A Theoretical Examination of the Isomerization Pathways for HBrO₃ Isomers

Sujata Guha and Joseph S. Francisco*

Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907-1393

Received: April 26, 2000; In Final Form: June 30, 2000

The structures, vibrational spectra, and relative energetics of HBrO₃ isomers and the transition states for their isomerization have been examined using the quadratic configuration interaction method in conjunction with different basis sets. The calculated energetics for the dissociation and isomerization pathways of HBrO₃ show that the energy barriers for the isomerization of HOOOBr to HOOBrO (26.7 kcal mol⁻¹) and of HOOBrO to HOBrO₂ (22.2 kcal mol⁻¹) are large enough to prevent such isomerization from occurring. Thus, the reaction between HO₂ and BrO radicals will proceed through the exclusive formation of HOOBrO to produce HOBr and O₂. There is a possibility of the HOOOBr species being formed as well, but if this happens, HOOOBr will not isomerize to HOOBrO.

I. Introduction

The halogen that participates most effectively in catalytic cycles leading to the destruction of the ozone layer is bromine. Even though bromine compounds are less abundant in the stratosphere than chlorine compounds, it has been estimated that bromine chemistry is responsible for almost 25% of the ozone loss observed in Antarctica¹ and up to 40% of the ozone loss in the Arctic region² during winter. The synergistic coupling of bromine and chlorine monoxide that leads to the production of bromine and chlorine atoms greatly enhances the ozone destroying efficiency of bromine:³

$$BrO + ClO \rightarrow Br + Cl + O_2 \tag{1}$$

Methyl bromide, the most abundant bromine-containing source gas used for fumigation, is primarily present in the atmosphere due to oceanic biological processes. Methyl bromide has an ozone depletion potential that exceeds the limits set by international treaties and is scheduled to be phased out in developed countries by the year 2010.⁴ Most of the other important source gases containing bromine (e.g., tetrabromobisphenol A and trifluoromethyl bromide) are anthropogenic in their origin and are used as fire-retardants and refrigerants.

The catalytic cycles contributing to the destruction of ozone by bromine were initially described by Yung et al.³ and Wofsy et al.⁵ Wofsy et al. proposed the following cycle:

$$Br + O_3 \rightarrow BrO + O_2 \tag{2}$$

$$BrO + O \rightarrow Br + O_2 \tag{3}$$

net:
$$O + O_3 \rightarrow 2O_2$$
 (4)

This cycle has its greatest impact on ozone depletion in the middle and upper stratosphere. There are other catalytic cycles that occur in the lower stratosphere that couple bromine with odd hydrogen radical families. Of particular importance is the coupling of bromine oxide radicals with HO_x species (such as OH and HO₂ radicals) to destroy ozone. A critical reaction that couples BrO_x and HO_x radicals in the gas-phase catalytic cycle of bromine is the reaction between BrO and HO₂:

 $Br + O_3 \rightarrow BrO + O_2$

$$BrO + HO_2 \rightarrow HOBr + O_2 \tag{5}$$

$$HOBr + h\nu \rightarrow OH + Br \tag{6}$$

$$OH + O_3 \rightarrow HO_2 + O_2 \tag{7}$$

net:
$$2O_3 \rightarrow 3O_2$$
 (8)

Experimental results have suggested that reaction 5 proceeds at a substantially faster rate than that indicated by previous measurements, and may play a major role in the ozone-related chemistry of bromine compounds.

The reaction between BrO and HO_2 radicals has two thermodynamically feasible channels

BrO + HO₂ → HOBr + O₂

$$\Delta H^{\circ}_{r,298} = -45.1 \text{ kcal mol}^{-1}$$
 (5a)
→ HBr + O₃

$$\Delta H^{\circ}_{r,298} = -7.7 \text{ kcal mol}^{-1}$$
 (5b)

The first study of this reaction was performed by Cox and Sheppard⁶ using the molecular-modulation UV absorption technique. BrO and HO₂ were produced by photolysis of O₃ in the presence of Br₂, H₂, and O₂ and analyzed directly by UV absorption. The rate constant for the $BrO + HO_2$ reaction was determined as $5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at a temperature of 303 K and total pressure of 760 Torr. A similar value of the rate constant was suggested by Baulch et al.7 for use in atmospheric modeling. Poulet et al.⁸ performed a more direct study of the $BrO + HO_2$ reaction by means of the dischargeflow-mass-spectrometric method, determined a much higher value of the rate constant than that obtained by Cox and Sheppard, and observed HOBr to be the only product at 298 K. The higher rate constant value determined by Poulet and coworkers has been confirmed with the flash photolysis and UV absorption studies of Br₂, O₃, Cl₂, CH₃OH, O₂, and He mixtures carried out by Hayman et al.9 and Bridier at al.10 at 298 K and 760 Torr. The fair agreement between the three determinations suggested a value of around $k_5 = 3 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1}$

