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The expression of equilibrium single-bond interatomic distance,dM-X, of any M-X bond (homonuclear or
heteronuclear, ionic, covalent, or metallic) (Ganguly,J. Am. Chem. Soc.1995, 117, 2655) in terms of core-
atomic lengths is examined in terms of the constraints of an atom-bond transition. These include the
following: (i) a description of bonding components of the hydrogen molecule that are applicable to all bonds;
(ii) the use of a universal equilibrium chemical potential,µuniv ) 0; (iii) spin-charge conversion and a justification
for the choice of valence s electron orbital radius as the core length; (iv) an examination of the atom-bond
transition in terms of Thomas-Fermi screening models applied to the insulator-metal transition; (v) bond
lengths and direction of polarity; (vi) bond energy of the hydrogen molecule and the maximum excitonic
binding energy as the limiting values of the standard heats of formation per X atom in MXn compound in gas
and solid phase. The importance of valence s electron orbital radius,rs, as a relevant core atomic length in
atom-bond transition and in determining ionicity is indicated.

I. Introduction
Transferable atomic lengths1-4 continue to be used with

increasing confidence for estimating interatomic distances as
well as obtaining coordination numbers ever since the beginning
of the last century when interatomic distances could be measured
with some accuracy. Much of our early, eminently successful
“chemical intuition”, involved in manipulating the properties
of molecules and solids, has been indeed based on the inter-
pretation of distances in equilibrium structures in terms of some
standard distances of model compounds, real or imagined. An
exposition of interatomic bond-distances in terms of simple
transferable atomic lengths is eminently desirable, especially
if, in doing so, additional insights are obtained on the direction
of polarity of a chemical bond as well as its bond order, bond
energy, and chemical reactivity. However, there seems to exist
a fundamental problem in obtaining information about a chem-
ical bond formed between two atoms, by using core, isolated-
atom properties. The atom-bond transition involved in the
chemical bonding between two atoms is quintessentially the
most fundamental extranuclear quantum phase transition with
the creation of an “energy gap” between the atomic and bonding
states. Because of this it may not be possible to obtain infor-
mation oninteratomicproperties by a renormalization of our
understanding ofintra-atomicprocesses.5 We venture to report
in this communication the conditions under which such a
description may be permitted. In doing so, we shall use already
available core atomic properties calculated using all of the rig-
orous paraphernalia available to density-functional/quantum-
chemical methods.6,7 The application of these core atomic
properties to describing interatomic bond distances, however,
will rely on simple semiclassical concepts derived from early
twentieth century Bohr radius8,9 and Thomas-Fermi method-
ologies.10,11

So far, the theoretical treatment of bonding in model
compoundsscovalent, ionic, metallicsis based on an energy-

eigenValue-based, HΨ ) EΨ notion of seeking for every
molecule12 a know-all, complex-space wave function and relying
on an energy minimization principle to obtain stationary states.
Once the stationary state is obtained, the evaluation of other
properties is expected to follow. By this method, the eigenvalues
obtained for simple molecules can eventually be so accurate13a,b

that experiments have to be refined13d to match theory sometimes
instead of the other way around, as in the case of the hydrogen
molecule.13a,b Modern refinements of the wave function13c of
molecular hydrogen aim at removing inaccuracies due to the
adiabatic approximation! However, an “uncertainty” principle
operates, with the more accurate wave function usually being
less general. After all, the greater-than-50-term wave function
for molecular hydrogen cannot be transferred to chemical bonds
of hydrogen with other elements with equal accuracy. In
addition, there is the disconcerting disclosure that the accurate
ground-state wave function of the hydrogen molecule has little
to do with pure hydrogen 1s atomic orbital and requires
significantly large contributions from what would be highly
excited states.

