorter acquisition time than that which is needed
with FFT. Moreover, for the same signal length, DSD is demonstrated to exhibit a better resolving power
than FFT.

1. Introduction

Recently, we have introduced a new method, termed Deci-
mated Signal Diagonalization (DSD), for obtaining the complete
eigenspectra of arbitrarily large matrices that are theoretically
generated with auto-correlation functions from time propagated
wave packets.1 Using the previously established equivalence
between the auto-correlation functions and the exponentially
damped signals corresponding to spectra that are sums of pure
Lorentzians,2,3 this paper extends DSD to signal processing.
Many experimental time signals, such as those arising from ion
cyclotron resonance (ICR), nuclear magnetic resonance (NMR),
Fourier transform infrared (FTIR) spectroscopy, and so forth,
are of this latter form.4,5 Although DSD can be used to analyze
any such signal, the examples presented here concentrate on
time signals obtained from ICR experiments.

The DSD of ref 1 relies upon the part of the Wall-
Neuhauser2 Filter Diagonalization (FD) method, in the Man-
delshtam-Taylor3 discrete version, which uses the signal to
create the matrixes of a generalized eigenvalue problem. Upon
diagonalization, this yields the spectral parameters of the desired
Lorentzian spectrum. The common key to the success of both
FD and DSD is the introduction of windowing techniques with
the purpose of significantly reducing the large dimensions of
the matrices that need to be diagonalized. Without this reduction,
any diagonalization procedure, even with the use of regulariza-
tion techniques such as singular value decomposition (SVD)
and the like, becomes numerically unstable for large matrices
and often yields spurious peaks. This problem can be traced

back to the fact that the rank of the matrices, i.e., the number
of spectral Lorentzians, is usually much smaller than their
dimension, which is half the length of the signal.

As seen below, windowing in DSD is performed prior to the
introduction of any signal processing model. The band-limited
decimation as a particular windowing employed here is, in fact,
a generic procedure because it is not necessarily limited to
diagonalization methods for signal processing. As such, the
shortened beamspace-windowed signal can be subjected to other
processors as originally pointed out in ref 1 and recently
illustrated in refs 6 and 7. In Section 2 of the present paper, we
outline the theory and comment on several advantageous features
of DSD. Of particular importance is that, for a given signal
length, DSD has a better resolving power than FFT. As a result,
DSD usually achieves convergence with a significantly shorter
acquisition time than needed with FFT. Although the measure-
ment of long time signals presents few difficulties experimen-
tally, there is a distinct advantage to be gained by using shorter
signals. The exponential decay of the signal amplitude with time
means that longer time signals can become overwhelmed by
noise. Eventually, the noise obscures the very signal structure
whose resolution demands the longer acquisition time. DSD
avoids this problem to an extent by achieving resolution before
reaching a signal length where noise becomes too significant.
This important point is demonstrated in Section 3, in which we
give the test examples for a synthesized model signal with
known peak parameters, as well as for three experimentally
measured ICR time signals. The conclusion is in Section 4.

2. Theory

In this section, we describe the DSD as a parameter estimator
for the processing of time signals such as the ones that arise
typically in Fourier transform-based spectroscopic experiments.
Central to the success of the DSD method is the introduction
of a windowing technique called “band-limited decimation”,
which is different from that implemented in FD.2,3
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2.1. Windowing. The windowing procedure used in DSD is
simple and can be briefly explained as follows. We start with
the digitized time signal{cn} (0 e n e N - 1) which consists
of N points, equidistantly sampled with a “dwell” timeτ and
having a total bandwidth of 2π/τ. To initialize windowing,{cn}
is subjected to a discrete Fourier transform using the efficient
FFT algorithm to obtain the Fourier spectrum

which is accurate only at the Fourier grid points,k, correspond-
ing to the frequenciesωk ) 2πk/(Nτ). In general, the FFT of
eq 1 yields what turns out to be, relative to the final spectrum,
a low-resolution spectrum as the number of signal points,N,
will be insufficient for the FFT to resolve dense eigenfrequen-
cies.

Next, the frequency window of interest,ω ∈ [ωkmin, ωkmax], is
chosen. To reduce the ill-conditioning of the subsequent
processing, the number of Fourier grid points,ND ) kmax -
kmin + 1, contained in the window should not exceed more than
about 200. TheND elements,Fk, of the low resolution Fourier
spectrum located within the window are then selected and shifted
to reposition them symmetrically about the frequency origin,
ω ) 0. That is, the central frequency of the window,ω0 )
2πk0/(Nτ) where 2k0 ) kmax + kmin, is subtracted from every
frequencyω belonging to the actual window. In this way, the
band-limited decimated FFT spectrum,{Fk

bld} (0 e k e ND -
1), is created. Specifically, we haveFk-k0

bld for kmin e k e kmax

with the periodicity of the FFT used to identifyFj
bld ) FND+j

bld

when j < 0. The result is a spectrum centered atω ) 0 with a
bandwidth of 2πND/(Nτ).