 s^{-1} at 298 K for the BrO + HO₂ reaction. Larichev et al.¹¹ used discharge flow-mass spectrometry to investigate the kinetics and mechanism of the reaction between BrO and HO₂ radicals in the temperature range of 233-344 K and observed HOBr to be the major product. They obtained a rate constant value of (4.77 \pm 0.32) \times 10⁻¹² cm³ molecule⁻¹ s⁻¹ and a negative temperature dependence, suggesting the presence of an HBrO₃ complex. Elrod et al.¹² conducted experiments which reported a much smaller rate constant value, $(1.4 \pm 0.3) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, at 298 K. Cronkhite et al.¹³ conducted laser flash photolysis studies of Cl₂, CH₃OH, O₂, Br₂, O₃, and N₂ mixtures and determined the rate constant of the $BrO + HO_2$ \rightarrow HOBr + O₂ reaction to be (2.0 \pm 0.6) \times 10⁻¹¹ cm³ molecule $^{-1}$ s $^{-1}$ at 296 K. Their observations support the lower value of k_5 reported by Elrod et al. over the higher values of the rate constant obtained by Poulet et al., Bridier et al., and Larichev et al.

Mellouki and co-workers¹⁴ tried to measure the yield of the HBr-forming channel from the $BrO + HO_2$ reaction and determined an upper limit on the yield of HBr by measuring an upper limit for the rate coefficient of the reverse reaction, HBr $+ O_3 \rightarrow HO_2 + BrO$. The limits measured at 300 and 441 K were extrapolated to low temperatures, and the yield of HBr was determined to be negligible (<0.01%) throughout the stratosphere. Mellouki and co-workers also observed a negative temperature dependence for the $BrO + HO_2$ reaction, suggesting the presence of an HBrO₃ complex. Garcia and Solomon¹⁵ reported a theoretical analysis of the BrO atmospheric measurements database using a two-dimensional photochemical model and concluded that the $BrO + HO_2$ reaction could not have a significant yield of HBr. Li et al.¹⁶ performed experimental studies on the BrO + HO₂ reaction over the temperature range of 233-348 K using discharge flow-mass spectrometry and found channel 5a, leading to the formation of HOBr and O₂, to be an important reaction channel. They determined the rate coefficient for the reaction of BrO and HO₂ radicals to be (1.73 \pm 0.6) \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K with excess HO₂ and (2.05 \pm 0.64) \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ with excess BrO. Their overall results provided an expression for k_5 as (3.13) ± 0.33) × 10⁻¹² exp(536 $\pm 206/T$).

Guha and Francisco¹⁷ examined the possibility of the formation of HBrO₃ complexes from the BrO + HO₂ reaction, following the suggestions of Larichev et al.¹¹ and Mellouki et al.¹⁴ The order of energy levels among the HBrO₃ isomers that could be formed during the BrO + HO₂ reaction has been found to be HOBrO₂ < HOOOBr < HOOBrO < HBrO₃,¹⁷ with all isomers except HBrO₃ lying at a lower energy level than the reactants (BrO + HO₂). Guha and Francisco¹⁸ also examined the reaction pathways for the formation of the various complexes during the BrO + HO₂ reaction, and found that the most energetically favored pathway is the formation of HOOBrO as an intermediate and its eventual dissociation into HOBr and O₂ due to the very low energy barrier (2.8 kcal mol⁻¹) for the process.

In this paper, we present computational results of the structures, vibrational spectra, and relative energetics of the transition states of HBrO₃ isomers at different levels of theory to determine whether a significant energy barrier exists for the interconversion among the different isomeric forms. Knowledge of the energy barriers is very important to obtaining a complete picture of the pathways associated with the reaction between BrO and HO₂ radicals and assessing the final products of the reaction.

II. Computational Methods

Ab initio molecular orbital calculations were performed using the GAUSSIAN 94 program.¹⁹ The equilibrium geometrical parameters of the HBrO₃ isomers and the transition states for their isomerization were fully optimized to better than 0.001 Å for bond distances and 0.1° for bond angles, with a selfconsistent field convergence of at least 10^{-9} on the density matrix. The QCISD (quadratic configuration interaction with single and double excitations) method²⁰ was used with the 6-31G(d,p) and 6-311G(d,p) basis sets in the optimization of the equilibrium and transition-state structures. A second set of polarization functions supplemented the 6-311G(d,p) basis set to comprise the 6-311G(2d,2p) basis set, with which optimizations were also performed. The harmonic vibrational frequencies and infrared intensities of all species were calculated at the QCISD level of theory in conjunction with the 6-31G(d,p) basis set using the geometrical parameters calculated at the QCISD/ 6-31G(d,p) level of theory. To improve the energies of the species, we performed single-point calculations with the QCISD-(T) (incorporating the perturbative corrections for triple excitation) wave functions using the optimized geometrical parameters obtained at the highest level of theory [QCISD/6-311G-(2d,2p)].