The inclusion of “ionic” states for the description of
“covalent” bonding further complicates any instantaneous real-
space understanding of bonding, even if the dynamics of
“resonant states” may be assumed to be understood. Such ionic
states are notionally important for the understanding of Pauling’s
persuasive arguments14 that interatomic distances depend on the
nature of the bonding between the atoms. In Pauling’s approach,
the general wave function,Φ, of a heteronuclear M-X bond is

with the values ofq/p andr/p being such that the total energy
of the molecule is minimized. Nonzero values of the coefficients
q and/orr imply the introduction of ionicity or“ partial ionic
character”. It is now becoming apparent that there is an inherent
difficulty in understanding such“ partial” ionic character. Garcia
and Cohen15 have pointed out that“eVen if the total charge
density were known at eVery point in the cell, there would be
no unique way to decompose it into atomic contributions”.
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Φ ≡ pΨM-X + qΨM+-X- + rΨM-X+ (1)
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Meister and Schwarz16 have stated, while analyzing the principal
components of ionicity, that although there is possibly such a
thing as ionicity,“the projection of charge-density-distribution
into atomic point charges is not unique and that it is not possible
to define such a term in precise mathematical terms”. In this
case, the understanding of the “ionicity” need not require a wave
function for the bonds as in eq 1, but rather may require an
understanding of the rudimentary atoms themselves that con-
stitute a bond, in a “child-is-the-parent-of-a-marriage” sense.
This seems to be indicated when one considers transferable
atomic quantities.

In a break from the conventional description of interatomic
distances, Ganguly17 finds empirically that all (covalent, ionic,
metallic) interatomic single bond distances,dM-X, at standard
conditions (atmospheric pressure and room temperature) are
given by the sum of two lengthsCR+ andCR-, associated with
states arising from the charge-transfer of a hole and electron,
respectively.CR+ andCR- are given by universal functions of
a single, core, atom-specific length-scale,rcore. Thus

with C( and D( being universal constants (or nearly so), for
standard conditions. In this case,dM-X is thus a sum of atom-
specific length derived from the core of an isolated atom and
an atom-independent bond-length of the hydrogen molecule in
a manner resembling closely the classical chemists’ “ball” and
“stick” model. The atom-independent bonding part, arising from
D(, is the “stick” and C( rcore is the atom-specific “ball”
component. Such a development is important in understanding
the atom-bond transition, since it will be convenient if the
actual part of the interaction that contributes to interatomic
bonding, the “stick”, is universal and atom-independent, being
that in the hydrogen molecule. This is implied in eq 2. It will
then only remain to renormalize all atom-specific bonding
processes in terms of core atomic properties or lengths,rcore.
One could then anticipate the universality of the quantities,C(,
as well as the inequality,C+ < C-, since these may not depend
on the details of the bond formation. This simple approach is
desirable to facilitate an ab initio understanding of large systems,
which have their own computational-time paradoxes18,19 em-
ploying the present quantum-computational methods.

In our efforts to obtain such an understanding, we make some
new proposals regarding interatomic interactions, which are
seemingly counterintuitive, at first. The more important of these
in the context of universality are (i) the description of the
interatomic distance of the hydrogen molecule using a simple
Bohr radius approach to charged states. (ii) the proposal of an
universal chemical potential,µuniv ) 0, (iii) the conversion of
“spin” to “charge” and the consequent importance of purely
electrostatic interactions; and (iv) the singular role of core atomic
valence s electron lengths alone in determining the dimensions
of the “ball”.

Our aim is to propose, some simplifications to the approaches
of understanding chemical bonding and reactivity in terms of
atomic sizes and distances in a way that yields the direction of
polarity or the “ionic character” of a bond without requiring an
evaluation of the wave function in eq 1. We present physical
arguments which give quantifiable support for the model in
which the bond distances of elements seem to be describable
simply by a Thomas-Fermi-like kernel and the bond in the
hydrogen molecule. These arguments are qualitative, concerning

themselves with limiting behavior rather than details. They seem
to be appearing for the first time in the literature in the context
of chemical bonding. Otherwise, they are borrowed from well-
known and well-established phenomena in other areas of
condensed matter science, even if diverse areas may be involved.
We find that the assumptions we make are accurate in principle
and not, in any way, incompatible with the “new” Schro¨dinger
equation based quantum mechanical approaches.