Finally, an inverse FFT is applied to{Fk
bld} to obtain the so-

called “band-limited decimated” (bld) signal{cn
bld} (0 e n e

ND - 1) of shorter lengthND, which is valid for the window of
interest. The new bandwidth is reducedM ) N/ND times from
that of the original signal. Hence, the dwell time of the band-
limited decimated signal is now augmented byM so thatτD )
Mτ giving the same total acquisition time as used forcn, i.e.,T
) Nτ ) NDτD. By employing the band-limited decimated signal,
the problem is reduced to one of signal processing a significantly
shortened effective signal. The key steps in the creation of the
band-limited decimated signal are shown schematically in Figure
1.

To scan the whole bandwidth of the original signal [-π/τ,
+π/τ], we must form the Fourier spectra{Fk

bld} and the
resulting band-limited decimated signal{cn

bld} separately for
each ofM windows. Note, however, that the first FFT of the
original signal of lengthN is common to each of theM windows
and hence need be performed only once. In any case, none of
this preprocessing is computationally intensive as each FFT
scales with the signal length asN log2 N. Relative to diagonal-
ization, the CPU time required for the windowing is negligible.

In any of the windows, [ωmin, ωmax], the resulting FFT spectra
{Fk

bld} created from{cn
bld} are, by construction, identical (apart

from the centering of the spectrum aboutω0) to the correspond-
ing Fourier spectra{Fk} based solely upon{cn}. This establishes
the key feature of the procedure, which is that the information
content in each of theM individual windows is preserved in
the process of band-limited decimation. We emphasize this
crucial feature of theband-limited decimationto avoid any
potential confusion with astraightforward decimation,which
always leads to a loss of information. Some distortion of the
bld signal can occur for very narrow windows, and caution must

be exercized when using DSD for such windows that contain a
small number of Fourier grid points (i.e., smallND).

In our numerical implementation of band-limited decimation,
we explicitly use the robust numerical routines for FFT and
inverse FFT to take full advantage of the mentioned quasi-linear
scaling with the increasing signal length. Note, however, that
the prescription outlined permits a straightforward derivation
of the following analytical formula

with 0 e n e ND - 1. It is clear from here that band-limited
decimationalways uses the whole set{cn′} (0 e n′ e N - 1)
of the original signal in constructing the new sequence{cn

bld}.
In other words, the only trace of band-limited decimation in
{cn

bld} is in a weight function, given by the complex phase
modulated ratio of the two sinusoids in eq 2. A crucial
consequence of such a structure in eq 2 is that no original signal
point cn′ is ever dropped from{cn

bld}. This does not necessarily
imply that the whole set{cn′} (0 e n′ e N - 1) must always

Figure 1. Schematic of the band-limited decimation process. The
original signal (for clarity, only the real part of the signal is shown in
the upper left-hand panel) is first subjected to the FFT, yielding the
low resolution spectrum a small part of which is shown in the lower
left-hand panel. Next, a small window is chosen as indicated by the
dashed vertical lines. The values of theFk elements within the window
are shifted in frequency so that the window is symmetric aboutk ) 0
to give the band-limited Fourier spectrum,Fk

bld (bottom right-hand
panel). An inverse FFT is then applied to obtain the real and imaginary
parts of the band-limited decimated signal points,cn

bld. In the upper
right-hand panel, the real part of the resultingcn

bld are marked by the
filled circles and the full lines are drawn to guide the eye. The imaginary
part ofcn

bld (not shown) exhibits a similar behavior. Note that we plot
Re(cn

bld) againstMn to emphasize that the acquisition time of thecn
bld is

identical to that of the original signal shown in the upper left-hand
panel.

cn
bld )

1

N
∑
n′)0

N-1

cn′e
2πin′k0/N

sin(π[n/ND - n′/N])

(π[n/ND - n′/N])
(2)

Fk ) ∑
n)0

N-1

cn e2πikn/N, (k ) 0, ...,N - 1) (1)
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be exhausted for every application in practice. As a matter of
fact, it will be shown in Section 3 that DSD with{cn

bld} can
successfully complete the full spectral analysis by using only a
fraction (sometimes one-quarter) of the lengthN of the original
signal{cn′}.