III. Results and Discussion

A. Geometries and Vibrational Frequencies. Computations on the HOOOBr, HOOBrO, HOBrO₂, and HBrO₃ isomeric forms and on their isomerization transition states were performed using the QCISD method in conjunction with the 6-31G(d,p), 6-311G(d,p), and 6-311G(2d,2p) basis sets. In general, the structures optimized using the highest basis set [6-311G(2d,2p)] were found to be in good agreement with those computed using the other two basis sets. The calculated structures of the HBrO₃ isomeric forms agreed well with our former optimizations of the same structures at the CCSD(T)/TZ2P level of theory.¹⁷ The structural parameters for the HBrO₃ isomers and their transition states are provided in parts a and b, respectively, of Table 1.

The first transition state is that for the isomerization of HOOOBr to HOOBrO, depicted in Figure 1a. This transition state is formed due to the migration of the bromine atom in HOOOBr, leading to the formation of the [HOOOBr \rightarrow HOOBrO][‡] structure. Due to bromine migration, there are several structural changes observed when a comparison is made of the [HOOOBr \rightarrow HOOBrO]^{\ddagger} structure and the structure of the stable HOOOBr species. The O'-Br bond distance changes from 1.884 Å in HOOO'Br at the QCISD/6-311G(2d,2p) level of theory to 1.712 Å in the HOOO'Br \rightarrow HOOBrO' transition state. The O–O bond in [HOOO'Br \rightarrow HOOBrO'][‡] (1.348 Å) is shorter than the corresponding O-O bond in HOOO'Br (1.422 Å). The H–O bond distances in the HOOO'Br and [HOOO'Br \rightarrow HOOBrO'][‡] species are quite similar. Changes are also observed in the bond angles between the two structural forms. The HOO angle in HOOO'Br is 101.2°, while that in the HOOO'Br \rightarrow HOOBrO' transition state is slightly wider (103.7°). The OO'Br angle decreases from 110.0° in HOOO'Br to 71.0° in the [HOOO'Br \rightarrow HOOBrO'][‡] structure.

Figure 1b shows the structure of the HOOBrO \rightarrow HOBrO₂ transition state formed as a result of bromine migration in the HOOBrO species. Due to this process, certain structural differences exist between HOOBrO and the HOOBrO \rightarrow HOBrO₂ transition state. The O–Br and Br–O' bond distances in HOOBrO' (1.883 and 1.674 Å, respectively) are larger than the corresponding distances in the [HOOBrO' \rightarrow HOBrO₂][‡]

TABLE 1: Optimized Geometries (Å and deg) for HBrO₃ Isomers and Transition States

