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We extend the self-consistent two-state model, already proposed to describe linear and nonlinear spectral
properties of push-pull chromophores in solution, to describe vibrational spectra and to account for
inhomogeneous broadening effects occurring in polar solvents. The model, not relying on perturbative
expansions of the solute-solvent interaction, offers a simple and internally consistent description of electronic
and vibrational spectra. Exotic and apparently unrelated phenomena, like the narrowing of time-resolved
emission bands and the dispersion of resonant Raman frequencies with the excitation line find a natural
explanation in the proposed approach.

Introduction

The so-called push-pull chromophores are molecules made
up by electron donor (D) and acceptor (A) moieties connected
by aπ-conjugated bridge. The charge separated state (D+A-) is
then easily accessible. These molecules are widely investigated
in several, apparently unrelated fields. Push-pull chromophores
are the molecules of choice for second-order NLO applica-
tions,1,2 are typical solvation probes,3,4 and are useful model
systems for electron transfer.5 All these applications exploit the
presence of a low-lying excited-state characterized by a different
electronic distribution from the ground state. Good solvation
probes have an electronic absorption and/or emission band well-
separated from the other transitions, with good intensity (i.e., a
sizable transition dipole moment,µCT), and whose position
strongly depends on the solvent polarity.3 This last requirement
is easily fulfilled if the mesomeric dipole moment, i.e., the
difference between the excited and the ground state (gs) dipole
moment, is large. A large mesomeric dipole moment implies a
large charge redistribution on excitation, so that the absorption
process basically models a photoinduced electron transfer,5

whereas the emission process models a nonradiative electron
transfer.5 On the other hand, large transition and mesomeric
dipole moments are a guarantee of large NLO responses.6

The interesting behavior of push-pull chromophores is
dominated by the lowest excited state, and a simple two-state
model has indeed all the ingredients needed to catch the essential
physics governing these molecules. The relevant two-state
model, the DA dimer, was proposed in the 50’s to describe
charge transfer (CT) complexes.7 And in fact CT complexes
too are actively investigated as model systems for electron
transfer.5,8 Their investigation as NLO chromophores is certainly
worthwhile. When extended to include the interaction with the
surrounding and/or the coupling with vibrations (Holstein
coupling) the DA dimer model is the simplest model for the
neutral-ionic phase transition as observed in CT organic salts
with a mixed stack motif.9 The peculiar behavior of the
interacting model opens new perspectives in modeling electron
transfer, and, for what concerns us here, demonstrates the large
nonlinearity of the response of the DA dimer to the relevant
interactions.10,11

The intrinsic nonlinearity of the DA dimer is responsible for
the large amplification of static NLO responses as due to the
coupling of electronic degrees of freedom to molecular vibra-
tions10 or, equivalently, to the orientational polarization of polar
solvents.11 The slow degrees of freedom can be dealt with in
the adiabatic approximation, and the resulting model, the self-
consistent DA dimer model, is amenable to an exact solution.10,11

The most prominent advantage of exact results is that they can
be used to check the reliability of approximation schemes: quite
predictably we were able to prove that linear perturbative
approaches to the interactions are inadequate to describe the
highly nonlinear behavior of push-pull chromophores.11,12This
has important consequences, since the sum-over-state approach
to the vibrational contribution to NLO responses, as commonly
adopted in quantum chemical calculations, being based on a
linear perturbative treatment of the electron-vibration (e-ph)
coupling, is in general inadequate, and must be substituted by
finite-field methods.

In a recent paper,12 based on exact results for the self-
consistent DA dimer, we demonstrated that nonlinearity plays
an important role also in linear absorption and emission spectra.
The nonlinearity of the solute-solvent interaction stems out
apparently from the nonlinearity of the Stokes shifts with the
solvent polarity, from the dependence of the absorption and
emission band-shapes on the solvent, and from the observation
of nonspecular absorption and emission bands. The standard
approaches to solvatochromism4,13 allow for linear corrections
of the solute energies as due to the interaction with the solvent,
but postulate that the solute wave functions are independent of
solvation. This rigid-solute, perturbative approach fails for most
of push-pull chromophores in view of their large linear and
nonlinear polarizabilities: the solute properties largely depend
on the solvation medium.

This nonlinearity has disruptive effects on our standard
understanding of spectral data, that is mainly based on pertur-
bative arguments. An impressive example is offered by absorp-
tion and emission bands: in the standard picture, the vibronic
structure underlying the two bands is the same, so that exactly
the same info can be extracted from the analysis of either of
them.5 This is not true for push-pull chromophores: after
absorption, these largely polarizable molecules readjust their
charge distribution following the relaxation of slow degrees of
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freedom. Absorption and emission processes then involve
different states and are governed by different parameters: the
Huang-Rhys factors relevant to the two processes are indeed
different.12 Extracting microscopic information from spectral
results is therefore a complex task in push-pull chromophores
and requires a careful analysis of a large set of data, properly
accounting for the nonlinearity of the system. Since in a
nonlinear picture microscopic parameters are not directly related
to any single experimental feature, it is important to cross check
the reliability of the model and the accuracy of the parameters
by a careful study of as many spectral data as possible.12,14