2.2. Decimated Signal Diagonalization.We now describe
the diagonalization procedure that extracts all of the relevant
peak parameters, namely the complex frequencies and ampli-
tudes,{ωk, dk}, from the window [ωmin, ωmax]. As with FD,
the DSD technique is restricted to signals that are given as sums
of damped exponentials. Therefore, we model the band-limited
decimated signalcn

bld as

where the condition Imωk < 0 selects only those physically
meaningful harmonics that decay exponentially with increasing
time andK is the so-called local spectral rank which is equal
to the number of Lorentzians generated by eq 3. Here, the order/
rank K need not be finite/fixed or even known prior to the
analysis, in contrast to the initial condition of, e.g., one of the
most frequently used methods in ICR and NMR known as the
Linear Predictor (LP).6 By comparison, the inverse Fourier
transform,cn ) ∑k)0

N-1 Fke-2πikn/N, from eq 1 also appears as a
sum of exponentials with the complex amplitudes{dk} given
by {Fk}. However, unlike eq 3, these latter exponentials are
undamped, and their purely real frequencies{ωk} arepre-fixed
at the Fourier grid points,ωkτ ) 2πk/N. Consequently, the FFT
and inverse FFT represent linear mappings as opposed to the
nonlinear ansatz in eq 3, where bothdk andωk are the fitting
parameters. It isthis fact that furnishes a possibility to improve
frequency resolution by all the spectral estimators that use
nonlinear fits forcn or cn

bld as modeled by eq 3.
The method upon which the DSD relies for converting the

nonlinear fit of eq 3 into an equivalent diagonalization problem
was first devised by Wall and Neuhauser2 and later reformulated
by Mandelshtam and Taylor3 for the processing of time signals
defined on evenly spaced discrete time grids. The details of
such a conversion within FD can be found in refs 2 and 3, and
therefore, only a brief outline suffices for an equivalent
procedure within DSD. The crucial idea is to associate the
complex signal points,cn

bld, to be modeled by the form of eq 3,
with a discrete time auto-correlation function

generated by the time evolution operatorÛ(τD) ) exp(-iΩ̂τD)
of a “fictitious” dynamical system with an effective complex
symmetric “Hamiltonian” operator,Ω̂. In eq 4,Φ0 represents
some “initial” state of the system and a complex symmetric
inner product (a|b) ) (b|a), i.e., without complex conjugation,
is used. Note that neither the operatorÛ (or, equivalently,Ω̂)
norΦ0 need be known or given explicitly. It is further supposed
that there exists an orthonormal set of eigenvectors{Υk} that
diagonalizes the evolution operator. Then we can write

whereuk ) exp(-iτDωk) are the eigenvalues ofÛ. Substitution
of eq 5 into eq 4, followed by the identification

leads directly to the right-hand side of eq 3 and, therefore,Cn
bld

) cn
bld. Hence, the eigenvalues ofÛ determine the complex

frequenciesωk via uk ) exp(-iωkτD), whereas the corresponding
eigenvectors give the complex amplitudes,dk, from eq 6. In
other words, diagonalization ofÛ yields all the desired
parameters,{ωk, dk}.

AlthoughÛ may not be known explicitly, its matrix elements
in an appropriately chosen basis are always determined com-
pletely by the {cn

bld}. The simplest available basis is that
consisting of the primitive Krylov vectors{Φn} generated by
the evolution operator

whereK ) [ND/2] with [R] denoting the integer part ofR.
When expressed in terms of the Krylov basis, all the matrix

elements ofÛ depend only on the set{cn
bld} through the

remarkably simple prescription3

Because the basis is not orthonormal, the overlap matrixS )
{Snm} is also needed and this is given by3

which again is related trivially to the set{cn
bld}. Of course,

relations (8) and (9) are entirely similar to those first encountered
in FD, with the exception that DSD uses the band-limited
decimated signal points{cn

bld} rather than the original ones
{cn}. Clearly eqs 8 and 9 render DSD independent of the
measured or computational origin of the decaying time signals
of the form of eq 3.

With the above-described ansatz (4) and the mentioned
equivalenceCn

bld ) cn
bld, the nonlinear fitting in eq 3 is

converted in DSD into a linear algebra equation through solving
an equivalent generalized eigenvalue problem,2,3

for the eigenvaluesuk ) exp(-iωkτD) of the operatorÛ ) [exp-
(-iΩ̂τD)] with the elements of theK × K matricesU and S
given by eqs 8 and 9, respectively. The column vectorsBk with
elementsBnk are normalized with respect to the overlap matrix
S, i.e.,

and define the eigenvectorsΥk in terms of thelocally complete
Krylov basis functionsΦn as

Substituting eq 12 into eq 6 gives

which provides an explicit, closed form expression which can
be used to compute the complex amplitudes{dk}.