	levels of theory: QCISD/					
species	coordinates	6-31G(d,p)	6-311G(d,p)	6-311G(2d,2p)		
		(a) HBrO ₂ Isomers				
HOOO'Br	r(00')	1 409	1 383	1 401		
110000 bi	r(O'Br)	1 911	1 915	1 884		
	r(OO)	1 436	1 417	1 422		
	r(HO)	0.972	0.966	0.963		
	(10)	109.7	110.9	110.0		
	$\angle (000')$	107.3	108.1	107.5		
	∠(U00)	107.5	101.4	107.5		
	$\angle (100)$	70.5	82.2	80.0		
	$\angle (000 \text{ BI})$	75.3	76.3	75.0		
LOOP O'	r(OPr)	1 020	1 026	1 992		
ПООВЮ	r(ODI)	1.929	1.920	1.005		
	r(DIU)	1.704	1.091	1.074		
	7(UO)	1.441	1.419	1.437		
	I(HO)	0.970	0.964	0.962		
	$\angle (OBIO)$	110.8	111.7	110.0		
	∠(UOBr)	109.0	110.3	109.2		
	∠(HOO)	100.9	101.3	100.8		
	$\angle (00Br0)$	//.8	80.3	/9.5		
	∠(HOOBr)	96.5	99.2	99.1		
HOBrO ₂	r(OBr)	1.855	1.843	1.821		
	$r(\mathrm{HO})$	0.975	0.969	0.967		
	r(BrO)	1.652	1.628	1.621		
	r(BrO')	1.644	1.622	1.612		
	∠(HOBr)	102.0	103.0	102.9		
	∠(OBrO)	100.3	100.8	100.3		
	∠(OBrO')	104.0	104.1	104.0		
	∠(HOBrO)	-87.6	-81.9	-92.5		
	∠(HOBrO')	28.0	34.2	23.0		
HBrO ₃	r(HBr)	1.471	1.474	1.467		
	r(BrO)	1.631	1.607	1.601		
	∠(HBrO)	102.9	103.2	103.5		
		(b) Transition States				
[HOOO'Br → HOOBrO'] [‡]	r(OBr)	2.327	2.361	2.339		
[]	r(BrO')	1.740	1.735	1.712		
	r(00)	1.360	1.334	1.348		
	r(HO)	0.974	0.968	0.965		
	$(\Omega Rr \Omega')$	65.5	66.9	65.2		
	$\angle (00'Br)$	69.9	69.6	71.0		
	Z(00 DI) Z(HOO)	103.6	104.4	103.7		
	$\angle (\Omega OBrO')$	180.2	170 1	170 /		
	\angle (HOOBr)	91.7	91.1	92.2		
$[HOOBrO' \rightarrow HOBrO_1]^{\ddagger}$	r(OBr)	1 670	1 659	1 647		
	r(DrO')	1.692	1.653	1.640		
	r(DIO)	2 122	2 1 2 8	2 106		
	7(UO)	2.122	2.138	2.100		
	$I(\Pi U)$	0.979	0.975	0.970		
	$\angle (OBIU)$	114.5	115.1	114.0		
	$\angle (UOBI)$	/5.8	/0./	145.6		
	\angle (HOO) \angle (OOD=O')	147.9	147.9	145.0		
	$\angle (UOBIU)$	-90.1	-97.4	-93.9		
	\angle (HOOBr)	159.2	156.2	152.9		
$[HOBrO_2 \rightarrow HBrO_3]^{+}$	r(O'Br)	1.727	1.707	1.694		
	r(HBr)	1.530	1.528	1.545		
	r(BrO)	1.645	1.623	1.614		
	∠(HBrO')	60.6	60.5	60.3		
	\angle (OBrO')	112.2	112.1	111.7		
	∠(HBrO)	121.3	121.5	122.1		
	∠(OBrO)	114.9	114.6	113.9		
	∠(HBrO'O)	68.1	69.4	68.5		
	∠(OBrOO')	131.1	132.5	131.9		

structure (1.647 and 1.649 Å, respectively). The H–O bond length increases by 0.008 Å between HOOBrO' and [HOOBrO' \rightarrow HOBrO₂][‡], and the O–O bond length increases by 0.669 Å between the two structures. The HOO angle in [HOOBrO' \rightarrow HOBrO₂][‡] (145.6°) is much wider than the HOO angle in HOOBrO' (100.8°), while the OOBr angle in HOOBrO' (109.2°) is wider than the corresponding OOBr angle in the HOOBrO' \rightarrow HOBrO₂ transition state. The OBrO' angle is 3.4° narrower in HOOBrO' compared to that in the [HOOBrO' \rightarrow HOBrO₂][‡] structure. The final transition state is that for the isomerization of HOBrO₂ to HBrO₃ due to the migration of the hydrogen atom in HOBrO₂ (Figure 1c). A comparison of the structures of $[HOBrO_2 \rightarrow HBrO_3]^{\ddagger}$ and the stable HOBrO₂ species shows distinct differences. The O-Br bond length decreases from 1.821 Å in HOBrO₂ to 1.614 Å in $[HOBrO_2 \rightarrow HBrO_3]^{\ddagger}$. Due to the changes in conformation during the isomerization process, the H-Br bond present in the HOBrO₂ \rightarrow HBrO₃ transition-state structure is absent in HOBrO₂. The OBrO' and OBrO angles are about 8° and 14°, respectively, wider in the [HOBrO₂]

Figure 1. Transition states for HBrO₃ isomerization pathways: (a) HOOOBr \rightarrow HOOBrO, (b) HOOBrO \rightarrow HOBrO₂, and (c) HOBrO₂ \rightarrow HBrO₃.

 \rightarrow HBrO₃]^{*} structure compared to the those in the structure of HOBrO₂.

The calculated harmonic vibrational frequencies and intensities for the HBrO₃ isomers and their transition states are provided in parts a and b, respectively, of Table 2. The vibrational frequencies are calculated at the QCISD level of theory in conjunction with the 6-31G(d,p) basis set.