II. Interatomic Distance in Hydrogen Molecule

The hydrogen molecule has to be a prototype for the chemical
bond since there are no core electrons and we may assumercore

) 0 in eq 2. We will then be concerned with understanding the
origin of the lengthsD+ andD- in eq 2, remembering that these
length scales are to be transferable for all bonding situations.
Atom-specific wave functions will then require to be simplified
in order to incorporate such a universality. However, what is
true for the description of bonding of hydrogen atoms in the
hydrogen molecule will also be required to be true for the other
atoms in other bonds. The simplest of these, in the context of
eq 2, is to consider the creation of charged states by the transfer
of a charge and its hole. We use the simplest model available,
the Bohr model, for this purpose. The Bohr model with its
planetary orbits is known to have failed for the hydrogen
molecule.9,22However, our approach is novel since we treat the
hydrogen molecule as being made up of two charge-transfer
states, each of which may be treated as Bohr-atom-like
quasiparticles associated with the transfer of an electron and a
hole. We find that a close approximation to the interatomic
distance of the hydrogen molecule is obtained thereby.

The Bohr model for the hydrogen atom begins by obtaining
a first Bohr radius,aH, which is then crucial in obtaining the
energies.12,20 Yet aH, a “size eigenvalue”, has little application
to the explanation of observables involving isolated hydrogen
atom itself, even if it remains crucial in defining length scales
in dielectric medium.21 On the other hand, the concept of a Bohr
radius is expected to be useful in the context of interatomic
distances. The critical aspect of the Bohr model is not the actual
existence of circular planetary orbitals, but the quantization of
momentum as,p ) pk ) p/r, the law of conservation of energy,
E ) T + V, and the steady-state virial theorem,E ) -T ) V/2.
The model is therefore directly applicable to any Bohr-atom-
like situation built up of charges and in a steady state, and in
which one requires the mass,m, of the particle for calculating
the kinetic energy term,p2/2m, as well as the charge on the
particle for obtaining the electrostatic Coulomb interaction term.

We consider two hydrogen atoms, HA
• and HB

• (HA and HB

being the positively charged nucleii) in the field of each other
such that there is a charge transfer23 (virtual or otherwise) of
an electron,e-, or a hole,h+. We postulate the formation of
quasiparticle charge-transfer states, HA[•(h+)] and HB[•(e-)]

with conservation of total energy, mass and charge. Such charge-
transfer states are precursors to bond formation. The interactions
of the atom, H•, with external charges take place in such a way
that the valence electron,•, of the neutral atom is treated as
being effectively a charge-compensated neutral electron,24,25eo,
with a mass,mo. The assumption of a “neutral” electron,eo, in
eq 3 simply implies that all of the three-body interactions
involving a nucleus, its electron, and the external charge have
been effectively renormalized such that we are left with only

dM-X ) CR+ + CR- (2a)

CR( ) C( rcore+ D( C+ < C- (2b)

HA
• + HB

• S HA[•(h+)] + HB[•(e-)] ≡
HA[(eoh+)] + HB[(eoe)-] (3)
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the interactions between a single extranuclear charge and that
of the nucleus. In HA[(eoh+)], a positively charged hole is
similarly coupled to another “neutral” electron to form a spinless,
singly positively charged electron-hole pair (eoh)+. In HB[(eoe-)],
the transferred electron,e-, is coupled to another “neutral”
electron, eo, to form a spinless, singly negatively charged
electron pair, (eoe)-. Here, (eoe)- and (eoh)+ of eq 3 constitute
the new Bohr-atom-like quasiparticles in the field of positively
charged nucleii, HB and HA, respectively, to form Bohr orbits.
The quasiparticle states (eoe)- and (eoh)+ are then treated in
the Bohr model with masses,mee andmeh, Bohr radii,aee