The DSD now diagonalizes eq 10 to determine all the peak
parameters{ωk, dk} in the window [ωmin, ωmax] and then

|Φn) ) Ûn|Φ0) ) e-inτDΩ̂ |Φ0), n ) 0, ...,K - 1 (7)

Unm ) (Φn|ÛΦm) ) (Φn|Φm+1) ) cn+m+1
bld (8)

Snm ) (Φn|Φm) ) (ÛnΦ0|ÛmΦ0) ) (Φ0|Ûm+nΦ0) ) cm+n
bld

(9)

UBk ) ukSBk (10)

Bj
T SBk ) δjk (11)

Υk ) ∑
n)0

K-1

BnkΦn (12)

dk ) ( ∑
n ) 0

K-1

Bnkcn
bld)2 (13)

cn
bld ) ∑

k)1

K

dke
-iωknτD, Im ωk < 0 (3)

Cn
bld ) (Φ0|Û(nτD)Φ0) (4)

Û ) ∑
k

|Υk)uk(Υk| ) ∑
k

e-iτDωk |Υk)(Υk| (5)

dk ) (Φ0|Υk)(Υk|Υ0) ) (Υk|Υ0)
2 (6)
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constructs alocal spectrum in any mode, e.g., magnitude|F(ω)|,
power|F(ω)|2 and, most importantly, absorptionA(ω). This is
performed at anarbitrary real frequencyω from the chosen
window through the following sum of complex Lorentzians

which is obtained simply by taking the Fourier integral of eq 3
in the continuous time limit. The real central frequencyω0 )
(ωmin + ωmax)/2 of the window [ωmin, ωmax] is added to every
complex resonanceωk to compensate for the shift to the origin
ω ) 0 of the band-limited Fourier spectrumFk

bld invoked in
construction of eachcn

bld. To compute an a priori positive
definite absorption spectrum,A(ω) g 0, at any realω we
propose the formula

This follows from eq 14 by requiring that Re{F(ω)} and
Im{F(ω)} are purely absorptive and dispersive spectrum,
respectively. Unlike the complex spectrumF(ω) from eq 14,
the absorption modeA(ω) in eq 15 has no interference effects,
due to the deliberate omission of the signal phase Arg(dk) in
|dk| ) |dkei Arg(dk)|. The diagonalization generally yields both
physical (Imωk < 0) and spurious (Imωk > 0) eigenfrequencies.
The latter ones have been retained in the final spectra previously
calculated in FD3 by using one of the several existing reflections,
e.g., Imωk f -|Im ωk|, and so forth. A similar procedure could
also be employed in DSD. We emphasize again that DSD is
limited only to Lorentzian spectra that in the time domain are
modeled by sums of damped exponentials (3).

The ability to obtain an absorption spectrum with its enhanced
resolution and, due to the lack of interference between Lorent-
zian peaks, its clearer appearance is an advantage of DSD over
the standard FFT. As mentioned before, the FFT sequence{Fk}
coincides with the set of the complex amplitudes{dk} in the
original signalcn which can be conceived as the inverse FFT,
Fk

-1. Here, the correct phase Arg(dk) of dk must be known
before the set{Fk} could be decomposed into its absorption
and dispersion parts,A(ω) andD(ω), by using the “single line”
prescription,e-i Arg(dk) F(ω) ) A(ω) + iD(ω), which is correct
only at the Fourier grid points,ωτ ) 2πk/N. Obtaining the
proper phase in FFT is nontrivial, as often a subset of early
signal points from the sequence{cn} may not be collected for
reasons of experimental difficulties. Therefore, the resulting{dk}
could have an incorrect phase. To remedy this in, e.g., NMR
experiments, certain empirical corrections can be made because
the length of the missing front part of the signal is usually short.
However, this is often not the case in typical ICR measurements
and true absorption spectra are virtually impossible to obtain.
Here, both resolution and transparency of the spectra are
sacrificed by displaying the magnitude|F(ω)| of F(ω) which
includes the dispersion contribution,D(ω). This latter term dies
off too slowly as∼1/ω with the frequency separation from
Re(ωk) and, therefore, causes an overall poor resolution and/or
performance of FFT. The process of taking the magnitude of
the complex functionF(ω) leads to the interference which is
only worse due to the enhanced overlay of lines. In any of the
harmonic inversion methods of which DSD is only one example,
the complex {dk} and the complex{ωk} are the fitting
parameters that constitute the so-called “line list”, which is

determined prior to constructing a spectrum andthis facilitates
emergence of an absorption mode (15). In principle, there is
no need to go beyond the line list which contains all the required
information. We say “in principle” because the ubiquitous noise
in the signal, which can hardly satisfy the forms such as eq 3,
causes the appearance of many spurious entries in the line list.
It then seems appealing to visually inspect the obtained spectra
with the intention of roughly disentangling noise from signal
as a first approximation to a more comprehensive noise
reduction technique (for a more detailed discussion, see, e.g.,
ref 6).

