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The Kennard-Stepanov (KS) relation, also known as the reciprocity relation, connects the absorption and
fluorescence spectra of homogeneous complex systems under the assumption of thermal equilibration of the
emitting electronic state. A recent elaboration of the theory by Sawicki and Knox (SK) [Phys. ReV. A, 1996
54, 4837] introduces a spectral temperature that is a sensitive indicator of the failure of the relation. Studies
using the SK formalism, which have been limited almost exclusively to experimental cases, reveal various
failures that may be due to incomplete equilibration, inhomogeneity, or both. Using the Brownian oscillator
model for nuclear dynamics, we investigate the KS relation theoretically with the aid of the SK spectral
temperature. The spectral temperature is again found to be a sensitive indicator, this time of the accuracy of
the numerical methods necessary for the multiple integrations. The original KS relation appears to hold
regardless of the memory effects of the bath, a result which is not totally unexpected considering the assumptions
of excited-state equilibrium implicit in the theory. We extend the theory to the nonequilibrated case of time-
resolved fluorescence, where a time-dependent temperature can be defined.

I. Introduction

As a consequence of the Einstein relation which connects
the rates of spontaneous emission, stimulated emission, and
absorption of radiation between microstates, the Kennard-
Stepanov (KS) relation1-3 connects the steady-state absorption
and fluorescence spectra of a two-level chromophore at tem-
peratureT

Here pωeg is the electronic energy of excitation,kB is Boltz-
mann’s constant, andI(ω) and σ(ω) are the emission and
absorption line shape functions at frequencyω, respectively.
D(T), which is determined by the partition functions of the
ground and excited manifolds,4 does not depend on this
frequency. In addition to making use of the Einstein relation,
the KS relation assumes that the excited state is thermally
equilibrated before emission. Therefore, violation of the KS
relation has been frequently used to infer deviation from thermal
equilibrium of the excited manifold. An effective temperature
termed the spectral temperature was introduced by Sawicki and
Knox5 using the local slope ofF(ω)

KS theory also assumes that the spectra under consideration
involve no transitions between vibrational levels of the ground
states.

Experimentally,T* is seldom found to agree with the ambient
temperatureT, although the KS relation is commonly used in

the field of biofluorescence (see, for example, refs 6-8). The
function F(ω) derived from measurements is often a nearly
straight line; however, it has long been a puzzle thatT* is higher
than the ambient temperatureT in some instances and lower in
others.9 The connection ofT*(ω) to relaxation among internally
equilibrated but kinetically interacting manifolds is easily
demonstrated.9,10 The open question is: canT*(ω) be related
to relaxationwithin the excited manifold by use of relatively
modern techniques such as applying the Brownian oscillator
model? In this paper we set up and test a formalism for
answering this question. In section II, we introduce the Brownian
oscillator model. Defining various variables for discussion, we
present expressions for the line shape functiong(t), from which
we later obtain the linear absorption and the relaxed fluorescence
line shapes. The line shape function must in turn be obtained
from a correlation function derived from a model of the system.
In section III this function is discussed in detail, and we use an
oscillator continuum model as an example for which a closed
expression forg(t) can be derived. We discuss the implications
of non-Ohmic relaxation in the baths. In section IV, we illustrate
absorption line shapes for different parameter regimes and show
numerically that for a frequency-independent damping constant
the KS relation holds regardless of the damping strength as
compared to the oscillator frequency. We demonstrate the
behavior ofT* during the approach to thermal equilibrium in
section V by calculating time-resolved fluorescence. Section VI
is our summary.

II. The Brownian Oscillator Model

Huang and Rhys11 were the first to treat a many-coordinate
(many-body) system quantum mechanically in their description
of optical properties of F centers. Their work was later extended
to acoustic phonons by Lax.12 However, polaron theories of
chromophores coupled to a discrete set of coherent oscillators13

miss an important aspect of the real system, namely, dissipation.
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Therefore, such theories are incapable of describing the interest-
ing phenomenon of excited-state relaxation. The Brownian
oscillator model14-17 introduces dissipation mechanisms into the
harmonic quantum oscillators by coupling the primary oscillators
to a continuous distribution of secondary oscillators.

In the Brownian oscillator model, the system is taken to be
a two electronic-level system with some primary nuclear
coordinates coupled linearly to the electronic systems:

where

and

Here pj (Pn), qj (Qn), mj (mn), and ωj (ωn) represent the
momentum, the coordinate, the mass, and the angular frequency
of the jth (nth) nuclear mode of the primary (bath) oscillators,
respectively.dj is the displacement for thejth nuclear mode in
the excited electronic state.H′ describes the bath oscillators and
their coupling to the primary oscillators with a coupling strength
cnj.

The linear absorption and the relaxed fluorescence line shapes
can be obtained from a spectral broadening functiong(t) (see
ref 14, Appendix 8B therein):

where ωeg
0 is the 0-0 transition frequency,λ is the Stokes

shift, andg(t) is related to the polarization of the material system
as follows.

A Taylor expansion of the polarization in powers of the
radiation fieldE(r ,t) is made:

The termP(1)(r ,t) is responsible for linear optics. We define
the linear response functionS(1)(r ,t) as the first-order susceptibil-
ity through the polarizationP(1)(r ,t):

(The polarization and field are both vectors, but since we will
not consider anisotropic systems, we do not use any special
notation.) For the model system we are discussing, the suscep-
tibility takes the form (ref 14, pp 116-120)

where

and

Here U ≡ He - Hg is the collective bath coordinate
representing the coupling of the chromophore to its environment
responsible for spectral shifts and broadening, andFg is the
equilibrium ground-state density matrix:

whereâ ) 1/kBT.
Using a second-order cumulant expansion (ref 14, pp 215-

216), the spectral broadening functiong(t) can be expressed in
terms of the frequency-domain correlation functionC′′(ω):

with

and

We note thatC′′(ω) is in fact the imaginary part of the
frequency-domain correlation functionC(ω) with its real part
C′(ω) related toC′′(ω) by