H and
aeh

H, and energies,Eee
tot andEeh

tot, respectively.
The mass,mee, of (eoe)- (or [•(e-)]) is assumed to be given

by 1/mee ) (1/mo + 1/mo) or mee ) mo/2, neglecting contribu-
tions from the nucleus. The “Bohr radius”,aee

H, of (eoe)- is
given by12,20

when ε ) 1. The Bohr radius,aee
H, is expected to be a

characteristic radius of the H atom in the presence of a negative
charge. Because of the repulsive Coulomb interaction between
the positively charged (eoh)+ and the nucleus, the energy for
the electron-hole pair, (eoh)+, at a distance,reh, from the nucleus
is given by

From energy minimization8 at equilibrium we have the equiva-
lent for the Bohr radius,aeh

H, of (eoh)+ given by

The negative sign of the Bohr radius is obtained from the
Bohr model for a repulsive sign of the Coulomb interaction and
a positive mass,meh. It emphasizes the positively charged hole-
like nature of (eoh)+ with a potential for contracting or “punc-
turing” the electron cloud of the partner. Negative values are
routinely used from the Shannon Tables3 for the size of protons.

The total energy,E(
tot of each of the charge-transfer particles

(eoe)- and (eoh)+ can be similarly calculated from the Bohr
model.20 We then obtain

From energy conservation in eq 3, we require5 Eee
tot + Eeh

tot )
2EH

tot ) -moe4/p2, or

such that

The important feature of these quasiparticles is that the sum
aee

H + aeh
H ) 1.064 Å - 0.355 Å ∼ 0.71 Å gives the

interatomic distance,26 dH-H, of the hydrogen molecule in terms
of fundamental constants to within 5% of the room-temperature
experimental value27 of ∼0.74 Å. From our novel application
of the Bohr model to the charge-transfer components constituting
the hydrogen molecule, we may now identifyaeh

H with D+ and
aee

H with D-. Now D+ andD- may be treated as fundamental
transferable length scales of states derived from the hydrogen

atom and involving charge-transfer of electron or hole (see
Figure 1). The important point that will be addressed later is
that these charge-transfer states, which are precursors to bond
formation, seem to define length scalessthe “stick”seven after
bond formation. They are also involved in defining the lengths,
dM-X, between M and X atoms (M may or may not be the same
as X) with a core length of the atom (the dimensions of the
“ball”) being added (Figure 2).

III. Universal Chemical Potential, µuniv ) 0

The chemical potential or electronegativity is constant
throughout an atom or molecule28-30 at equilbrium. If we
consider an assembly consisting of a large number of systems
in equilibrium, we could then expect that the equilibrium
chemical potential of the entire assembly is likely to have a

aee
H ) p2/meee2 ) 2p2/moe

2 ) 2aH ) 1.06 Å (4)

Eeh
tot ) (p/reh)2/2meh + e2/reh (5)

aeh
H ) -p2/mehe

2 (6)

Eee
tot ) -meee

4/2p2 ) -moe
4/4p2 (7)

Eeh
tot ) -3moe

4/4 p2 ) -mehe
4/2p2 (8) (8)

meh ) 3mo/2 (9)

aeh
H ) -2aH/3 ) -0.35 Å (10)

Figure 1. Diagram illustrative of the lengths associated with charge-
transfer components,D- and D+. Negative size ofD+ relative to
position of nucleus is schematically (and hopefully) shown by change
in sign of coordinates relative to that ofD-, as well as by the splitting
of the circle in the manner shown. The transferable size, (D+ + D-) )
0.74 Å is shown.

Figure 2. (a) Change of core length,rcore, to C+rcore and C-rcore

associated with positive and negative charges, respectively. (b) Il-
lustrating the interatomic distance,dM-X, of an M-X bond (M ) X in
this example) as a sum of two of two lengths,CR+ andCR-, which
are themselves obtained from eq 2 (see text) asCR( ) C( rcore + D(.
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universal value,µuniv. ) constant. Chemical reaction between
molecules or atoms then take place when the reactants are taken
out of equilibrium due to fluctuations or otherwise and have
the electronegativity-generating chemical potential condition,
µ * µuniv; they take place to restore theµuniv ) constant
equilibrium condition. The magnitude of this universal constant
at equilibrium has yet to be determined.