In this paper we extend the analysis of spectral properties of
push-pull chromophores in solution to vibrational spectra. The
e-ph coupling affects vibrational properties of coupled modes,
that appear in both infrared (IR) and Raman spectra.11 Specif-
ically the interaction with electronic degrees of freedom softens
coupled vibrations, and affects their intensities in a way that
strongly depends on the molecular charge distribution, and
therefore on the solvation medium. This dependence is also the
key to understand the large inhomogeneous broadening effects
appearing in vibrational spectra of molecules dissolved in polar
solvents.15,16 A careful analysis of vibrational spectra gives
important information on e-ph coupling strength, and, more
generally, if complemented with the analysis of absorption and
emission spectra, allows for the estimate of the microscopic
parameters of the model. This analysis must properly account
for the nonlinearity of the chromophore: in push-pull chro-
mophores, resonant Raman (RR) and steady-state emission
spectra are governed by different Huang-Rhys factors, for
exactly the same reason why absorption and emission bands
are nonspecular. This is an important observation pointing to
the need for a careful reconsideration of the analysis carried
over electronic and RR spectra of a few model systems for
electron transfer.5,17,18Hopefully some of the apparent discrep-
ancies in these data can be settled in the new picture.

In the next section we briefly review the self-consistent DA
dimer model as the simplest model for a push-pull chro-
mophore in solution, with special emphasis on its application
to linear absorption and emission spectra in the visible region.
In section III we apply the model to vibrational (IR and Raman)
spectra. In section IV the analysis is extended to account for
inhomogeneous broadening as observed in polar solvents. The
implications of the proposed model on the interpretation of
spectral data are discussed in the last section. In the companion
paper (the following article) we apply our model to a specific
chromophore, phenol blue. This is an interesting molecule, with
large measured nonlinear responses.19 For this molecule with a
highly nonlinear behavior, the standard analysis of spectral data
is bound to fail, and in fact its spectra are characterized by
several anomalous features, the most prominent one being the
large dispersion of RR frequencies with the excitation line.16

We will demonstrate that the exotic spectral behavior of PB is
naturally understood based on the simple model we present here,
provided its nonlinearity is fully exploited.

Simple Model for Electronic Properties

The electronic structure of push-pull chromophores can be
described based on two states, the fully neutral,|DA〉, and the
charge-separated,|D+A-〉 states. These two states correspond
to the neutral and zwitterionic resonance structures of the
molecule, or, in the context of charge transfer (CT) complexes,
to the fully neutral and ionic states, as introduced by Mulliken.7

Following Mulliken, we neglect the small dipole moment of
|DA〉 with respect toµ0, the large dipole moment of|D+A-〉.

We allow for the coupling of electrons to molecular vibra-
tions, Qi, by assigning the two basis states two harmonic
potential energy surfaces (PES), with equal frequencies (ωi),
but displaced byIi, as sketched in Figure 1. The corresponding
Hamiltonian reads10

wherez0 is half the energy difference between the two basis
states, measured atQi ) 0 (see Figure 1), andx2t allows for
the mixing of the two states. Unless when energy units are
explicitly given, in the following we measure the energy in
x2t ) 1 units. Adopting the standard notation for Pauli spin
operators (σx,y,z), the ionicity operator,F̂ ) (1 - σz)/2, measures
the polarity of the molecule, i.e., the weight of|D+A-〉. The
summation in eq 1 runs on theN totally symmetric vibrations
that couple to electrons. The first term in the summation
accounts for the vibrational potential energy (consistently with
the adiabatic approximation we neglect the vibrational kinetic
energy). The second term models e-ph coupling, withgi )
Iiωi

3/2/x2 representing the e-ph coupling constant, as usually
defined in the Holstein model.20 A useful measure of the strength
of e-ph coupling isεi ) gi

2/ωi, that corresponds to the energy
gained by the system due to the relaxation ofQi following the
charge separation (cf. Figure 1). The total vibrational relaxation
energy,εsp ) Σiεi, corresponds to the small polaron binding
energy of the Holstein model.20

The very last term in the above Hamiltonian introduces a
linear dependence ofz0 on the Qi’s, and then accounts for
different equilibrium geometries in the two basis states.
Quadratic terms would also account for different force constants,
and then for different curvatures for the two PES in Figure 1.
The role of quadratic coupling in Holstein-like Hamiltonian has
been extensively investigated in ref 21. In the analysis of
vibrational spectra of CT salts, quadratic e-ph coupling is
routinely introduced to properly define reference vibrational
frequencies for states of intermediate ionicity.21,22 For these
systems reliable information on the parameters required to model
quadratic coupling are easily extracted from vibrational spectra
of isolated donor and acceptor molecules and of the correspond-
ing ions (D+ and A-, respectively). This information is not
available for push-pull chromophores so that introducing
quadratic e-ph coupling is not difficult per se, but adds the
Hamiltonian several freely adjustable parameters. Since the basic
physics of the problem is described by the linear term,22 we
neglect quadratic e-ph coupling in our model, adopting the
simplest relevant Hamiltonian.

Figure 1. Potential energy surfaces relevant to the two basis states
(see text).