A comparison of the frequencies of HOOOBr and the [HOOOBr \rightarrow HOOBrO][‡] isomerization transition state reveals certain interesting features. The [HOOO'Br \rightarrow HOOBrO'][‡] structure has an imaginary frequency, the characteristic of a true transition state, suggesting that it is a first-order saddle point. The H–O stretch in [HOOO'Br \rightarrow HOOBrO'][‡] occurs at a slightly higher frequency and intensity than the H–O stretch in HOOO'Br. The O–O stretch in the HOOO'Br \rightarrow HOOBrO' transition state (998 cm⁻¹) is higher in frequency than the O–O stretch in HOOO'Br (928 cm⁻¹), consistent with the longer O–O bond in HOOO'Br compared to the O–O bond in the transition state. The HOO bend in the [HOOO'Br \rightarrow HOOBrO'][‡] structure at 1442 cm⁻¹ is comparable to the HOO bend in the HOOO'Br species. The OOO' bend at 587 cm⁻¹ in HOOO'Br is absent in the [HOOO'Br \rightarrow HOOBrO'][‡] structure.

The transition state for the isomerization of HOOBrO to HOBrO₂ also has an imaginary frequency. The frequencies of the [HOOBrO' \rightarrow HOBrO₂][‡] structure exhibit certain differences when compared to the frequencies of HOOBrO', due to the differences between the two conformations. The Br–O symmetric and asymmetric stretches in the HOOBrO' \rightarrow HOBrO₂ transition state (850 and 739 cm⁻¹, respectively) are larger than the corresponding Br–O symmetric and asymmetric stretches

in HOOBrO' (801 and 476 cm⁻¹, respectively), consistent with the longer Br–O bond in HOOBrO'. The OBrO' bend in [HOOBrO' \rightarrow HOBrO₂][‡] occurs at a higher frequency (331 cm⁻¹) and intensity (74 km mol⁻¹) than the OBrO' bend in HOOBrO'. The H–O and O–O stretches in HOOBrO' occur at higher frequencies than the corresponding H–O and O–O stretches in the HOOBrO' \rightarrow HOBrO₂ transition state, consistent with the longer H–O and O–O bonds in the [HOOBrO' \rightarrow HOBrO₂][‡] structure.

The final transition-state structure is that for the isomerization of HOBrO₂ to HBrO₃, which also has an imaginary frequency. The frequencies of the [HOBrO₂ \rightarrow HBrO₃][‡] conformation differ to some extent from those of HOBrO₂. The Br–O symmetric stretch in the HOBrO₂ \rightarrow HBrO₃ transition state (904 cm⁻¹) occurs at a higher frequency, while the Br–O asymmetric stretch (866 cm⁻¹) occurs at a lower frequency, than the corresponding Br–O stretches in the HOBrO₂ structure. The H–Br stretch present in [HOBrO₂ \rightarrow HBrO₃][‡] is absent in HOBrO₂ due to differences in structures between the two species. The HOBr bending mode that appears at 1136 cm⁻¹ in HOBrO₂ is not present in [HOBrO₂ \rightarrow HBrO₃][‡]. The hydrogen-wagging mode appears at a higher frequency in the HOBrO₂ \rightarrow HBrO₃ transition state than in HOBrO₂.

B. Relative Energetics of HBrO₃ Isomers and Transition States. The total energies of the HBrO₃ intermediates and the isomerization transition states are provided in parts a and b, respectively, of Table 3. The energies are obtained at the QCISD level of theory using the 6-31G(d,p), 6-311G(d,p), and 6-311G-(2d,2p) basis sets. Table 3 also lists single-point energy data obtained from the calculations at the QCISD(T) level of theory with the 6-311G(2d,2p), 6-311++G(2d,2p), 6-311++G-(2df,2p), and 6-311++G(3df,3pd) basis sets and the optimized geometrical parameters from the QCISD/6-311G(2d,2p) level of theory. Table 4 contains information about the heats of reaction and heights of the energy barriers for the HOOOBr \rightarrow HOOBrO, HOOBrO \rightarrow HOBrO₂, and HOBrO₂ \rightarrow HBrO₃ transition states at the QCISD and QCISD(T) levels of theory using various basis sets. Zero-point energy corrections are included in the calculation of the relative energetics for all structures (see Figure 2).