Some insights may be obtained from the density functional
formalisms. If we use the arguments of Komorowski,31 regarding
a neutral atom in equilbrium with a surface, then in the
Thomas-Fermi (TF) model10,32 one could expectµuniv ) µ-
(TF) ) 0. In density functional theory, the energy, Eυ (for the
given one-particle external potential,υ) and the density,F′, with
F′ g F, the true density, is obtained from the relationdE )
µdN + ∫FdVdτ, and the stationary principleδ{Ev[F′] - µN[F′]}
) 0. The chemical potential is then given by30,33

with the density,F, being used instead ofN, the number of
electrons. In the case of a chemical bond between two atoms at
equilibrium separation,req, in the stationary steady state, We
may write34

The energy of a chemical bond at equilibrium is a minimum
for a given charge at the given internuclear separation so that
we obtain (∂E/∂r)F(eq) ) 0 for the correct equilibrium density,
F(eq). Because of the variational principle in the Hohenberg-
Kohn formalism,35 which requires the densityF(r ) at the correct
equilibrium separationr(eq) to be such that the energy is
minimum, we have (∂E/∂F(r ))r(eq) ) 0. We would then obtain

provided

at equilibrium. The density is expected to change withr
validating eq 13. This need not be a surprise since the stationary
principle in the Hohenberg-Kohn model is derived using
Thomas-Fermi equations.

Komorowski31 (based on the radial extension of the wave
function of an atom to infinity) and Ganguly17 (based on the
transferability of lengths) have suggestedµuniv ) 0. The
important impact of a model with an universal,µuniv ) 0,
Thomas-Fermi-like chemical potential10,32is that one can retain
without undue alacrity the concept of the atom-in-molecule36

for the ground equilibrium state. An important consequence of
a ground state withµ ) µuniv ) 0, is that each chemical bond
formation takes place to restore the initial,µuniv ) 0, condition.
Bonding is imposed only when the atoms constituting the bond
at equilibrium are to be separated. The energy of bond formation
is a measure of this “ultraviolet freedom, infrared slavery”.

In our interpretation, the electronegativity scale is a measure
of the enhancement of the chemical potential prior to reaction.
Mulliken’s electronegativity,37,38

is a finite difference approximation of the chemical potential,I
and A being the ionization energy and electron affinity,
respectively. The electronegativity of atoms is empirically
known to be different from each other. As pointed out by

Komorowski,39 while the differential electronegativity of an
interacting atom in a molecular system requires the electrone-
gativities of the atoms in the molecules to be equal, this is not
required for, say, Mulliken’s electronegativity scale.

A universal condition helps to set a reference point for all
atoms in equilibrium, and all properties associated with the atom
may then be scaled in terms of that point. It has the following
consequences that are important from the point of view of this
communication: (i) It will now be possible to decompose the
bond into the “ball” and “stick” components, as long as each
component hasµ ) µuniv ) 0. (ii) It will also be sufficient for
each chemical bonding interaction of a multivalent atom to be
carried out single-bond-by-single-bond, in a univalent single-
bond manner, in the direction of chemical bonding. (iii) Once
a bond is formed in one direction and the system “adjusts” itself
to restore the initial atom-like condition,µuniv ) 0, a new bond
may be formed in another direction as if it is a neutral atom.
This will allow us to consider only the valences-electron length
for each bond, even for a multivalent atom, as far as determining
lengths of each bond are concerned. (iv) A ground-state value
of µ ) µuniv ) 0 also legitimizes the use of the lengths,aee

H

andaeh
H, of precursor states (eoe)- and (eoh)+, respectively, in

understanding the ground-state bond-distances. From eqs 7 and
8 and eq 15, the chemical potential of the bond in the hydrogen
molecule is zero if we considerEee

tot and Eeh
tot to be the

quantities corresponding, respectively, to the electron affinity,
A, and the ionization energy,I, for the hydrogen atoms in the
bond of the hydrogen molecule at equilbrium.