H ) 2z0F̂ - x2tσx + ∑
i)1

N {1

2
ωi

2 Qi
2 - x2ωigiQiF̂} (1)
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The simplest model for the solute-solvent interaction is the
reaction-field model.13,23 Basically, a polar solute molecule
polarizes the surrounding medium and therefore feels a reaction
electric fieldFR. In the plausible hypothesis that the solvent is
an optically linear medium, and then responds linearly to an
applied field, the reaction field is simply proportional to the
dipole moment of the solute molecule. The reaction field has
in general two components.13,23One component originates from
the deformation of the electronic clouds of solvent molecules.
This “electronic” component of the reaction field is characterized
by a very fast response time: it is in fact related to the electronic
polarizability of the solvent, with typical frequencies in the UV
region, to be compared with typical frequencies of push-pull
chromophores occurring in the visible region. The electronic
polarization is the only contribution to the reaction field for
nonpolar solvents, but in polar solvents a second contribution
arises due to the reorientation of the polar solvent molecules
around the solute. This orientational component of the reaction
field has characteristic frequencies in the far-IR or microwave
regions and is very slow with respect to both electronic and
(internal) vibrational degrees of freedom of the solute.

The coupling of electrons to the fast solvent degrees of
freedom can be dealt with in the antiadiabatic,24 or sudden
relaxation,25 approximation. Since the fast degrees of freedom
readjust instantaneously to the charge distribution of the solute
molecule, the coupled problem can still be described in terms
of a two-state model, but with renormalized parameters.11 The
amount of the renormalization can be evaluated given a
microscopic model for the solute-solvent interaction.11 How-
ever we adopt a different strategy, trying to extract all the
relevant parameters from experimental data. For sure the
parameters that describe the electronic structure of the solute
(z0 and x2t, or better their ratio) are expected to depend
strongly on the solvent refractive index,11 i.e., the square root
of the dielectric constant as measured at optical frequencies,
that offers a rough estimate of the electronic polarizability of
the solvent. Then these “solute” parameters are actually transfer-
able only among solvents with similar characteristics, specifi-
cally similar refractive index.

The orientational component of the reaction field at the
equilibrium, For, is proportional to the solute dipole moment
via a proportionality factor,ror. Given a microscopic model for
solute-solvent interaction,ror can be easily estimated,11 but,
once more, we prefer extracting it from experiment. Eventually,
the agreement between empirical and theoretical estimates will
confirm the internal consistency of the proposed model. In the
simplest picture,ror depends on both the solvent refractive index
and the (static) dielectric constant, vanishing for nonpolar
solvents. By assimilating the solvent to an elastic medium, the
following solvation term adds to the Hamiltonian in eq 1:11

where the elastic constant is fixed by the equilibrium condi-
tion: For ) rorµ and µ represents the expectation value ofµ̂.
Basically, in this approximation the orientational component of
the reaction field acts as an additional Holstein vibration. In
fact, in the Mulliken approximation, the dipole moment operator
is simply proportional to the ionicity operator,µ̂ ) µ0F̂, and
we can define an additional Holstein coordinate,Q0, accounting
for the solvent orientational degrees of freedom, whose char-
acteristic relaxation energy isεor ) rorµ0

2/2.11 Of course the
corresponding frequency and coupling constant are not well-
defined, but, as we will see in the following, they do not

explicitly enter any equation. The total Hamiltonian for a push-
pull chromophore immersed in a solvent is then given by eq 1,
provided the summation extends from 0 toN.14

In the adiabatic approximation,26 an effective electronic
Hamiltonian can be obtained from the total Hamiltonian in eq
1 by substituting theQi coordinates with the corresponding
equilibrium values. The resulting two-state model has the same
form as the original model, but withz0 self-consistently
depending onF, the expectation value of the ionicity operator.10

The self-consistent DA dimer model can be solved exactly to
get, e.g., the ground-state ionicity. Its dependence onz0 is fairly
interesting: the slope of the S-shapedF(z0) curve strongly
increases withεT ) εsp + εor. Since the successive derivatives
of the F vs z0 curve are proportional to the static optical
susceptibilities, one immediately recognizes a large amplification
of static NLO responses as due to the coupling to slow degrees
of freedom.10,11

In a two-state model a single parameter (eitherz0 or F) defines
not only the gs, but, in view of the orthogonality requirement,
also the excited state. Specifically, the vertical excited state has
ionicity 1 - F, so that the vertical absorption energy and the
corresponding transition dipole moment are

In the harmonic approximation, the Huang-Rhys factors for
the absorption process are simply proportional to the difference
of ionicity in the two states, as follows:Si

(abs) ) gi(1 - 2F)/
ωi.12 The dependence ofωCT, µCT and of the absorption band-
shape on the solvent stems out quite naturally from the
dependence ofF (the chromophore polarity) on the solvent.

The vertical excited state reached on photon absorption has
in general a different polarity, and hence a different dipole
moment, than the gs. Immediately after absorption, the slow
degrees of freedom (internal vibrations and the solvent orien-
tational modes) readjust themselves in response to the new
charge configuration of the solute. But, as long as the slow
degrees of freedom relax, the solute molecule itself feels a new
surrounding and in turn readjusts its polarity. Whereas this
picture holds true for all chromophores, the rearrangement of
the solute polarity during the slow-mode relaxation is certainly
large and nonnegligible for molecules with large NLO responses.
The nonlinear, self-consistent relaxation problem can be solved
exactly in our simple picture to calculate the equilibrium ionicity
of the fully relaxed excited state, 1- F*, as detailed in ref 12.
The steady-state emission is once more a vertical process, that,
starting from the relaxed excited state at ionicity 1- F*, drives
the system to the orthogonal gs, at ionicityF*. The emission
frequency and transition dipole moment, are still given by the
same equations governing absorption, see eq 3, but withF*
substitutingF. The Huang-Rhys factors for emission,Si