The functionC′′(ω) is a summation of individual contributions
from each primary oscillator:

where29

Here 2λj is the Stokes shift for thejth mode,

γj(ω) represents the spectral distribution of the coupling

and the real partΣj(ω) of the self-energy is related to the spectral
distribution of the coupling by the Kramers-Kronig relation:18

H ) |g〉Hg〈g| + |e〉He〈e| + H′ (2.1)

Hg ) ∑
j

[ pj
2

2mj

+
1

2
mjωj

2qj
2] (2.2)

He ) pωeg
0 + ∑

j
[ pj

2

2mj

+
1

2
mjωj

2(qj + dj)
2] (2.3)

H′ ) ∑
n [Pn

2

2mn

+
1

2
mnωn

2(Qn - ∑
j

cnjqj

mnωn
2)2] (2.4)

σBO(ω) ) 1
π

Re∫0

∞
dt exp[i(ω - ωeg

0 - λ)t - g(t)]

IBO(ω) ) 1
π

Re∫0

∞
dt exp[i(ω - ωeg

0 + λ)t - g*( t)] (2.5)

P(r ,t) ) P(1)(r ,t) + P(2)(r ,t) + P(3)(r ,t) + ... (2.6)

P(1)(r ,t) ) ∫0

∞
dt1S

(1)(r ,t1)E(r ,t - t1) (2.7)

S(1)(t1) ) i
p

θ(t)[R(t) - R*( t)] (2.8)

R(t) ) exp(-iωegt) exp[-g(t)] (2.9)

ωeg ) ωeg
0 + 〈UFg〉 (2.10)

Fg )
|g〉〈g| exp(-âĤg)

Tr[exp(-âĤg)]
(2.11)

g(t) ) 1
2π ∫-∞

∞
dω

C′′(ω)

ω2
[1 + coth(âpω/2)][e-iωt + iωt - 1]

(2.12)

C′′(ω) ) -i∫-∞

∞
dte-iωtC̃(t) (2.13)

C̃(t) ) - 1

2p2
[〈U(t)U(0)Fg〉 - 〈U(0)U(t)Fg〉] (2.14)

C′(ω) ) coth
âpω

2
C′′(ω) (2.15)

C′′(ω) ) ∑
j

Cj′′(ω) (2.16)

Cj′′(ω) )
2λjωj

2ωγj(ω)

ω2γj
2(ω) + [ωj

2 + ωΣj(ω) - ω2]2
(2.17)

2λj )
mjωj

2dj
2

p
(2.18)

γj(ω) )
π

mj
∑

n

cnj
2

2mnωn
2
[δ(ω - ωn) + δ(ω + ωn)] (2.19)

Σj(ω) ) - 1
π

P P∫-∞

∞
dω′

γj(ω′)
ω′ - ω

(2.20)

7752 J. Phys. Chem. A, Vol. 104, No. 33, 2000 Zhao and Knox



whereP P stands for the Cauchy principal part. This gives

where the quantityη is infinitesimal. In general, the coupling
of the primary oscillator to the bath is nonlinear. The linear
form of the coupling (eq 2.4) is usually justified when the
coupling is weak.19 It implies that the bath friction does not
depend on the state of the system in the entire frequency range.

One can also writeλj asSjpωj whereSj is the dimensionless
Huang-Rhys factor. The value ofSj can vary from much less
than unity (weak coupling) to equal to greater than unity
(moderate/strong coupling). For example, the molecular ion O2

-

in KBr emits in the visible range of 400-700 nm.20 The optical
center is strongly coupled to the internal vibrational mode of
the O2

- ion with Sj ) 10 andpωj ) 1000 cm-1, and at the
same time weakly coupled to the phonon modes of KBr withSj

∼ 1 and a frequency20 of less than 200 cm-1. For the B820
complex in the core antenna (LH1) of the purple bacteria, the
spectrum is dominated by modes withSj ∼ 0.5 and a typical
frequency21 of 100 cm-1. In all of the examples considered
below in which one coupled oscillator is assumed, we have taken
Sj ) S1 ) 1.

To facilitate numerical computations, the real and imaginary
parts of the line shape functiong(t) ) g′(t) + ig′′(t) can be
written in terms ofC′′(ω) as follows:

These follow from eq 2.12 by applying symmetry consider-
ations.

III. The Correlation Function for the Brownian
Oscillator Model

A. Physical Origins of the Correlation Function. The
correlationC′′(ω) (eq 2.17) can be obtained rigorously from
path integral techniques by tracing over the bath degrees of
freedom.16,19However, comparisons with the classical Langevin
equation provide a better understanding of the spectral distribu-
tion functionγj (ω). The classical Brownian motion is described
by the generalized Langevin equation:

Here qj
c(t) is the c-number displacement of thejth classical

oscillator, γj(t) is the time-dependent damping constant with
possible memory effect,Fj(t) is the external driving force, and
fj(t) is the so-called fluctuating force representing the effect of
the bath on thejth primary oscillator. The latter is assumed to
obey15,19,14

The averages are over stochastic variables. Equation 3.3 is in
fact the well-known fluctuation-dissipation theorem which
relates relaxation of a weakly perturbed system to the spontane-
ous fluctuations in the thermal equilibrium. Special cases of
the theorem include the Einstein relation between the diffusion
constant and the viscosity of a Brownian particle and Nyquist
formula for thermal noise in a resistor.