IV. Choice of Valence Orbital

The orbital angular momentum,l, dependent orbital radii,rl,
defined4,6 by the classical turning point (at which the attractive
and repulsive terms cancel each other exactly), may have the
property of being a core length which coincides with a point40

at which µ ) 0 or the origin of an hydrogen-atom-like wave
function or both (Figure 3). The pseudopotential at this turning
point, rl, from the nucleus is identically zero. In this sense it is
equivalent to the chemical potential of an isolated atom,40,41 µ
) 0 in the Thomas-Fermi model. The orbital radius,rl, thus
has the desired core property6,41 of being the classical quantity
which can be transferred, for the given background chemical
potential,µuniV ) 0.

µ ) [(∂E[F]/∂F)υ]F ) F(υ) (11)

(∂E/∂F(r ))υ ) (∂E/∂F(r ))r(eq) + (∂E/∂ r)F(eq)/(∂F(r )/∂r)υ (12)

µ ) (∂E/∂F(r ))υ ) 0 µuniv (13)

(∂F(r )/∂r)υ * 0 (14)

øM ) (I + A)/2 ) -µ (15)

Figure 3. Schematic diagram for the variation with distance of
pseudopotential of an isolated atom with distance for the valence s
electron (dark thick line; after ref 6). The orbital radii,rs, and the
minimum point,rmin

s, are indicated. Possible changes in electrostatic
potential,V(r), of an M atom in the presence of an external more
electronegative X atom (dark gray dashed line), and of an X atom in
the presence of an external less electronegative M atom (thin black
full line) showing minima corresponding toµuniv ) 0 ) V(r), atC+rcore

andC- rcore, respectively (see refs 40). The “reaction zone” is signaled
by a higher effective electrostatic potential relative to the equilbrium
value.
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a. Noninclusion of p or d Orbitals. Ganguly17 finds that
the valence s electron orbital radius,rs, is closest to the fitted
values ofrcore() rG in ref 17). Zhang et al.7 have also shown
empirically that the interatomic distances of heteronuclear bonds
may be described solely in terms of the s electron orbital radii,
rs, although their expression requires an additional term that
depends on the electronegativity. This neglect of p or d orbitals
is (even if it is convenient), of course, chemically counterin-
tuitive in the context of present understanding of chemical
bonding, with its emphasis on spn hybridization, for example.
On the other hand, the requirement of spherical symmetry has
been noted in spin-density functional formalisms. The exchange
correlation energy depends only on the spherical average ofnxc

although the exact hole in general may be “strongly aspherical”,
since the nonspherical components contribute nothing to the
energy.42,43 In the spin density functional formalisms, the
averaging is carried out after switching on the interatomic
interactions, so that contributions from p and other orbitals may
exist after the averaging. This may not account for the universal
value of the coefficients,C(.

It is preferable to look for arguments in which an averaging
exists that eliminate the choice ofl * 0 orbitals before the
relevant interatomic interactions occur. This may be related to
the existence of spin-orbit interactions in such orbitals. The
formation of the chemical bond from two neutral atoms may
be initiated by the formation of a singlet from two radicals

due to what has been termed as exchange interactions resulting
in a mutual exchange field between the two atoms,Hex

AB.
Chemical bonding is then obtained, in our approach, by the
subsequent conversion to charged states44 by a spin-conserving
charge transfer of an electron from nucleus B to A, written as45a

A mixing of moments by spin-orbit coupling may compete
with the spin-pairing processes.45b Spin-orbit interactions
control the direction of the spin momenta, and, in the presence
of strong spin-orbit coupling (as in isolated atoms), the spin
moments may be strongly affected by this coupling.46 Moreover,
the time scale for the intra-atomic spin-orbit interaction (time-
scale of an orbital motion) is expected to be small compared to
the time scale of the interatomic spin-pairing interaction with
an external electron/hole (of the order of a Larmor precession
period of a Bohr magneton for the corresponding exchange
field). In this case, the strict conservation of spin in eq 17 is
best satisfied whenl ) 0. We also know, for example, that in
the classical Stern-Gerlach experiments47 the known spin
separations are obtained for electrons in ground stateL ) 0
orbitals of the gas-phase atoms.