(em) )
gi(1 - 2F*)/ωi, are always smaller, in absolute value, than those
relevant to absorption, then explaining the observation of
narrower and less structured emission than absorption bands.12,14

The same argument also naturally explains the narrowing of
emission bands as observed for several chromophores in time-
resolved emission measurements.4,27

Vibrational Spectra

It is fairly obvious that e-ph coupling largely affects
vibrational properties of push-pull chromophores. In fact the
vibrational properties of the DA dimer with Holstein coupling
have already been investigated to model vibrational spectra of

Hsolv ) 1
2ror

For
2 - Forµ̂ (2)

ωCT ) 1

xF(1 - F)
µCT ) µ0xF(1 - F) (3)
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CT salts with a dimerized mixed stack motif.28 Here we simply
review the relevant results for push-pull chromophores.10 The
Hamiltonian in eq 1 defines the two harmonic surfaces relevant
to |DA〉 and |D+A-〉 as having the same frequencies, but with
finite coordinate displacements (see Figure 1). The mixing of
the two states into the electronic ground and excited states will
in general lead to a deformation of the originally harmonic
surfaces. At the first order, the mixing only implies a shift of
the two surfaces to the new equilibrium positions, the conse-
quences of this shift on electronic spectra having been discussed
in the previous section. At the second order, the mixing implies
a variation of the harmonic frequencies relevant to the two states,
and at higher orders anharmonic terms appear. Whereas anhar-
monic corrections can be important in push-pull molecules,
here we discuss harmonic results, as a first guide to understand
spectral properties.

The vibrational force constant matrixF can be calculated from
the second derivatives of the gs energy with respect to the
vibrational coordinatesQi in eq 1:21

whereδij is the Kronecker-δ andR0 ) 2µ0
2[F(1 - F)]3/2, is the

electronic linear polarizability. The frequencies and normal
modes of the coupled problem are obtained from the diagonal-
ization of the force constant matrix. Overall, vibrational
frequencies are softened by e-ph interactions. In the case of a
single coupled mode, or for a mode well separated from other

modes, the vibrational frequency isΩi ) ωix1 - 2εiR0/µ0
2.11

More generally, e-ph coupling implies a mixing of vibrational
coordinates, and the frequency of each mode depends on all
coupling constants and frequencies.21 In Figure 2, the dotted
lines show the dependence of the frequencies of two coupled
modes (ω1 ) 0.19, ω2 ) 0.21, g1 ) 0.15, g2 ) 0.29) on the
solvent polarity. The upper panels refer to a fairly neutral

chromophore (z0 ) 0.8), the bottom panels to a chromophore
of intermediate ionicity (z0 ) 0.7). Force constant matrices of
the same form as in eq 4 are typically obtained in models
accounting for linear e-ph coupling. IfR0/µ0

2 is assigned the
role of a general electronic susceptibility, then eq 4 has already
been written to describe vibrational properties of several classes
of CT salts, of inorganic Pt-halogen chains, as well as of
conjugated polymers.22 In particular, curves similar to those
presented in Figure 2 have already been drawn for polyacetylene
(PA),29 with the major difference that in that case the ordinate
axis measures the electronic susceptibility, and in the present
case the solvent polarity. Since the electronic susceptibility
depends, viaF, on the solvent polarity, the appearance of the
two figures is similar. We underline that, just as it occurs in
PA, by increasing the electronic susceptibility, the softening
becomes more and more important for the lowest mode. The
hardening of vibrational frequencies calculated forz0 ) 0.7 and
εor > 0.9 is easily understood in the same picture, since
increasing the solvent polarity beyondεor ∼ 0.9 increasesF
beyond 0.5, and the electronic susceptibility starts decreasing.

The coupled internal vibrations are totally symmetric in the
molecular point group, and are both IR and Raman active.
Solvation effects are then expected in both spectra. Much as it
occurs in other systems, e-ph coupling affects vibrational
intensities.22 In the case of a single (or isolated) mode, the IR
and nonresonant Raman (NRR) intensities due to e-ph coupling,
in the harmonic approximation, are given by11

where â0 ) 6µ0
3[F(1 - F)]2(1 - 2F) is the electronic

contribution to the first hyperpolarizability. In the most general
case of many coupled modes, thegi’s in the above equations
have to be substituted by proper linear combinations in order
to account for the mode mixing as inferred from the diagonal-
ization of F in eq 4.21 The mode mixing is responsible for a
redistribution of vibrational intensities, as shown in the left and
right panels of Figure 2 for the IR and NRR cases, respectively.
Once more, just as it occurs in other systems characterized by
large e-ph coupling, by increasing the electronic susceptibility,
low-frequency modes borrow intensity from higher modes.29

Polar Solvents: A Model for Inhomogeneous Broadening

In the previous sections we have described the spectral
properties of a solvated push-pull chromophore at the equi-
librium, i.e., with both internal and solvation coordinates in the
configuration that minimizes the total (solute+solvent) energy.
At finite temperature (T), however, deviations from equilibrium
are possible. In particular, the orientational modes of polar
solvents, that are characterized by very low frequencies, are
expected to be easily excited at roomT. The simplest picture
for thermal fluctuations in polar solvents considers the orien-
tational component of the reaction field as slowly oscillating
around its equilibrium value. Since this oscillation is much
slower than all other degrees of freedom, including internal
vibrations of the chromophore,30 the solution can be modeled
in terms of a Boltzmann distribution of chromophores each one
in equilibrium with the local solvent configuration. The Boltz-
mann distribution explicitly introduces theT variable in the

Figure 2. Equilibrium vibrational properties for a chromophore with
two coupled internal vibrations:ω1 ) 0.19,g1 ) 0.15,ω2 ) 0.21,g1

) 0.29; upper and lower panels refer toz0 ) 0.8 and 0.7, respectively.
By choosingx2t ) 1 eV, the x-axis is in cm-1. Dotted lines show the
dependence of equilibrium vibrational frequencies on solvent polarity
(εor). For selectedεor values, the vertical lines show the equilibrium IR
and NRR intensities.