If required, all the above-outlined steps in DSD can be
repeatedM times to scan the frequency window [ωmin, ωmax]
throughout the whole Nyquist interval. In so doing, the signal
lengthND may be allowed to vary from window to window. It
is tempting to think that, when connecting together these partial
spectra, the sharp rectangular window employed could lead to
some phase distortions at the edges of the adjacent windows.
This is the so-called “aliasing” which exists for general signals,
but not for the band-limited ones, such as, e.g.,{cn

bld}. The
present procedure of band-limited decimation belongs to a
broader class of the well-known “anti-aliasing” filters. Should
a larger portion of a spectrum and/or the whole Nyquist interval
be analyzed by DSD, a significant overlap of the neighboring
windows is recommended. This should be followed subsequently
by discarding the narrow edges of each of the local spectra (see
Section 3, example 3).

For comparison, windowing in FD is accomplished using a
linear combination of the primitive Krylov basis functions (7)
with the Fourier coefficients, but keeping the original signalcn

throughout. Such a windowing also secures emergence of the
diagonally dominated elements in the matrixU. This dimen-
sionality reduction of the original problem is performed during
diagonalization and, as such, is limited exclusively to FD. By
contrast, our windowing procedure is carried out directly on
the original time domain datacn and is, therefore, completely
dissociated from the spectral analysis, so that the band-limited
signalcn

bld can be subjected to any of the existing processors.
The above-achieved dimensionality reduction of the matrix

U does not, of course, eliminate the inherent ill-conditioning
problem in eq 3 for the underlying harmonic inversion. Rather,
the round-off error problems become controllable and non-
accumulative, so that certain routine procedures, e.g., singular
value decomposition (SVD), Householder’s or Cholesky’s
decomposition or the QZ algorithm, as implemented in, e.g.,
the NAG Library,8 lead to stable algorithms producing accurate
results.

Overall performance of DSD is deemed accurate, stable, and
robust as our concrete computations combined with thorough
testing have indeed confirmed. The robustness of DSD stems
from the way it performs the windowing. Here, the two robust
processors, FFT and inverse FFT, effectively prepare all the
matrix elementsUnmandSnmas seen in eqs 8 and 9, respectively.

As with several other parameter estimators, DSD exhibits an
advantage over FFT in resolving power. For example, DSD has
the same resolution as FFT for shorter acquisition time, or
equivalently higher resolution for the same signal length. This
can be seen from the respective uncertainty principles,NFFT ∝
2π/(τ∆ωmin), for FFT andNDSD ∝ 4π/(τ∆ωav), for DSD where
∆ωmin and∆ωav are the minimum and average spacings between
eigenvalues in the given window, respectively. Because gener-
ally ∆ωav > ∆ωmin, we haveNDSD < NFFT.

As opposed to DSD, which is a parameter estimator, FFT is
a spectral estimator, which can directly provide only the shape

F(ω) ) -i∑
k)1

K dk

ω - ω0 - ωk

(14)

A(ω) ) ∑
k)1

K

|dk|
-Im ωk

(ω - ω0 - Reωk)
2 + (Im ωk)

2
(15)
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of a spectrum. To obtain the resonance parameters from a given
FFT spectrum, one customarily resorts to a Lorentzian-type
fitting as in eq 3 for each peak, but this time via nonlinear least-
squares minimizations. In most cases, this is insufficiently
accurate and does not work well with overlapping Lorentzians.
Due to nonlinear fitting, one must first estimate initial values
of the unknown{ωk, dk} and poor guesses might lead to severe
deviations from the expected, true results. This approach
becomes particularly impractical for dense spectra with a large
number of peaks. All of these difficulties are absent from DSD,
which finds the required peak parameters{ωk, dk} directly by
solving eq 10.