The above arguments justify the choice of atomic core length,
rcore, derived solely from valence s electron lengths. Because
of this, and even from an empirical point of view, we shall not
consider atomic lengths derived from all electrons, such as the
rµ values (the value at which the chemical potential equals the
negative of the electrostatic potential) of Politzer et al,48 which
correlate well with the Wigner-Seitz and covalent radius, or
the radius,rm, for negatively charged ions of Sen and Politzer49

(at which the electrostatic potential of a mononegative ion
reaches a minimum), or the radius,rD, of Deb et al.50 obtained
from the radius where the electron density aquires the universal

value of 0.00871, or the mean valence radius of Garcia and
Cohen15 even if this calculated radius bears a surprisingly linear
relationship with the experimental polarizability radius,rR, as
tabulated by Nagle.51

b. Valence s Electron Core Lengths. Besides the orbital
radii, rs, there are other valence s electron lengths which have
a universal characteristic and which are linearly related tors.
Thus, at larger values ofr, the pseudopotential6 goes through a
minimum atrl

min (Figure 3). This is also a suitable reference
point as dVeff(r)/dr ) 0 at this point. For valence s electrons
rs

min ≈ 1.5rs. At the same time the nodal point itself has a
universal characteristic. As pointed out first by Zunger,52 there
is a nearly linear relation between the valence s electron orbital
radius, rs, and the outermost node of the s valence electron-
{rnd

s}. There is also a scaling relation52,53 between the valence
s electron orbital radius,rs, and the minimum in the radial
density function as well as the total electron density. It is
important, therefore, to distinguish between these lengths in
order to interpret the magnitudes of the coefficients,C( in eqs
2 and 18 (see later).

The definition of the orbital radius,rl, by a turning point
requires a finite density of electrons at the point so that attractive
and repulsive terms acting on the electrons cancel each other,
rendering the pseudopotential to be zero. On the other hand,
the total potential will also be identically zero if there was no
electron at the point. The nodal point may be taken as an
“alternative description of the orbital radii”.54 The nodal point
serves the purpose of locating the fixed effective positive charge.
From this outermost nodal point, the valence electron, being
nodeless, behaves effectively as that in an hydrogen-like atom.
We may seek to distinguish between the orbital radii,rs and
{rnds}.

The interatomic distance,dM-M, may be obtained from eq 2
as

In the earlier communication17 it was found thatC+ ) 2.24
andC- ) 2.49 whenrcore ) rG ≈ 1.01rs. We have shown in
Figure 4 the plot of{rnd

s} vs rs as tabulated by Zhang et al.54

for all of the elements. Assuming a linear relationship, the slope
yields{rnd

s} ≈ 1.10rs. The coefficientsC- andC+ become 2.28

2(•) “biradical” f [eo(v)A + eo (V)B]S)0 (16)

[eo(v)A + eo (V)B]S)0 f [(eoe)A - (vV) h+
B]S)0 T

[(eoe)B - (vV) h+
A]S)0 (17)

Figure 4. Plot of the orbital radius,rs, vs the outermost nodal point,
{rnd

s} of the elements (data from ref 6 and 54). The straight line is
obtained from the best fit of the points to a straight line with 0 intercept,
yielding {rnd

s} ) 1.09rs.

dM-M ) CR+ + CR- ) (C+ + C-) rcore+ (D+ + D-) (18)
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and 2.06, respectively, whenrcore ≡ {rnd
s}≈ 1.09rG in eq 18.