IIR
(i) ) (∂µG

∂Qi
〈0|Qi|1〉)2

) gi
2
R0

2

µ0
2

(5)

INRR
(i) ) ( ∂R

∂Qi
〈0|Qi|1〉)2

) gi
2
â0

2

µ0
2

(6)

Fij ) ωiωjδij - 2gigj xωiωj

R0

µ0
2

(4)
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equations. However it is important to recognize thatεor is
intrinsically a T-dependent quantity. In the simplest ap-
proaches,3,13 the T dependence ofεor is hidden in theT
dependence of the solvent dielectric constant and/or refractive
index. In more refined treatments,30 the T dependence of the
solvent polarization stems out more clearly. In any case, theT
inserted in the Boltzmann distribution must coincide with the
T implied by the choice ofεor.

To account for the fluctuations of the orientational component
of the reaction field around its equilibrium value (For), we simply
substituteFor in eq 1 withFor + ∆, ∆ measuring the fluctuating
field. The energy of the solute+solvent system and the solute
properties can be easily calculated as a function of∆. The ∆
contribution to the solvent elastic energy is in fact trivial, and
its contribution to the solute-solvent interaction (from the last
term in eq 1) simply adds toz0 the constant-∆µ0/2. Since the
exact solutions of the Hamiltonian in eq 1 as a function ofz0

are known,10 we immediately get the effects of∆. In Figure 3,
left upper panel, we report, as a function of∆, the total energy
of a solvated chromophore in its gs configuration (EG) for the
parametersz0 ) 0.8,εsp ) 0.45 andεor ) 0.6. The exact result
(continuous line) accounts for the variation of solute polarity
with ∆. In perturbative approaches to solute-solvent interaction,
instead, the solute polarizability is neglected andF is kept fixed
to its equilibrium value. Then theEG(∆) curve is a parabola
with curvature 1/ror ) µ0

2/2εor. In Figure 3 the deviation of the
exact curve from the parabolic behavior (dotted line) is apparent.
More impressive is however the comparison between the
probability distributions described by the two models. In the
lower left panel in Figure 3 we report the distributions of the
solute polarity: in the rigid model the probability distribution
is a Dirac-δ (dotted line) centered at the equilibriumF. The
exact result (continuous line), reported in the same figure forT
) 300 K, shows instead a fairly large and slightly asymmetric

F-distribution. Since, as discussed in the previous sections, the
spectral properties of push-pull chromophores strongly depend
on F, this broad distribution is the key to understand inhomo-
geneous broadening effects on spectral properties of push-pull
chromophores in polar solvents.

Inhomogeneous broadening in electronic spectra can be
accounted for in the rigid solute picture too. In this perturbative
approach, in fact, the electronic energies are corrected up to
the first order in the solute-solvent interaction,13 so that they
linearly depend on∆, according to-∆µ, µ representing the
expectation value of the dipole moment operator in the relevant
state. Figure 4 compares the exact probability distribution of
absorption frequencies (continuous line, upper panel) with that
obtained in the rigid solute approximation (continuous line,
lower panel). The two distributions are fairly similar, the major
difference being the slight asymmetry of the exact curve. Since
absorption band-shapes are obtained by convoluting the distri-
bution with the relevant vibronic structure, the two distributions
can be considered essentially equivalent for all practical
purposes.

Something qualitatively different occurs for emission. In
Figure 3, right upper panel, we compare the exact∆ dependence
of the energy of the steady-excited state (continuous line) with
the rigid solute result (dotted line). The fluctuations of the
solvent orientational field (∆) are measured as deviations from
the field in equilibrium with the gs, so that both the exact and
approximate curves have minima at∆ * 0. In the rigid solute
picture, the∆ dependence of the excited state energy is exactly
the same as for the gs. Deviations from the parabolic behavior
are apparent for the exact curve, but what is more important is
that the exact and approximate curves have minima at different
positions. This is of course related to the different polarity (i.e.,
to the different dipole moments) characterizing the steady-
excited state in the two approaches. The difference is even more
apparent in the lower right panel, showing the corresponding
F-distributions. In the rigid solute picture, the distribution is a
Dirac-δ (dotted line) centered at 1- F, F measuring, as usual,
the gs polarity. The exact picture predicts a broad distribution
(continuous line), centered at a different ionicity, 1- F*, as

Figure 3. Upper panels: the solute+ solvent energy vs the fluctuation
of the orientational component of the reaction field (∆), measured as
deviation from the value relevant to the equilibrium gs for a chro-
mophore withz0 ) 0.8, εsp ) 0.45 and forεor ) 0.6. Lower panels:
probability distribution of the solute polarity, for the same parameters
as before, and forT ) 300 K. Left and right panels refer to the ground
and excited state, respectively. Continuous and dotted lines refer to
the exact model (polarizable solute picture) and to the perturbative
treatment (rigid solute picture), respectively.