According to the Ehrenfest theorem, the expectation values
of a quantum operator obey the classical equations of motion.
Therefore, we expect the mean values of the quantum operator
qj(t) to follow eq 3.1. In fact, efforts have been made to
generalize the classical Langevin eq 3.1 to the quantum case.
The following quantum-mechanical version of the Langevin
equation has been obtained22-24

whereêj(t) is an operator-valued random force with stationary
Gaussian statistics. From the fluctuation dissipation theorem,
one can obtain in general

For a discussion on the forms of the fluctuation-dissipation
relations for classical and quantum systems, the reader is referred
to Cortès et al.24

Defining the susceptibilityRj(ω) to the external perturbation
Fj(ω) through

we relate the classical analogue ofC′′(ω), Ch ′′(ω) to Rj(ω) by

If the dependence ofγj(ω) on ω is weak, the memory effect of
the damping constantγj can be neglected. The limitγj(t) f
δ(t) is usually referred to as the Ohmic limit. Below we will
first present our calculations ofT*(ω) for a constantγj(ω) ) γj

(Σj(ω) ) 0).
B. Characteristic Behavior of the Correlation Functions.

We consider first the mode-continuum model, in which it is
assumed that thej summations of section II can be replaced by
integrals over densities of modes (ref 14, p 221). This sup-
presses all specific information on oscillator-bath coupling and
a model function must therefore be assumed for the correlation
function

The parametersλ andΛ are assumed temperature-independent,
so the only temperature dependence enters through the coth
factor in eq 2.12. Figure 1a shows the dependence ofC′(ω) on
temperature for a fixed value ofΛ and Figure 1b shows theΛ
dependence ofC′′(ω). Its maxima fall atω ) Λ. On this
simplified model,C′′(ω) is just the density of oscillators inω
space weighted byω2/2 and a continuously distributed coupling
strengthS(ω). Remembering this context, one may therefore
considerC′′(ω) to be an effective density of states.

Σj(ω) )
1

mj

P P ∑
n

cnj
2

2mnωn
2[ 1

ω - ωn + iη
+

1

ω + ωn + iη]′

(2.21)

g′(t) ) 1
π ∫0

∞
dω

1 - cos(ωt)

ω2
coth(âpω/2)C′′(ω) (2.22)

g′′(t) ) i
π ∫0

∞
dω

sin(ωt) - ωt

ω2
C′′(ω) (2.23)

mj

d2qj
c(t)

dt2
+ mjωj

2qj
c(t) + mj∫-∞

t
dτγj(t - τ)

dqj
c(t)

dt
)

fj(t) + Fj(t) (3.1)

〈fj(t) ) 0〉 (3.2)

〈fj(t)fk(τ)〉 ) δjk2mjkBTγj(t - τ) (3.3)

mj

d2qj(t)

dt2
+ mjωj

2qj(t) + mj∫-∞

t
dτγj(t - τ)

dqj(t)

dt
) êj(t) (3.4)

〈êj(t)êj(0)〉 )
pmj

π ∫0

∞
dωωγj(ω)(coth

pωâ
2

cosωt - i sinωt)
(3.5)

〈qj
c(ω)〉 ) Rj(ω)Fj(ω) (3.6)

Ch ′′(ω) ) -pIm[Rj(ω)] (3.7)

C′′(ω) ) 2λ ωΛ
ω2 + Λ2

(3.8)
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The multimode Brownian oscillator model, adapted to the
case of one oscillator (labeled 1) has the Ohmic-limit correlation
function

Figure 2 shows the two parts ofC(ω) in this case with a fixed
ω1 ) λ1 and various values ofγ1. The emergence of a strong
“density of states peak” atω ) ω1 is quite clear in the small
damping limit, here represented byγ1 ) 0.1ω1.

In the limit of largeγ1 (γ1 . 2ω1), called the overdamped
limit, there is a great resemblance ofC′′(ω) on the one-mode
model to that in the mode-continuum case (compare Figure 2b,
curve 3, with Figure 1b, curve 3]. The connection is not
accidental. In this limit, eq 3.9 has nearly the same form as eq
3.8 if we set Λ ) ω1

2/γ1. While the two forms are not
mathematically equivalent, except for a limited range of
frequencies aroundω ∼ ω1, in practice eq 3.8 can be used to
simplify calculations in the overdamped case. Appendix A
shows that eq 3.8 actually leads to a closed form ofg(t).

In both cases shown in Figures 1 and 2,C′(ω) increases
monotonically with temperature for high temperatures. At low
temperatures,C′(ω) has a dip aroundω ) 0. As temperature is
increased, the minimum inC′(ω) levels off. In the overdamped
Brownian oscillator modelC′(ω) clearly dominates at high
temperatures.

It is worth noting that a connection betweenC′′(ω) and either
λ or λ1 exists, given by

This is very clear for the correlation function eq 3.8, but in the
case of eq 3.9 it is helpful to use25

with c ) 1, b ) a2 - 2. We have used eq 3.10 in testing the
accuracy of numerical integration, as discussed in Appendix
B.

C. Non-Ohmic Behavior. The bath friction coefficient has
so far been set to be constant in all of our calculations. The
corresponding spectral densityJj(ω) defined by

has the form

whereη is the viscosity coefficient. The spectral densityJj(ω)

Figure 1. The temperature and damping dependence ofC′(ω) and
C′′(ω) on the Brownian oscillator model in the case of a continuum of
modes with a width parameterΛ ) 400 cm-1 and strengthλ ) 400
cm-1 (S ) 1). (a)C′(ω) increases with temperature, as illustrated for
T ) 0, 120, and 350 K. Values atω ) 0 are given by the limiting
expression 4S(λ/Λ)kBT. (b) C′′(ω) for the Brownian oscillator model
has no temperature dependence. Shown here are its energy de-
pendence for three different values of the distribution width parameter.
Curve 1,Λ ) 4000 cm-1; curve 2,Λ ) 400 cm-1; curve 3,Λ ) 40
cm-1.