3. Examples

Here, we display and briefly discuss the results obtained for
the performed tests of DSD in both the case of a theoretically
synthesized model signal of the form given in eq 3 with known
complex peak parameters{ωk, dk} (Figure 2) and the case of
experimentally measured ICR time signals (Figures 3, 4 and
5). The DSD is applicable to any time signal modeled by sums
of attenuated complex exponentials with constant amplitudes
as customarily encountered in most ICR, NMR, or FTIR
experiments. The simulated model problem is selected in such
a way that the given peak parameters{ωk, dk} could realistically
mimic some typical time signals recorded in these experiments.
Conversely, both groups of the illustrations, the synthesized and
the experimental signals, are deemed sufficiently general,
representative, and challenging to provide a reliable test for
assessing the validity and usefulness of the DSD with respect
to the FFT. With this main purpose of the present testing, we
will briefly explain the experimental samples without going into
details of their specific relevance for the ICR community, as
such information is readily available in the references in which
these signals and their FFT spectra have been originally reported.

As a first test we used FFT and DSD to obtain the spectra of
a simulated time signal of the form of eq 3. The signal consisted

of 54 known complex peak parameters,{ωk, dk}, with Re(ωk)
distributed throughout the total bandwidth of 312.5 Hz. A total
of N ) 32 K signal points were computed with a dwell-time of
τ ) 3.2 milliseconds. The standard deviation of the resulting
signal wasσ ) (∑n)0

N-1|cn|2/N)1/2 ) 1.652. Finally, Gaussian
distributed white noise with zero mean and standard deviation
σ ) 0.5 was added to the signal to simulate a noise contamina-
tion of roughly 30%. This final “noisy” signal can be regarded
as typical of time signals that would be measured, for example,
in a high-resolution ICR experiment.

Analysis of this synthesized signal with 30% noise produces
the FFT and DSD spectra shown in Figure 2. For clarity, we
show only a small frequency window in the region 0.015-0.016
kHz. The superior frequency resolving power of DSD is clear.
In contrast to FFT, the present method separates the close
doublet at 0.015 570-0.015 585 kHz which is further magnified
in the panels on the right-hand side of Figure 2. In addition,
the small peak at 0.01587 kHz is almost completely masked by
noise in the FFT and yet is clearly visible in the DSD absorption
spectrum. The spectra calculated by DSD have not been
subjected to any noise reduction procedures and yet the
successful resolution of all six genuine peaks in the frequency
window is achieved without any difficulty.

In Table 1, we compare the exact parameters used to generate
the time signal with those recovered by analysis of the “noisy”
signal using DSD. For each of the six signal peaks in the
considered window, DSD retrieves the frequency to well within
0.005 Hz of the true value. Note that, for the noiseless signal,
DSD retrieves to machine accuracy all of the exact signal
parameters listed in Table 1. This comparison gives a guide to
the expected level of error when using DSD to analyze
experimental ICR time signals embedded in noise of a moderate
level.

Next, we discuss the spectral analysis of the experimental
ICR time signals for [C59N]+ and [C60]+. These experiments

Figure 2. Spectra for a “noisy” synthesized time signal consisting of
a sum of exponentially damped oscillations with known amplitudes,
phases, and damping constants. Gaussian distributed zero-mean random
noise of standard deviation 0.5 is added to the signal to simulate a
noise contamination of roughly 30%. The three panels on the right-
hand side show magnifications of the doublet located at 0.015 570-
0.015 585 kHz.

Figure 3. ICR frequency spectra of singly charged molecular ions
[C59N]+ and [C60]+. The time signal was obtained via a single time-
domain data acquisition using the Matrix Assisted Laser Desorption
Ionization (MALDI). Employing merely one-quarter of the full signal
length, DSD obtains the entire elemental structure with the correct
relative abundance of all the isotopes. The largest peak in the spectrum
is associated with the monoisotopic [12C59

14N]+ ion.
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were performed at the Department of Chemistry at the Univer-
sity of California at Santa Barbara by the Matrix Assisted Laser
Desorption Ionization (MALDI) of admixtures of azafullerene,
(C59N)2, and fullerene, C60. The spectra calculated by FFT and
DSD are displayed in Figure 3 in order of increasing improve-
ment from top to bottom. As is clear from this figure, to resolve
all the six isotope peaks in the selected window, FFT needs the
full signal length,N ) 64 K. However, DSD achieves the same
result by using only one-quarter,N ) 16 K, of the measured
time signal. Even with such a signal, which is considerably
shorter than the one provided with the full acquisition time,
DSD resolves the isotopic admixtures to within a fraction of
one kHz (which corresponds to a fraction of one Da on the
mass scale). Moreover, with the same short signal, DSD is able
to detect the smallest peak of∼1/10 th of the magnitude of the
central largest structure. The DSD results forN ) 16 K andN
) 64 K are indistinguishable from each other on the scale of
Figure 3.