Figure 4. Probability distribution of transition energies (same param-
eters as in Figure 3), in arbitrary units, but with normalized areas.
Continuous and dashed lines refer to absorption and steady-state
emission processes, respectively. Upper panel: the exact model. Lower
panel: the rigid solute picture.
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discussed in the previous section. This has fairly obvious
consequences on emission frequencies, that in the rigid solute
picture are always underestimated (see Figure 4). More subtle
is the effect on band-shapes: since absorption (or equivalently
emission) frequencies nonlinearly depend on the polarity of the
involved states, the exact distribution of emission frequencies
(Figure 4, upper panel, dashed line) turns out always narrower
than that obtained in the rigid solute picture (Figure 4, lower
panel, dashed line).

The rigid solute picture accounts for inhomogeneous broad-
ening in electronic absorption or emission bands, but it cannot
reproduceboth spectra in terms of thesame microscopic
parameters. On the other hand, the rigid solute picture cannot
account for solvation effects in vibrational spectra. In fact,
vibrational excitations do not modify the molecular dipole
moment, so that in the rigid solute approximation there are no
corrections to vibrational energies due to solvation. In the
previous section we demonstrated that, since the equilibrium
polarity (F) of the polarizable solute depends on the solvent,
then vibrational frequencies depend on the solvent too (see
Figure 2). Similarly, since the fluctuations of the orientational
component of the reaction field around the equilibrium affect
the solute polarity, our model naturally predicts inhomogeneous
broadening of vibrational spectra of push-pull chromophores
dispersed in polar solvents. On the basis of the same gs
distribution as reported in Figure 3, left lower panel, and on
the F dependence of the frequencies of the coupled modes, as
implied by eq 4, we calculate the probability distribution of the
vibrational frequency,Ωv, of a single coupled mode, as reported
in Figure 5, upper panel. TheΩv-distribution is the key to
understand vibrational inhomogeneous broadening, but due to
the nonlinear dependence of IR and/or NRR intensities onF
(see eqs 5 and 6), it does not offer direct spectral information.
By weighting the distribution in Figure 5 with the IR and NRR
intensities in eqs 5 and 6, we calculate the corresponding spectra
as reported in Figure 5, lower panel, where the homogeneous
bands are modeled as single Lorentzians with half-width at half-
maximumγ ) 8 cm-1. The inhomogeneous broadening as due
to the solvent polarity is very well apparent. More interesting,

however, is the observation of different frequencies in IR and
NNR spectra. This is of course due to the markedly different
F-depedendence ofIIR and INRR, particularly atF ∼ 0.5. As it
turns out from the figure, the large inhomogeneous broadening
suffered by coupled modes implies that, for push-pull chro-
mophores dispersed in polar solvents, the same vibrational mode
can appear with different frequencies in IR and NRR spectra.
The experimental determination of the corresponding frequen-
cies shifts is not easy, but is interesting to pursue.

Inhomogeneous broadening affects both electronic and vi-
brational states, and therefore its most impressive effects are
expected in RR spectra. Figure 6 shows some results obtained
for the model parameters discussed above. The upper panel
reports the absorption spectrum calculated in the Condon
approximation. According to the previous discussion, inhomo-
geneous broadening is taken into account by summing over the
Condon spectra calculated for eachF, weighted by theF-dis-
tribution in Figure 3. Each vibronic line is modeled as a
Lorentzian with half-width at half-maximum,Γ ) 1600 cm-1.
Analogously, inhomogeneously broadened RR spectra can be
calculated as sum over theF distribution of the homogeneous
RR spectra relevant to eachF. Specifically, for eachF the
homogeneous RR spectrum is defined by a single Lorentzian
centered at the relevant frequencyΩ, with intrinsic vibrational
line width,γ, and whose intensity is given by the square of the
Raman polarizabilty,RR. In the harmonic approximation, the
standard vibronic expansion of the transition dipole moments,31

gives the following equation forRR:

Figure 5. Upper panel: probability distribution of the vibrational
frequency of a single coupled mode havingωV ) 0.2, for the same
parameters as in Figure 3. Lower panel: IR and NRR spectra calculated
for the intrinsic line width of vibrational states,γ ) 8 cm-1. X-axis in
cm-1.

Figure 6. Absorption and RR spectra for a chromophore with the same
parameters as in Figure 5 and intrinsic electronic line widthΓ ) 1600
cm-1. Upper panel: absorption spectra. Middle panel: dependence of
the RR frequency on the excitation line. Lower panel: RR excitation
profiles calculated for the selected vibrational frequencies displayed
in the legend. Frequencies in cm-1.

RR )

∑
V

(µCT〈0|V〉 +
∂µCT

∂Q
〈0|Q|V〉) (µCT〈V|0〉 +

∂µCT

∂Q
〈V|Q|0〉) ×

( 1

ωEV + ωR + iΓ
+

1

ωEV - ωL + iΓ) (7)
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where ωL and ωR are the Laser and Raman frequencies,
respectively,|0〉 and |1〉 are the zero- and one-phonon states
of the ground electronic state,|V〉 is the vibrational state of the
excited manifold withV phonons,ωEV is the frequency of the
transition from the ground vibronic state to the excited state
with V phonons, andΓ is the corresponding line width, that is
set equal to the electronic homogeneous line width. The
transition dipole moment is easily calculated, within the
Herzberg-Teller approach,10,11 as ∂µCT/∂Q ) x2ωg(1 -
2F)µCT/ωCT. The above equation can be easily extended to the
multimode case.