C′′(ω) )
2λ1ω1

2ωγ1

ω2γ1
2 + (ω1

2 - ω2)2
(3.9)

Figure 2. The temperature and damping dependence ofC′(ω) and
C′′(ω) on the multimode Brownian oscillator model in the case of one
assumed mode of wavenumberω1 ) 400 cm-1, λ1 ) 400 cm-1

(coupling strengthS1 ) 1). (a) C′(ω) increases with temperature. In
the case shown,γ1 ) 600 cm-1. Values atω ) 0 are given by the
limiting expression 4S(λ/Λ)kBT. (b) C′′(ω) for the Brownian oscillator
model has no temperature dependence. Shown here are its energy
dependence for three different values of the damping parameter. Curve
1, γ1 ) 60 cm-1; curve 2,γ1 ) 600 cm-1; curve 3,γ1 ) 6000 cm-1.
The resonances in curve 1 are centered at 400 cm-1 and have peak
values that are 8.6 times the peak values of curve 2.

λ ) 1
π ∫0

∞
dω

C′′(ω)
ω

(3.10)

∫0

∞ dx

ax4 + bx2 + c
) π

2xc(b + 2xac)
(3.11)

Jj(ω) ≡ π

2
∑

n

cnj
2

mnωn

δ(ω - ωn) (3.12)

Jj(ω) ) ηω ) mjγjω (3.13)
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is also related to the damping kernelγ(t) by

Therefore, for Ohmic dissipation eq 3.13 follows. In reality,
the spectral densityJj(ω) falls off for large ω, reflecting the
microscopic memory time scales for inertia effects in the bath.
Therefore, a realistic damping coefficientγj(ω) will not be
frequency-independent. One usually assumes the spectral density
function behaves asωs with s > 0 at low frequencies with a
high-frequency cutoffωc. The s ) 1 case is the Ohmic bath,
and thes < 1 ands > 1 cases are named sub-Ohmic and super-
Ohmic baths, respectively.

Consider pure liquid water as an example. Molecular dynam-
ics has been applied to water to compute the velocity spectrum
which reveals the density of normal modes of a solvent.26 It is
found that the velocity spectrum of pure liquid water has a low-
frequency band near 50 cm-1 that extends to several hundred
wavenumbers corresponding to hindered translation, a broad
region around 1300 cm-1 corresponding to libration, a region
around 1700 cm-1 due to bending modes, and a high-frequency
region near 3700 cm-1 due to stretching modes of water
molecules. Because solvent motion is responsible for friction,
corresponding features are found in the friction spectrum, which
displays a strong frequency dependence.27

For frequency-dependent damping, it is convenient to define
γj j(ω) through analytical continuation of the Laplace transform
of the damping kernelγj(t):

For example, the Drude-regularized damping kernelγj(t) has a
memory timeτD ) 1/ωD:

Then one obtains

By analytical continuation,γ̃j(ω) is no longer real. In factΣj(ω)
in section II is equivalent to the imaginary part ofγ̃j(ω) defined
by analytical continuation ofγj(s):

From eq 3.17, the imaginary part ofγj is smaller by a factor of
ω/ωD than its real part

Such a model for non-Ohmic dissipation is also used recently
in modeling quantum control of dissipative systems.28 Finally
we point out that eq 3.10 is again satisfied for the damping
kernel eqs 3.18 and 3.19, with a memory timeτD, as for the
Ohmic dissipation:

IV. The KS Temperature in Steady-State Spectra

As an illustration of the application of the Brownian oscillator
model, in Figure 3 we show the absorption line shapes for the
continuum model (a, b) and for a mildly overdamped Brownian
oscillator model (c, d). Each is presented for two temperatures
sufficiently different to produce qualitatively distinct spectra.

Figure 3. Absorption spectrum predictions of the Brownian oscillator model. (a, b) The mode continuum model with density-of-states parameters
Λ ) 4000, 400, and 40 cm-1, at 75 K and 500 K, as marked. (c, d) The multimode model with one mode having parameters ofω1 ) 400 cm-1

andγ1 ) 40, 400, and 4000 cm-1, again at the same two temperatures. Ordinate in arbitrary units.

Jj(ω) ) mjω∫0

∞
γ(t)cos(ωt) dt (3.14)

γj j(ω) ≡ γ̂j(s ) -iω) (3.15)

γj(t) ) γωD exp(-ωDt) (3.16)

γ̂j(s) )
γωD

ωD + s
(3.17)

γj(ω) ) Reγ̃j(ω) (3.18)

Σj(ω) ) Imγ̃j(ω) (3.19)

γ̃j(ω) )
γωD

ωD
2 + ω2

(ωD + iω) (3.20)

∫0

∞ γj(x) dx

x2γj(x) + [1 + xΣj(x) - x2]2
) π

2
(3.21)
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The intermediate damping parameter is varied among the
pictures in order to make the intermediate case interesting. (A
value of 400 did not produce anything distinctive in cases b, c,
and d.) The two models make similar predictions at largeγ1

(smallΛ) because, as explained above, the correlation function
(eq 3.8) is then approximately of the same form as that of the
multimode model, withΛ ) ω1

2/γ1. Our parameters have been
chosen to satisfy this. At the same time, the line shape
approaches a Gaussian. From Figure 3, it is readily appreciated
that the effective density of states represented byC′′(ω) is
appearing as a convolved sideband on narrow spectral features,
and that any narrow features are washed out by either large
damping or high temperature.

In Figure 4, the fwhm (full-width at half-maximum) is plotted
as a function of temperatureT for a mildly overdamped case
(γ1/2ω1 ) 3.33). The line width grows with the temperature.
The solid line is a superposition of computed cases, one for
Ohmic damping and one for non-Ohmic (ωD ) 6000 cm-1),
illustrating the independence of fwhm on this parameter. The
dashed line is a fit to 67.348xT, illustrating the usualxT
dependence atT g pω1/2.