A comparison of the energy values among HOOOBr, HOO-BrO, HOBrO₂, and HBrO₃, listed in Table 3a, shows that at the QCISD/6-31G(d,p), QCISD/6-311G(d,p), QCISD/6-311G-(2d,2p), QCISD(T)/6-311G(2d,2p), and QCISD(T)/6-311++G-(2d,2p) levels of theory, the order of decreasing stability among the isomers is $HOOOBr > HOBrO_2 > HOOBrO > HBrO_3$, with HOOOBr being the most stable structural form. This order of stability, however, becomes reversed with the addition of higher-order polarization functions beginning with the incorporation of the 6-311++G(2df,2p) basis set, and the order of increasing energies among the four isomers at the QCISD(T)/ 6-311++G(2df,2p) and QCISD(T)/6-311++G(3df,3pd) levels of theory appears as HOBrO₂ < HOOOBr < HOOBrO < HBrO₃, with the HOBrO₂ structure possessing the least energy. This indicates that with the addition of diffuse and f polarization functions, HOBrO₂ becomes more stable than HOOOBr. The observation of HOBrO₂ being the most stable isomeric form is consistent with our earlier prediction¹⁷ of the relative energetic stability among the HBrO3 isomers. There appears to be very good agreement between the total and single-point energies for the HBrO₃ isomers due to the good convergence of the numerical values. The order of increasing energies among the transition states, as presented in Table 3b, is [HOOOBr \rightarrow $\text{HOOBrO}]^{\ddagger} < [\text{HOOBrO} \rightarrow \text{HOOBrO}_2]^{\ddagger} < [\text{HOBrO}_2 \rightarrow$

TABLE 2: Harmonic Frequencies (cm⁻¹) and IR Intensities (km mol⁻¹) for HBrO₃ Isomers and Transition States

			QCISD/6-	-31G(d,p)
species	mode numbers	mode description	frequencies	intensities
	(a)	HBrO ₃ Isomers		
HOOO'Br	1	HO stretch	3726	40
	2	HOO bend	1435	48
	3	OO stretch	928	31
	4	OO' stretch	851	24
	5	OOO' bend	587	6
	6	BrO' stretch	517	25
	7	HOOO' torsion	437	91
	8	BrO'O bend	295	11
	9	BrO'OO torsion	131	4
HOOBrO'	1	HO stretch	3734	43
Поовіо	2	HOO bend	1//1	40
	2	OO stratah	062	49
	5	DO suere ata	902	
	4	BrO sym. str.	801	25
	5	BrO asym. str.	476	74
	6	H-wag	444	34
	7	BrOO bend	268	1
	8	OBrO' bend	192	10
	9	torsion	38	3
HOBrO ₂	1	HO stretch	3747	85
	2	HOBr bend	1136	46
	3	BrO asym. str.	925	81
	4	BrO sym. str.	848	26
	5	BrO' stretch	525	78
	6	OBrO bend	360	39
	7	OBrO' bend	333	60
	8	OBrO' bend	285	26
	9	H-wag	193	38
HBrO ₃	1	HBr stretch	2205	54
112105	2	BrO sym str	821	13
		umbrella	380	44
	4	BrO asym str	953'	85
		HBrO bend	925'	0
	5	OPrO band	223	21
	0	OBIO bella	551	21
	(b) 5	Transition States		
[HOOO'Br → HOOBrO'] [‡]	1	HO stretch	3733	72
	2	HOO bend	1442	27
	3	OO stretch	998	394
	4	BrO' stretch	708	110
	5	OBr stretch	530	128
	6	OBrO' bend	439	15
	7	00'Br bend	239	6
	8	H-wag	150	9
	9	reaction coord	175i	9
$[HOOBrO' \rightarrow HOBrO_{2}]^{\ddagger}$	1	HO stretch	3702	60
	2	BrO sym str	850	10
	2	HOO bond	706	105
	3	DrO course of r	790	105
	4	BrO asym. str.	139	34
	5	OU stretch	352	48
	6	OBrO bend	331	74
	7	OOBr bend	307	28
	8	HOOBr torsion	142	11
	9	reaction coord.	632i	108
$[HOBrO_2 \rightarrow HBrO_3]^{\mp}$	1	HBr stretch	1969	13
	2	BrO sym. str.	904	65
	3	BrO asym. str.	866	81
	4	O'Br stretch	749	14
	5	H-wag	521	2
	6	OBrO bend	334	29
	7	OBrOO' torsion	297	14
	8	HBrO'O torsion	285	15
	9	reaction coord.	1414i	288

 $HBrO_3$ [†] at all levels of theory, indicating that the isomerization of HOOOBr to HOOBrO requires the least energy.