The effects of inhomogeneous broadening in RR spectra are
impressive: by tuningωL within the absorption band, molecules
with matching absorption frequencies are preferentially excited.
So, at differentωL, one observes RR scattering from molecules
with differentF, and then with different vibrational frequencies.
Depending on the model parameters, chromophores dispersed
in polar solvents can show a large dispersion of RR frequencies
with the excitation line. Although with different physical origins,
the mechanism responsible for the RR dispersion in push-pull
chromophores in solution is exactly the same as acting in PA:
32,33 in PA samples, segments of different conjugation length
are characterized by different absorption and vibrational fre-
quencies; in solvated push-pull chromophores a distribution
of molecules with different electronic and vibrational frequencies
is originated by thermal disorder in the solvation cage. Figure
6, middle panel, shows the dependence of the position (first
moment) of the RR band,ΩV

RR, as a function ofωL as
calculated for the same parameters as before. ForωL well below
(or above) the absorption band we indeed measure a NRR
spectrum, andΩV

RR f ΩV
NRR (cf. Figure 5). The minimum

frequency is obtained by exciting slightly below the absorption
maximum, where molecules withF ∼ 0.5 are preferentially
excited. By increasing furtherωL, molecules withF deviating
from 0.5 are excited, andΩV

RR increases. Similar information
can be gained from the excitation profiles (lowest panel in Figure
6). At vibrational frequencies lower than the equilibrium
vibrational frequency, the RR intensity maximizes at fairly low
frequencies (lower than the absorption maximum); at higher
vibrational frequencies, the maximum RR intensity moves higher
in energy.

Conclusions

In this paper, the self-consistent DA dimer model, previously
proposed to describe push-pull chromophores, is solved to get
a nonperturbative description of optical (electronic and vibra-
tional) spectra of these molecules in solution. Previous work
on electronic (absorption and emission) spectra12 is extended
here to explicitly include inhomogeneous broadening as due to
the coupling to slow (orientational) degrees of freedom of polar
solvents. The extensive discussion of vibrational properties of
push-pull chromophores in solution points to several interesting
features. First of all we predict a large dependence of vibrational
(IR and Raman) frequencies and intensities on the solvent
polarity, with softening and mode mixing phenomena that share
several common features with other systems characterized by
large linear e-ph coupling22 (CT salts, conjugated polymers,
inorganic Pt-halogen chains). Even more interesting are inho-
mogeneous broadening effects. Apart from the broadening of
observed vibrational bands with increasing solvent polarity, we
predict, for molecules where broadening is most effective, the
noncoincidence of IR and NRR frequencies, and the dispersion
of RR frequencies with the excitation line. In the companion
paper we will apply the present model to discuss spectral

properties of an interesting chromophore, phenol blue (PB). The
exotic spectral behavior of PB is fairly naturally understood
based on our simple model. Specifically, fixed a few model
parameters, PB electronic absorption spectra, as well as IR, NRR
and RR spectra measured in different solvents are well
reproduced. The good agreement with experiment proves the
validity of the model and the possibility to extract a reliable set
of microscopic parameters from the combined analysis of
spectral data.

Experimental studies of the solvent dependence of electronic
and vibrational spectra of push-pull chromophores are still
scanty, PB representing an interesting and fortunate exception.
More extensive experimental data are required for a wider test
of the proposed model. We hope that some interest in this field
will be triggered by the present study, that points to new and
interesting spectral features of solvated push-pull chromophores
and shows that a more sound understanding of the properties
of these interesting molecules can be obtained from an extensive
spectral analysis.

The two-state model we adopt to describe the electronic
structure of push-pull chromophores is certainly an oversimpli-
fied model. Whereas the comparison with experimental data
proves it works well for a few chromophores, we do not really
believe it applies to all chromophores. Just as an example,
chromophores with fairly long polyenic spacers are expected34

(and are indeed observed35) not to be modeled adequately in
terms of two states. Quite irrespective of its accuracy and/or
applicability, our simple model, with its exact solutions, teaches
us a few important lessons of general validity, the most
important one being the inadequacy of linear perturbative
treatments of interactions in systems with highly nonlinear
behavior. In these systems, and therefore in all systems with
large NLO susceptibilities, improving simple models to include
higher states and/or making resort to extensive quantum
chemical calculations is totally useless if the relevant interactions
(e.g., e-ph and solute-solvent interactions) are perturbatively
dealt with. The far-reaching implications of the system nonlin-
earity on the calculation of NLO responses10,11 and on the
interpretation of solvatochromic shifts have already been
discussed.12 Here we want to underline a general and important
consequence of nonlinearity on spectral properties: highly
nonlinear molecules are highly polarizable, so that the electronic
states largely respond to the configuration of slow variables.
The states involved in vertical processes taking place at different
points in the configuration space of slow variable (e.g.,
absorption and steady-state emission) are different. For the same
reasons the electronic states involved in vertical processes (e.g.,
emission) and horizontal processes (e.g., electron transfer) are
different. For nonlinear systems, like push-pull chromophores,
the spectral parameters, like Huang-Rhys factors, obtained from
the analysis of a vertical process are not relevant to a different
vertical process, nor are they directly transferable to describe
electron transfer process. Extracting microscopic information
from optical spectra is, for materials with nonlinear behavior, a
highly nontrivial process, and many of our current approaches
need to be critically reconsidered.