In Figure 5, complete results are shown for absorption profile,
emission profile, KS functionF, and KS spectral temperature
T*. The ambient temperature is 300 K, and parameters are
chosen to mimic the principal line of a typical room-temperature
dye molecule spectrum. What is seen here is typical of a series
of calculations. It was found that the expected resultT*(ω) )
T could be realized only at the cost of numerical adjustments.
These adjustments were sometimes capable of producing a
completely flatT*(ω) curve, but departures and divergences
outside the Stokes region were very common. These divergences
(near(1500 cm-1 in Figure 5) naturally should not be present
in such an equilibrated case and they appear to be artifacts of
the numerical calculation, as discussed in Appendix B. Despite
these difficulties, the computedT* in the central Stokes region
(∼ -500 to +500 cm-1) very closely matches the ambient
temperature.

We now turn our attention to underdamped Brownian
oscillators and the results shown in Figures 6 and 7. To elaborate
a bit further on the case of underdamped oscillators at low
temperatures, consider the completely undamped oscillators at

zero temperature with only the zero number state occupied in
the ground-state manifold. The weak-coupling limit at zero
temperature has an absorption line shape given by13,14

where Sj ) λj/ωj is again the Huang-Rhys factor. As the
temperature is increased, higher number states in the ground-
state manifold are occupied. The summation in eq 4.1 is replaced
by13

where nj ) 1/[exp(âpωj) - 1], In(x) is the modified Bessel
function, and the sum overn is extended to negativen as
compared to eq 4.1. If damping is further added, the delta
function peaks in eq 4.2 acquire a finite width. Thus the main
features in Figures 6 and 7 are obtained. The envelope of the
phonon sidebands (with indexn) represents the effect of adding

Figure 4. Full width at half-maximum (fwhm) of the absorption line
shapes as a function of temperature. The multimode model is used with
parametersω1 ) 600 cm-1, γ1 ) 4000 cm-1, andλ1 ) 600 cm-1. The
solid line is a superposition of two computed cases, one for Ohmic
damping and one for non-Ohmic (ωD ) 6000 cm-1). The dashed line
is a fit to 67.348xT.

Figure 5. Absorption, fluorescence, andT*(ω) spectra for an over-
damped case of the multimode oscillator model, parameters of the one
mode beingγ1 ) 6000 cm-1, λ1 ) ω1 ) 300 cm-1, andT ) 300 K.
Here the parameterΛ1 ) ω1

2/γ1 ) 0.05λ1 ) 15 cm-1. Energy is
measured from the 0-0 level. Absorption, fluorescence, andF are on
arbitrary scales.

Figure 6. Absorption and fluorescence line shapes plotted (arbitrary
scale) with the spectral temperatureT*(ω) for an underdamped and
Ohmic case withγ1 ) 40 cm-1, λ1 ) ω1 ) 600 cm-1, andT ) 500 K.
Note that the spectral temperature is closely equal to the ambient despite
the usual singularities that are becoming evident near(2000 cm-1.
Energy is measured from the 0-0 level.

∑
n)-∞

∞ e-SjSj
n

n!
δ(ω - ωeg + nωj) (4.1)

e-Sj(2nj+1) ∑
n)-∞

∞

exp(nâpωj

2 )In[2Sj(2nj + 1)]δ(ω - ωeg + nωj)

(4.2)
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a finite width proportional ton which smears out the structure
at large phonon numbers.

Included with the line profiles in Figures 6 and 7 are the
computed spectral temperaturesT*(ω). Despite the rich structure
in the absorption and emission, we have obtained a rather flat
T*(ω) in the Stokes region where bothσBO(ω) and IBO(ω) are
at a significant fraction of their maximum value. In Figure 6,
the high-frequency oscillations ofT*(ω) are a numerical artifact,
but we call attention to the temperature scale. This is one of
the most successful cases in terms of reproducing the KS
theoretical result.

We calculate the spectral temperature formally in the same
manner as we did for the Ohmic case. In Figure 7, we display
T*(ω) for a non-Ohmic bath withωD ) ω1. The spectral
temperatureT*(ω) still equals the ambient temperatureT and
is rather flat in the Stokes region. The numerical problems were
a bit more severe in this case, and the smoothing obviously
required was deliberately not done in order to illustrate this. It
appears that as long as a relaxed fluorescence spectrum is used
for T*(ω), regardless of the process by which the relaxation
occurs and the time it might take, we can expect to obtainT*
) T. In practice, steady-state fluorescence spectra are equivalent
to the average spectrum seen over the lifetime of the excited
state. We now turn to the time-resolved fluorescence case where
it is a priori the case that equilibrium has not occurred.

V. Time-Resolved Fluorescence
A. Basis of a Time-Dependent Theory.The KS theory will

be extended to the time-resolved case by a simple modification
of eq 1.2, as follows:31

Assuming no time dependence in the absorption coefficient
may limit T*(ω,t) to cases in which ground-state depletion is
negligible. The normal absorption spectrum is the natural
reference spectrum for the formalism because of its important
role in relating microstate transition probabilities between the
excited and ground manifolds. It is important to note, however,
that the application of eq 5.1 to single manifolds is still limited
to cases in which the excited state is not kinetically coupled to
other states.

As pointed out earlier,31 a somewhat more general time-
dependent Kennard-Stepanov functionF could be constructed
by including time dependence in the absorption coefficient,
ensuring that the set of fluorescence transitions would precisely
match the corresponding absorption transitions. It is not clear
that such a broader definition would be useful. If the absorption
coefficient is significantly time dependent, then the experiment
has reached a nonlinear regime and more than one pair of
electronic levels may be involved in each of the spectra, a degree
of complication unwelcome at this early stage of the theory.
Furthermore, it is unlikely that simultaneous fluorescence and
pump-probe measurements will be available for the same
sample. Only in the context of demonstrating the equilibrium
KS relation is it essential that the fluorescent and absorptive
transitions match precisely; maintaining the ground-state absorp-
tion as a reference spectrum is reasonable in the absence of a
precise non-equilibrium theory. We therefore do maintain it and
caution that our time-dependent temperature analysis should be
applied only in nonsaturating excitation conditions.