From Table 4, it is observed that the HOOOBr \rightarrow HOOBrO transition state possesses a heat of reaction of 13.7 kcal mol⁻¹ and an energy barrier of 26.7 kcal mol⁻¹ at 0 K. For the HOOBrO \rightarrow HOBrO₂ isomerization, the heat of reaction is -20.7 kcal mol⁻¹, and the energy barrier is 22.2 kcal mol⁻¹. Thus, there appears to be a lower energy barrier (by \sim 5 kcal mol⁻¹) for the isomerization of HOOBrO to HOBrO₂ relative

to the HOOOBr \rightarrow HOOBrO isomerization. The values for the heat of reaction and energy barrier for the HOBrO₂ \rightarrow HBrO₃ transition state are 65.6 and 89.4 kcal mol⁻¹, respectively. The process of isomerization of HOBrO₂ to HBrO₃, therefore, possesses significantly higher energy barriers relative to the HOOOBr \rightarrow HOOBrO isomerization (by ~63 kcal mol⁻¹) and the HOOBrO \rightarrow HOBrO₂ isomerization (by ~67 kcal mol⁻¹). From Table 4, it is apparent that the HOOBrO \rightarrow HOBrO₂ transition state has the lowest energy barrier height (relative to

TABLE 3:	Total and	Single-Point	Energies (hartrees) for HBrO ₂	Isomers and	Transition 8	States

(a) HBrO ₃ Isomers										
levels of theory	HOOOBr	HOOBrO	HOBrO ₂	HBrO ₃						
QCISD/6-31G(d,p)	-2795.48803	-2795.44681	-2795.45641	-2795.34157						
QCISD/6-311G(d,p)	-2798.08546	-2798.03816	-2798.04755	-2797.93483						
QCISD/6-311G(2d,2p)	-2798.14551	-2798.10178	-2798.12963	-2798.01982						
QCISD(T)/6-311G(2d,2p) ^a	-2798.17910	-2798.14576	-2798.16750	-2798.05796						
$QCISD(T)/6-311++G(2d,2p)^{a}$	-2798.19169	-2798.16316	-2798.18362	-2798.07214						
$QCISD(T)/6-311++G(2df,2p)^a$	-2798.29391	-2798.26951	-2798.30021	-2798.19258						
$QCISD(T)/6-311++G(3df,3pd)^a$	-2798.32066	-2798.29758	-2798.33054	-2798.22475						
(b) Transition States										
levels of theory	$[HOOOBr \rightarrow HOOBrO]^{\ddagger}$	[HOOBrO	\rightarrow HOBrO ₂] [‡]	$[HOBrO_2 \rightarrow HBrO_3]^{\ddagger}$						
QCISD/6-31G(d,p)	-2795.41720	-279	95.37855	-2795.29573						
QCISD/6-311G(d,p)	-2798.01159	-2797.96978		-2797.88634						
QCISD/6-311G(2d,2p)	-2798.07526	-2798.04372		-2797.97060						
QCISD(T)/6-311G(2d,2p) ^a	-2798.13127	-2798.10239		-2798.01586						
$QCISD(T)/6-311++G(2d,2p)^{a}$	-2798.14792	-279	98.12346	-2798.03190						
$QCISD(T)/6-311++G(2df,2p)^a$	-2798.24897	-279	98.23011	-2798.15025						
$QCISD(T)/6-311++G(3df,3pd)^a$	-2798.27651	-279	98.25970	-2798.18242						

^a Calculated using the QCISD/6-311G(2d,2p) geometrical parameters.

TABLE 4:	Relative	Energetics	(kcal	mol ⁻¹)	for	HBrO ₃	Isomerization	Transition	States
----------	----------	------------	-------	---------------------	-----	-------------------	---------------	------------	--------

	[HOOOI	$[HOOOBr \rightarrow HOOBrO]^{\ddagger}$		$rO \rightarrow HOBrO_2]^{\ddagger}$	$[HOBrO_2 \rightarrow HBrO_3]^{\ddagger}$	
levels of theory	$\Delta H_{r,0}^{\circ}$	barrier heights	$\Delta H_{r,0}^{\circ}$	barrier heights	$\overline{\Delta H_{r,0}}^{\circ}$	barrier heights
QCISD/6-31G(d,p)	25.1	43.4	-6.0	41.2	71.3	97.3
QCISD/6-311G(d,p)	28.9	45.4	-5.9	41.3	69.9	97.7
QCISD/6-311G(2d,2p)	26.6	43.1	-17.5	34.8	68.1	96.3
QCISD(T)/6-311G(2d,2p)	20.1	29.0	-13.6	25.6	67.9	91.7
QCISD(T)/6-311++G(2d,2p)	17.1	26.5	-12.8	23.3	69.2	91.7
QCISD(T)/6-311++G(2df,2p)	14.5	27.2	-19.3	23.1	66.7	90.6
OCISD(T)/6-311++G(3df,3pd)	13.7	26.7	-20.7	22.2	65.6	89.4

the HOOOBr \rightarrow HOOBrO and HOBrO₂ \rightarrow HBrO₃ transition states), and thus, that transition state is the most stabilized.