In Figure 4, we present the results of our third test example
concerning the experimental ICR time signal for the so-called
“Milled Wood Lignin (MWL)” in its covalent molecular
compoundspinoresinol. This experiment has been carried out
at the Ångstro¨m Laboratory of the University of Uppsala
(Sweden), where the sample of MWL was obtained by chemi-
cally treating softwood lignin with the help of thioacidolysis
and fractionation. Lignin, as the second most abundant organic
molecule on Earth, accounts for about 30% of the dry weight
in softwood and thus plays an important role in wood and paper
chemistry as well as technology. This ICR experiment with the
lignin sample was performed with the help of an accompanying
technique known as the collisionally induced dissociation

(CID).9 The resulting ICR time signal carries information on
isotopic fine structure which provides an insight into the
elemental composition of MWL. In the left-hand panels of
Figure 4, we plot the corresponding spectra in the frequency
region from 0.55 to 1.05 kHz. Analysis of this whole frequency
range (which corresponds to approximately one-sixteenth of the
total spectral bandwidth) in one run by DSD would result in a
generalized eigenvalue problem of dimension 1 K, if the full

Figure 4. ICR frequency spectra for isotopic fine structure of Milled
Wood Lignin (pinoresinol lignin molecular compound). The signal was
recorded at the Ångstro¨m Laboratory (Uppsala, Sweden) using the
collisionally induced dissociation (CID) together with tandem FT-ICR
mass spectroscopy. The panels on the right-hand side show magnifica-
tions of the isotopic peak (a doublet) located at 0.74-0.75 kHz. With
only one-quarter of the full signal length; DSD resolves the whole
elemental isotopic composition with the correct relative abundance of
the constituents. The left and right peaks on the inserts correspond to
isotopes13C2 and34S, respectively.

Figure 5. ICR frequency spectra for isotopic fine structure of
apotransferrin in the region of a doublet located at 61 kHz. The signal
was recorded at the Ångstro¨m Laboratory (Uppsala, Sweden). The top
three panels show the FFT magnitude spectra obtained usingN ) 16
K, N ) 8 K, andN ) 4 K of the measured signal points. The bottom
panel depicts the corresponding DSD absorption spectrum obtained
utilizing only N ) 4 K.

TABLE 1: Comparison of Exact and DSD-Determined
Parameters for a Synthesized Time Signal Consisting of a
Sum of Exponentially Decaying Oscillations, with Known
Frequencies, Amplitudes, Phases, and Damping Constantsa

frequency
(kHz)

damping
const (s-1) amplitude

phase
(deg)

exact 0.015 870 00 0.100 00 0.150 00 60.000 00
DSD 0.015 866 63 0.065 20 0.114 03 55.418 17
exact 0.015 760 00 0.040 00 0.600 00 45.000 00
DSD 0.015 759 77 0.039 52 0.592 76 45.827 82
exact 0.015 640 00 0.050 00 0.300 00 135.000 00
DSD 0.015 639 68 0.049 66 0.323 28 134.202 04
exact 0.015 585 00 0.040 00 0.400 00 60.000 00
DSD 0.015 585 92 0.037 29 0.359 76 64.271 08
exact 0.015 570 00 0.040 00 0.300 00 10.000 00
DSD 0.015 570 46 0.041 85 0.346 56 11.193 11
exact 0.015 450 00 0.050 00 0.200 00 10.000 00
DSD 0.015 453 13 0.057 86 0.239 68 32.200 09

a Prior to processing with DSD, 30% Gaussian distributed random
white noise with zero mean was added to the signal. Only those
parameters for the six peaks occurring in the frequency range 0.015-
0.016 kHz are reported here.
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signal length ofN ) 32 K is used. Instead, we further subdivided
the range 0.55-1.05 kHz into four overlapping windows, each
of width 0.12 kHz. Each small window was analyzed in turn to
obtain all the peak parameters over the full frequency interval
of interest. Finally, the DSD magnitude and absorption spectra
presented in Figure 4 were calculated using eqs 14 and 15,
respectively.

The right-hand panels of Figure 4 show magnifications of
the spectra in the region of the doublet at 0.74-0.75 kHz. Again,
it is evident from this figure that FFT is unable to resolve the
doublet when only one-quarter (N ) 8 K) of the measured time
signal is used. The doublet is, however, resolved successfully
by using DSD withN ) 8 K.

It is clear from the above comparison that DSD converges
faster than FFT. This in itself might be a useful advantage from
a noise reduction viewpoint.6 The signal usually decays
exponentially, whereas some sources of noise often remain
relatively constant in time. The result is that, at long times, noise
can dominate the signal. Although the noise is preserved in the
band-limited decimated signalcn

bld of length ND, by using a
shorter signal, DSD automatically works with a less “noisy”
signal.