B. Formalism. To calculate the time-resolved fluorescence,
we use the third-order response functions. At third order in the
radiation field, the polarization is given by

Here the response functionS(3)(t3,t2,t1) is a sum of four terms
(ref 14, p 122)

with

These results are exact for the Brownian oscillator model. For
anharmonic systems such as a chromophore coupled to a spin
bath (the TLS model),29,30 third-order responses cannot in
general be expressed in terms of linear response functions. In
the weak-coupling limit, eqs 5.4 are found to be obeyed to the
second-order in the cumulant expansion in the TLS model, and
higher order corrections have been derived.29

Assume that the full electric fieldÊ(t), including the classical
excitation field and the emitting field, takes the form

with

Figure 7. Absorption and fluorescence line shapes plotted (arbitrary
scale) with the spectral temperatureT*(ω) for an underdamped non-
Ohmic case withγ1 ) 40 cm-1, λ1 ) ω1 ) 600 cm-1, ωD ) 600 cm-1

andT ) 500 K. In this best case the extreme sensitivity to numerical
computation is illustrated. Comparing the temperature scale with that
of Figure 6, this is seen to be much less accurate. Nonetheless, theT*
excursions from ambient are similar and have singularities near(2000
cm-1. Energy is measured from the 0-0 level.

T*(ω,t) ) - [kB

p
d

dω
ln

I(ω,t)

σ(ω) ]-1

(5.1)

P(3)(r ,t) ) ∫0

∞
dt3∫0

∞
dt2∫0

∞
dt1S

(3)(t3,t2,t1)

E(r ,t - t1)E(r ,t - t2 - t1)E(r ,t - t3 - t2 - t1) (5.2)

S(3)(t3,t2,t1) ) (i/p)3θ(t1)θ(t2)θ(t3)∑
R)1

4

[RR(t3,t2,t1) -

RR
* (t3,t2,t1)] (5.3)

R1(t3,t2,t1) ) exp[-g(t1) - g*( t2) - g*( t3) + g(t1 + t2) +
g*( t2 + t3) - g(t1 + t2 + t3)]

R2(t3,t2,t1) ) exp[-g*( t1) + g(t2) - g*( t3) - g*( t1 + t2) -
g(t2 + t3) + g*( t1 + t2 + t3)]

R3(t3,t2,t1) ) exp[-g*( t1) + g*( t2) - g*( t3) - g*( t1 + t2) -
g*( t2 + t3) + g*( t1 + t2 + t3)]

R4(t3,t2,t1) ) exp[-g(t1) - g(t2) - g(t3) + g(t1 + t2) +
g(t2 + t3) - g(t1 + t2 + t3)] (5.4)

Ê(t) ) 2E1(t) cos(ωext) + Ê2 + Ê2
† (5.5)

Ê2 ) -iE2c2 exp(-iωt) (5.6)
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wherec2 destroys a photon with frequencyω. The time-resolved
fluorescenceS(ωex,ω,t) is given by the expectation value of the
commutator

which represents the time derivative of the photon numbers.
To fourth order in the radiation-matter coupling strength,
S(ωex,ω,t) is calculated from

provided that the temporal envelope of the excitation pulse has
a Gaussian form:

In the case when the pump pulse is narrow enough to be
approximated by a delta function (impulse excitation), the time-
resolved fluorescence is independent ofωex:

Consider the overdamped Brownian oscillator model at high
temperatures as an example. The line shape functiong(t) can
be approximated by

with its imaginary part much smaller that its real part. Then
the third-order response functionR1(t3,t,0) is simply

Carrying out the Fourier transformation with respect tot3, one
can easily see the time evolution of the dynamic Stokes shift.
In particular, noticing that

the relaxed fluorescence is recovered ast f ∞:

At t ) 0, the fluorescence profile equals the absorption profile

In fact eqs 5.14 and 5.15 hold for all forms ofg(t) because the
asymptotic behavior ofg(t) in eq 5.13 is easily derived from
eq 2.23.

The effect of excited-state lifetime can be taken into account
by adding an imaginary frequency toω:

In the case of a delta-function excitation pulse,

C. Predicted Time-Dependent Spectra.Figure 8 shows the
spectral temperature associated with emission from a mildly
overdamped Ohmic system after excitation with aδ(t) pulse.
The parameters are shown in the caption. The temperatures at
the center of the energy range (ω ) ωeg

0) are undoubtedly the
most meaningful, since the numerical difficulties found in the
steady-state case are present and sometimes amplified here (see
Appendix B). These temperatures exhibit a complex decay that
is at least triphasic, with time constants 44.6 fs, 12 fs, and
ultrashort.

Because of the assumed spectrally broad excitation, the
fluorescence associated with the temperature series is broad and
its width changes little, unlike the case of narrow excitation
treated earlier.31 The shapes are nearly Gaussian. The fluores-
cence exhibits a time-dependent Stokes shift in which the peak
energy can be fit well to the expression∆ωSS ) 725.6[1 -
exp(-t/51.2)] cm-1, wheret is in fs. The rms deviation of this
fit is 15 cm-1, most contributions coming from values at small
times. This empirically determined time dependence is quite
reasonable, because it is of the form known exactly in the high-
temperature overdamped limit,32 where the decay constant is
Λ () ω1

2/γ1 in our case)) 100 cm-1 ) 1/(53.1 fs).
Figure 9 shows the effect of non-Ohmic dissipation with

conditions otherwise the same as in Figure 8. There are three
significant differences from the Ohmic case. First, the shapes
of the temperature curvesT*(ω,t) are radically altered; second,
the terminal Stokes shift is considerably smaller; and third, the
Stokes shift is not monotonically rising. There is a brief pause
at approximately 30 fs, as shown in Figure 10. Smoothing this
pause, the Stokes shift can again be fitted with the reasonable
form ∆ωSS ) 653[1 - exp(-t/50.1)] cm-1. Both terminal
Stokes shifts are smaller than that which would occur in the
overdamped high-temperature limit, 2λ ) 800 cm-1.