Acknowledgment. We thank A. Girlando for useful dis-
cussions. Work was supported by the Italian National Research
Council (CNR) within its “Progetto Finalizzato Materiali
Speciali per Tecnologie Avanzate II”, and by the Ministry of
University and of Scientific and Technological Research
(MURST).

Push-Pull Chromophores in Solution J. Phys. Chem. A, Vol. 104, No. 47, 200011047



References and Notes

(1) Kanis, D. R.; Ratner, M. A.; Marks, T. J.Chem. ReV. 1994, 94,
195.

(2) Marder, S. R.; Kippelen, B.; Jen, A. K-Y.; Peyghambarian, N.
Nature1997, 388, 845.

(3) Reichardt, C.Chem. ReV. 1994, 94, 2319.
(4) Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M.J.

Phys. Chem.1995, 99, 17311.
(5) Myers Kelley, A. B.J. Phys. Chem. A1999, 103, 6891.
(6) Oudar, J. L.; Chemla, D. S.J. Chem. Phys.1977, 66, 2664.
(7) Mulliken, R. S.J. Am. Chem. Soc.1952, 74, 811.
(8) Wynne, K.; Galli, C.; Hochstrasser, R. M.J. Chem. Phys.1994,

100, 4797.
(9) Soos, Z. G.; Keller, H. J.; Moroni, W.; No¨the, D.Ann. N. Y. Acad.

Sci.1978, 313, 442.
(10) Painelli, A.Chem. Phys. Lett.1998, 285, 352.
(11) Painelli, A.Chem. Phys.1999, 245, 183. Painelli, A.Chem. Phys.

2000, 253, 393.
(12) Painelli, A.; Terenziani, F.Chem. Phys. Lett.1999, 312, 211.
(13) Liptay, W.Angew. Chem.1969, 8, 177; InExcited States; Lim, E.

C., Ed.; Academic: New York, 1974; p 129.
(14) Painelli, A.; Terenziani, F.Synth. Met.2000, 109, 229.
(15) Yamaguchi, T.; Kimura, Y.; Hirota, N.J. Phys. Chem. A1997,

101, 9050.
(16) Yamaguchi, T.; Kimura, Y.; Hirota, N.J. Chem. Phys.1998, 109,

9075. Yamaguchi, T.; Kimura, Y.; Hirota, N.J. Chem. Phys1997, 107,
4436.

(17) Markel, F.; Ferris, N. S.; Gould, I. R.; Meyers, A. B.J. Am. Chem.
Soc.1992, 114, 6208.

(18) Myers, A. B.Chem. Phys.1994, 180, 215.

(19) Marder, S. R.; Beratan, D. N.; Cheng, L.-T.Science1991, 252,
103.

(20) See, e.g.: Schatz, G. C.; Ratner, M. AQuantum Mechanics in
Chemistry; Prentice Hall International: Englewood Cliffs, NJ, 1993.

(21) Painelli, A.; Girlando, A.J. Chem. Phys.1986, 84, 5665.
(22) Girlando, A.; Painelli, A.; Soos, Z. G.Acta Phys. Pol. A1995, 87,

735.
(23) Di Bella, S.; Marks, T. J.; Ratner, M. A.J. Am. Chem. Soc.1994,

116, 4440.
(24) Feinberg, D.; Ciuchi, S.; De Pasquale, F.Int. J. Mod. Phys.1990,

4, 1317.
(25) Fortunelli, A.; Painelli, A.Chem. Phys. Lett.1993, 214, 402.
(26) Longuet-Higgins, H. C.AdV. Spectrosc.1961, 2, 429.
(27) Fee, R. S.; Maroncelli, M.Chem. Phys.1994, 183, 235.
(28) Girlando, A.; Bozio, R.; Pecile, C.; Torrance, J. B.Phys. ReV. B

1982, 26, 2306.
(29) Girlando, A.; Painelli, A.; Soos, Z. G.Chem. Phys. Lett.1992, 198,

9.
(30) Loring, R. F.; Yan, Y. J.; Mukamel, S.J. Chem. Phys.1987, 87,

5840. Loring, R. F.; Yan, Y. J.; Mukamel, S.Chem. Phys. Lett.1987, 135,
23.

(31) Tang, J.; Albrecht, A. C.Raman Spectroscopy; Plenum: New York,
1970; Vol. 2.

(32) Cataliotti, R. S.; Paliani, G.; Dellepiane, G.; Fuso, S.; Destri, S.;
Piseri, L.; Tubino, R.J. Chem. Phys.1985, 82, 2223.

(33) Masetti, G.; Campani, E.; Gorini, G.; Piseri, L.; Tubino, R.;
Dellepiane, G.Sol. State Comm.1985, 55, 737.

(34) Tretiak, S.; Chernyak, V.; Mukamel, S.Chem. Phys.1999, 245,
145.

(35) Castiglioni, C. Private communication.

11048 J. Phys. Chem. A, Vol. 104, No. 47, 2000 Painelli and Terenziani