From the overall results of our study, it is observed that the reaction between BrO and HO₂ radicals may proceed through the formation of either the HOOOBr or the HOOBrO intermediate to produce the final products (HOBr and O₂). Our previous calculations¹⁸ suggest that the most likely pathway during the BrO + HO₂ reaction is the formation of HOOBrO as a complex intermediate and its eventual dissociation into HOBr and O₂, since the process has a very low energy barrier (2.8 kcal mol⁻¹).

As shown by our present calculations, it is very unlikely that the HOOBrO intermediate would isomerize to HOOOBr or HOBrO₂ due to the high energy barriers associated with the processes (26.7 and 22.2 kcal mol⁻¹, respectively). If HOOOBr is formed as an intermediate, it will not isomerize to HOOBrO.

IV. Conclusion

The equilibrium structures, vibrational spectra, and relative energetics of the possible HBrO₃ isomers formed during the BrO + HO₂ reaction and the HOOOBr \rightarrow HOOBrO, HOOBrO

Isomerization Pathways for HBrO₃

 \rightarrow HOBrO₂, and HOBrO₂ \rightarrow HBrO₃ isomerization transition states have been investigated with different ab initio methods. The HOOBrO (or HOOOBr) species can be formed as intermediates during the reaction of BrO radicals with HO₂, but it is not possible for them to interconvert due to the presence of a large energy barrier for the isomerization process.

References and Notes

(1) Anderson, J. G.; Toohey, D. W.; Brune, W. H. Science 1991, 251, 39.

(2) Salawitch, R. J.; McElroy, M. B.; Yatteau, J. H.; Wofsy, S. C.; Schoeberl, M. R.; Lait, L. R.; Newman, P. A.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, S. E.; Proffitt, M. H. *Geophys. Res. Lett.* **1990**, *17*, 561.

(3) Yung, Y. L.; Pinto, J. P.; Watson, R. T.; Sander, S. P. J. Atmos. Sci. 1980, 37, 339.

(4) World Meteorological Organization. *Scientific Assessment of Ozone Depletion*; National Aeronautics and Space Administration: Houston, TX, 1994.

(5) Wofsy, S. C.; McElroy, M. D.; Yung, Y. L. Geophys. Res. Lett. 1975, 2, 215.

(6) Cox, R. A.; Sheppard, D. W. J. Chem. Soc., Faraday Trans., 2 1982, 78, 1383.

(7) Baulch, D. L.; Cox, R. A.; Hampton, R. F., Jr.; Kerr, J. A.; Troe, J.; Watson, R. T. J. Phys. Chem. Ref. Data **1980**, *9*, 295.

(8) Poulet, G.; Pirre, M.; Maguin, F.; Ramaroson, R.; Le Bras, G. Geophys. Res. Lett. 1992, 19, 2305.

(9) Hayman, G. D.; Danis, F.; Thomas, D. H. J.; Peeters, R. A. *Air Pollution*; Report45; Commission of the European Communities: Brussels, Belgium, 1993.

(10) Bridier, I.; Veyret, B.; Lesclaux, R. Chem. Phys. Lett. 1993, 201, 563.

(11) Larichev, M.; Maguin, F.; Le Bras, G.; Poulet, G. J. Phys. Chem. 1995, 99, 15911.

(12) Elrod, M. J.; Meads, R. F.; Lipson, J. B.; Seeley, J. V.; Molina, M. J. J. Phys. Chem. 1996, 100, 5808.

(13) Cronkhite, J. M.; Stickel, R. E.; Nicovich, J. M.; Wine, P. H. J. Phys. Chem. A **1998**, 102, 6651.

(14) Mellouki, A.; Talukdar, R. K.; Howard, C. J. J. Geophys. Res. 1994, 99, 22949.

(15) Garcia, R. R.; Solomon, S. J. Geophys. Res. 1994, 99, 12937.

(16) Li, Z.; Friedl, R. R.; Sander, S. P. J. Chem. Soc., Faraday Trans. 1997, 93, 2683.

(17) Guha, S.; Francisco, J. S. J. Phys. Chem. A 1998, 102, 2072.

(18) Guha, S.; Francisco, J. S. J. Phys. Chem. A 1999, 103, 8000.

(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head Gordon, M.; Gonzales, C.; Pople, J. A. *GAUSSIAN 94*, Revision D.2; Gaussian: Pittsburgh, PA, 1995.

(20) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.