D. Limitations. Attempts to extend the calculations to the
underdamped oscillator failed becauseI(ω,t) itself began to
develop negative values whose magnitude was much too large
to be finessed with the methods sketched in Appendix B. As
an example, for an Ohmic case withγ1 ) 100 andω1 ) 100
cm-1, a strong negative feature appears at 30 fs atω ) ωeg

0 +
400 cm-1, preceded by a rapid drop in the positive peak
originally appearing at that energy. No similar phenomenon

Ŝ) (i/p)[Ĥ(t),c2
†c2] (5.7)

S(ωex,ω,t) ) 1
2π

Re∫0

∞
dt1∫0

∞
dt3R1(t3,t,t1) exp[-ω2t1

2 +

i(ωex - ωeg
0
)t1 + i(ω - ωeg

0
)t3] (5.8)

E1(t) ) E1 exp(-ω2t2) (5.9)

S(ωex,ω,t) ) 1
2π

Re∫0

∞
dt3R1(t3,t,0) exp[i(ω - ωeg

0 )t3] (5.10)

g(t) ) 2λ
pâΛ2

(e-Λt + Λt - 1) - i
λ
Λ

(e-Λt + Λt - 1) (5.11)

R1(t3,t,0) ) exp[i2Im[g(t) - g(t + t3)] - g*( t3)] (5.12)

lim
tf∞

Im[g(t)] ) λt (5.13)

S(ωex,ω,t ) ∞) ) I(ω) (5.14)

S(ωex,ω,t ) 0) ) σ(ω) (5.15)

S(ωex,ω + i/τe,t) ) 1
2π

Re∫0

∞
dt1∫0

∞
dt3R1(t3,t,t1)

exp[-ω2t1
2 - t3/τe + i(ωex - ωeg

0 )t1 + i(ω - ωeg
0 )t3] (5.16)

S(ωex,ω + i/τe,t) ) ∫-∞

∞
dt3R1(t3,t,0) exp[-t3/τe +

i(ω - ωeg
0 )t3] (5.17)

Figure 8. T*(ω) derived from the steady-state absorption spectrum
and the time-resolved fluorescence spectra (at the times shown on the
diagram). The horizontal line is the ambient temperature, chosen here
to correspond to the value ofλ1 ) ω1 ) 400 cm-1. Other parameters
areγ1 ) 1600 cm-1 andωD ) 40,000 cm-1. The relatively large value
of ωD ensures near-Ohmic damping. The divergences inT*(ω) are
discussed in the text. It is believed that the temperature values in the
central Stokes region (-500 to 500 cm-1) are the most significant.
Energy is measured from the 0-0 level.
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occurs on the low energy side. The problem could not be traced
to numerical accuracy and undoubtedly represents the failure
of the present formalism to produce strictly observable signals.
Using eq 5.7 generates a “bare” signal33,34 that is not restricted
to positive values. At small damping the importance of using
appropriate gating functions to produce a physically observable
signal has become paramount. An extension of our work in this
direction is beyond the scope of the paper but represents a
possibly interesting avenue for future model calculations.

VI. Summary

The Brownian oscillator model has been widely applied to
solvent-solute systems. However, the absorption line shape and
the relaxed fluorescence line shape of the model have not
heretofore been examined in the framework of KS theory. Here
we show in a numerical context that the KS relation holds
regardless of system-bath coupling strength and bath memory
effects if absorption and fluorescence line profiles follow eqs
2.5. We also find that the KS temperature behaves qualita-
tively in the same manner as a real temperature of the excited
manifold, being large over the Stokes region at early times after
excitation and dropping to ambient after characteristic relaxation
times.
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Appendix A. Closed Expressions for the Line Shape
Function for the Overdamped Brownian Oscillator
Spectral Density

For future reference it is useful to note that the line shape
functiong(t) for the Brownian oscillator model may be written
in closed form in the case of the simplified correlation function
of eq 3.9. Following the notation and development of Mukamel
(ref 14, pp 216-217),g(t) can be written

The meromorphic function coth(âpω/2) may be expanded as a
summation over its poles which are the Matsubara frequencies
for bosons:13

with

This allows representingM′(t) and∆2 in terms of the Matsubara
frequenciesνn by means of contour integrations

Contour integrations also yieldM′′(t):

and eq A.5 reduces to an identity. The line shape functiong(t)
is therefore obtained from eq A.1 as

Figure 9. Same as Figure 8, withωD ) 400 cm-1. In this non-Ohmic
case the drop in temperature in the central Stokes region appears to be
faster, although the Stokes shift (not shown) has virtually the same
time constant as in the Ohmic case.

Figure 10. After pulse excitation, the emission peak shifts toward the
red. In the Ohmic-damping case corresponding to Figure 8 (shown with
solid squares), the computed rise is monotonic. In the non-Ohmic-
damping case corresponding to Figure 9 (shown with triangles), a pause
interrupts the rise at approximately 20 fs.

g(t) ) ∆2∫0

t
dτ2∫0

τ2dτ1M′(τ1) - iλ∫0

t
dτ[1 - M′′(τ)] (A.1)

M′(t) ) 1

π∆2 ∫0

∞
dωC′′(ω)coth

âpω
2

cosωt (A.2)

M′′(t) ) 1
πλ ∫0

∞
dω

C′′(ω)
ω

cosωt (A.3)

∆2 ) 1
π ∫0

∞
dωC′′(ω)coth

âpω
2

(A.4)

λ ) 1
π ∫0

∞
dω

C′′(ω)
ω

(A.5)

coth
âpω

2
)

2

pâ
∑

n

1

iνn - ω
(A.6)

νn ) 2nπ
pâ

n ) 0, (1, (2, ... (A.7)

∆2 ) λΛcot
pâλ

2
+

4λΛ

pâ
∑

n

νn

νn
2 - Λ2

(A.8)

M′(t) )
1

∆2(λΛcot
pâλ

2
e-Λt +

4λΛ

pâ
∑

n

νne
-νnt

νn
2 - Λ2) (A.9)