The above point is dramatically demonstrated in our final
example, which concerns the isotopic fine structure of apo-
transferrin. This experimental ICR time signal was also mea-
sured at the Ångstro¨m Laboratory of the University of Uppsala
(Sweden). The apotransferrin sample was purchased com-
mercially from Sigma Aldrich and had a mass of around 77
kDa. It was electrosprayed in a 50:50 methanol:water mixture
to which 2% acetic acid was added. In Figure 5, we concentrate
on a small region of the corresponding frequency spectrum in
the vicinity of a doublet at 61 kHz. The top three panels show
the FFT magnitude spectra obtained usingN ) 16 K, N ) 8 K,
andN ) 4 K. With N ) 4 K andN ) 8 K signal points, FFT
fails to unambiguously resolve the doublet. However, increasing
the signal length toN ) 16 K does not yield the expected
increase in the FFT resolution. In this case, increasing the
acquisition time to achieve the required resolving power has
resulted in the recording of points where the signal is over-
whelmed by noise. The result is a significant deterioration in
the quality of the spectrum. Here, the superior frequency
resolution of DSD enables the separation of the doublet withN
) 4 K signal points as shown in the bottom panel of Figure 5.

As we have demonstrated with the above four examples, DSD
provides a powerful method for analyzing time signals embed-
ded in noise of moderate levels, such as those typically recorded
in ICR, NMR, or FTIR experiments. It is important to note,
however, that in the presence of noise, DSD will usually extract
some small spectral features in addition to the true signal peaks;
typical examples can be seen in the DSD spectra displayed in
Figure 2. Of course, these additional peaks should not be
interpreted automatically as true signal features. In contrast to
the signal peaks, these supplementary spectral features frequently
display extreme sensitivity to such parameters as the window
size and location or the signal length.6 As a result, such
additional features can usually be identified as noise peaks. For
signals embedded in more significant noise levels, it becomes
increasingly difficult to distinguish between signal and noise
features in the DSD spectra. Of course, it should be noted that
this is a problem which also afflicts every other signal processing
approach, including the FFT.

In summary, we started the analysis with a synthesized time
signal and showed that the known peak parameters{ωk, dk}
can be obtained very accurately and without difficulty. This

model problem is sufficiently realistic in the sense that its 30%
noise level should be able to mimic some usual random
contaminations in experimental ICR time signals. Then we
passed onto the three quite different experimental ICR signals
(a fullerene-type cluster, lignin, and apotransferrin) to assess
fidelity and overall performance of DSD in comparisons with
the FFT. In the case of a fullerene-type cluster analyzed in
Figure 3, the DSD achieves an enhanced resolution with fewer
signal points relative to FFT. Regarding the lignin molecular
compound shown in Figure 4, analysis of the full spectral range
of interest with DSD requires more than one sub-window, but
the present method still outperforms FFT by using only one-
quarter of the full signal length. Finally, we conclude our testings
in Figure 5 with the most difficult signal of the very “noisy”
sample of apotransferrin for which FFT cannot extract any useful
information from the experimental data. By contrast, the DSD
is still able to display its superiority by retrieving the doublet
from the heavily contaminated background. This is done by the
direct run of the DSD algorithm without the application of any
noise reduction techniques. Some supplementary “denoising”
procedures within the postprocessing stage of the spectral
analysis may additionally enhance the capability of DSD beyond
the present achievement as has actually been demonstrated
successfully in ref 6.

4. Conclusion

A stable, user-friendly, and robust signal processing method
named Decimated Signal Diagonalization (DSD) is proposed.
This method is specifically designed for all Lorentzian spectra
that originate from sums of damped time exponentials with
stationary amplitudes. For the purpose of illustration, the DSD
is applied to experimental ion cyclotron resonance (ICR)
spectroscopy data that are associated with Lorentzian spectra.
The DSD is a parameter estimator which exhibits a 2-fold
advantage over the most frequently employed spectral estimator,
the Fast Fourier Transform (FFT).First, DSD determines all
the peak parameters (positions, magnitudes, relaxation times,
phases, etc.) and then constructs a spectrum in any desired mode.
This includes absorption, which has a better resolving power
than the corresponding magnitude spectrum. The absorption
spectra are easily obtained without any additional experimental
effort, as no phase problems exist.Second, when a spectrum is
not too densely packed with spectral or noise features, remark-
ably good results can be achieved with a considerably shorter
acquisition time than needed by FFT. Although the examples
presented here correspond specifically to ICR experiments, DSD
can equally well be applied to any arbitrary length, exponentially
attenuated time signals corresponding to spectra that are sums
of pure Lorentzians such as those measured typically in ICR,
NMR, FTIR, etc., experiments.
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