M′′(t) ) e-Λt (A.10)

g(t) ) g′(t) + ig′′(t) (A.11)
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The summation in eq A.12 can be carried out and results are
expressed in terms of special functions:29

whereν ) 2π/pâ, γΕ is Euler’s constant (∼0.577216),Φ(z,s,a)
is the Lerch transcendent,35 and Ψ[n](z) is the digamma
function.35,36

Appendix B. Numerical Methods and Accuracy

Evaluation of Integrals and Basic Accuracy Tests.The
computational pathway is to perform the quadratures necessary
for C′′(ω), g(t), and the spectra, in that order. Each was done
with the simplest trapezoidal method. The aliases of “infinity”
in each integral were validated by inspecting the range of the
integrands and minimizing the effect of varying their values.
Integrations were terminated when the contribution of the last
bin would have been less than a fractionδ of the accumulated
value, whereδ was decreased until it had no more effect, often
to as small as 10-10. Similarly, the integration interval was
varied, the number of bins lying typically between 4000 and
20 000.

In the case ofC′′(ω), an automatic test was possible through
eq 3.10, which connects the model parameters toλj. In all of
our examples, parameter values such thatλj ) ωj were used.
Figure 1 provides an example: since the integrand of eq 3.10
contains 1/ω, the range 0-4000 cm-1 would be adequate for
curve 3, but certainly not for curve 1 and probably not for curve
2. The C′′(ω) test was satisfied to within 1% in all cases.
Subsequent integrands that containC′′(ω) contain a factor 1/ω2.
Therefore the low-frequency contributions to the integral are
most relevant, and the cutoff produces a much better than 1%
accuracy.

The complexity introduced by a sequence of three ap-
proximate integrations makes a precise numerical accuracy
estimate rather difficult. With the exception of certain time-
resolved emission cases to be discussed below, the predicted
line shapes themselves present a very reasonable picture on
physical grounds. However, processing the spectra by the KS
formalism brings out some interesting problems.

Anomalies in the KS Function. In computing Brownian
oscillator model steady-state spectra, one makes the assumption
that emitting states are at thermal equilibrium in the excited
manifold. It follows thatF(ω) should be linear andT*(ω) should
be equal to ambientT at all ω. This is hardly ever fully the
case, and the results of a raw calculation are frequently
discouraging (Figure 11a). Attempts to remove divergences,
which sometimes occur in many places, by increasing all
accuracy parameters to the severest practical limits failed. It

was noticed, however, that all the spectra had a small and
frequency-independent offset from zero in regions where they
were expected to be negligible, i.e., on the very low energy
side of absorption bands and the high energy side of emission
bands. This offset was little affected by all of the accuracy
adjustments and appeared therefore to be an intrinsic difficulty
with the trapezoidal integration. Subtraction of a constant offset,
a single parameter applied to both fluorescence and emission,
dramatically changed the singularities and in some cases
completely removed them. This is illustrated in Figure 11b,
which is a plot of the KS temperature for the case of Figure
11a but including the offsets. It is an empirical patch the need
for which and the success of which are not currently explained.
After using this empirical patch, in almost every case within a
range(λ around the zero-zero energyT*(ω) can be made
closely equal toT, as seen in Figures 6 and 7. The patch is of
purely computational interest, because the associated spectra
are unchanged except for the small offset.

The Time-Resolved Case.In an explicitly nonequilibrated
emitting system, the standard KS relation cannot apply, but as
argued in section V and earlier,31 it may be used to “project
out” the departures from equilibrium. There must be no
saturation and no competing processes such as transfer to another
excited electronic manifold. Given all this, the connection with
the normal KS calculation is clearly that as the emission
spectrum approaches the steady-state spectrum,T*(ω) should
flatten out. Since the time-resolved calculation here used the
same algorithms as our steady-state, the same offset anomalies

Figure 11. An example of divergences occurring inT*(ω) despite
reasonable appearance of spectra. In this Ohmic caseλ1 ) ω1 ) 600
cm-1, γ1 ) 400 cm-1, andT ) 500 K. Absorption and emission profiles
are shown in the usual way. (a) KS temperature derived directly from
computed spectra. The vertical lines are a true representation ofT* as
it drops to negative values, passing through singularities resulting from
the extrema inF. (b) KS temperatures computed with constant offsets.
In units of the limiting value of the absorption spectrum at the lowest
energy, the offsets are 0.920, 0.9259, and 0.940 (T1*, T2*, T3*,
respectively). For these cases,F is omitted because it is virtually a
straight line. Figure 11a corresponds to an offset of 0.00.

g′(t) )
λ

Λ
cot

pâΛ

2
(e-Λt + Λt - 1) +

4λΛ

pâ
∑
n)1

∞ e-νnt + νn - 1

νn(νn
2 - Λ2)

(A.12)

g′′(t) ) λ
Λ

cot
πâΛ

2
(e-Λt + Λt - 1) (A.13)

g′(t) ) λ
Λ

cot
pâΛ

2
(e-Λt + Λt - 1) +

λ
πΛ[2γE + 2log(1- e-νt) + e-νtΦ(e-νt,1,

ν - Λ
ν ) +

e-νtΦ(e-νt,1,
ν - Λ

ν ) + (1 - Λt)Ψ[0](ν - Λ
ν ) +

(1 + Λt)Ψ[0](ν + Λ
ν )] (A.14)
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and therefore similarT*(ω) anomalies were found. To prevent
too many unrelated fitting parameters, we found the best offset
by minimizing the mean square deviation ofT*(ω) from T in
the Stokes region for the emission computed at the longest time
and used the same offset for all spectra. This generally resulted
in elimination of all but the usual large divergences at the
extremes of the spectrum (Figures 8 and 9).

In the case of small damping, negative-going fluorescence
at small times appeared to be unavoidable, as discussed in the
text.
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