We may thus write

We show in Figures 5 and 6, the plots of the interatomic
distances55 of homonuclear bonds to core lengths forrs and
{rnd

s}, respectively. We obtain a marginally better fit with the
orbital radiusrs as compared to that with the nodal point,{rnd

s}.

V. Core Lengths and the Atom-Bond Transition

a. Thomas-Fermi Screening and Atom-Bond Transition.
The essential feature for the formation of a chemical bond
involves the transfer of an electron from the atom to which it
is originally bound to its bonding partner. One expects a change
in the core-lengths due to interactions in the presence of an

external particle or hole in the case of bond formation even if
it only involves two atoms.56 In a sense, this is equivalent to
the delocalization of the electron away from its original
localizing potential as in the insulator-metal transition. The
relevant model for the insulator-metal transition corresponds
to bound excitons (electrons bound to its hole) in an insulator
being progressively screened to yield a metal. Mott first
examined56 this aspect of the MI transition in the Thomas-
Fermi model57,58 of screening. The electrons are treated as a
gas of free particles, neglecting exchange and correlation.40,41,44

The electron is always bound to its hole in the potential-e2/
εr, whereε is the dielectric constant, especially for larger, and
in the absence of another external particle or field. In the
presence of another external electron or charge carrier, this is
not the case, as there is now a screening of the bound particle
by the other particle(s). Thus, when a point charge is introduced
in the electron gas with an impurity potentialVo(r) ) ( Z/r,
the charge density rearranges to screenVo. The potential
becomes the screening potential,VP, given byVP ) ZR/r exp-
(-qr), at which there is not a bound state (see Figure 2). For a
certain critical concentration or a separation between the charge
carriers, the potential is reduced to a negligible size by the
exponential damping term and there is no bound state. For Bohr-
atom-like dopants in semiconductors, Edward and Sienko59

showed from a compilation of the experimental results that the
critical concentration,nc, at which there is an insulator-metal
transition of doped materials (obtained in the high-temperature
limit by a change in sign of the slope of the resistivity vs
temperature plot) is given by

where aH* is obtained in most cases from experimental
measurements as compared to Mott’s prediction60 of nc

1/3aH )
0.25. We may consider this experimental criterion of Edwards
and Sienko59 (eq 20) as an unprejudiced and a “model-unbiased”
estimate for the critical concentration at which the screening is
effective such that there is no bound state so that delocalization
of charge from one site to another becomes possible.

b. Scaling of Lengths.The volume occupied by the Bohr
atoms with radiusaH* is 4ncπ(aH* )3/3 ) 0.074 from eq 20,
which is nearly one tenth of the close-packed volume. The effect
of screening is thus to effectively scale the Bohr radius,a*H, at
the insulator-metal transition toaeff by a factorCTF such that
CTFaH ) aeff with a volume,Veff. The definition ofVeff has its
own problems. Thus we may haveVeff ) 1 if all space is
included orVeff ) 0.74, the close-packed volume fraction.61 At
the critical concentration,nc, we then have

The value ofCTF in eq 21 may be taken as an experimental
estimate of the critical extension of the Bohr radius of an
excitonic atom at the point of the insulator-metal transition.
These values ofCTF are close to those obtained for the
coefficientsC( of rcore in eq 19, suggesting that the analogy
between atom-bond transition and the insulator-metal transi-
tion may be valid. An exact one-to-one correspondence is not
demonstrated.

Figure 5. Plot of the homonuclear interatomic single-bond distance,
dM-M, (from ref 55) of non transition metal elements vs the orbital
radius,rs (ref 6, 54); alkali metals (squares), alkaline-earth elements
(triangles), elements with low melting point (filled circles) and other
nontransition metal elements (circles). The straight line shows the best
fit to the equationdM-M ) Ars + 0.74 (in Å), with A ) 4.79.

Figure 6. Plot of the homonuclear interatomic single-bond distance,
dM-M, (from ref 55) of non transition metal elements vs the outermost
nodal point,{rnd

s}, of valence s electron (from ref 54); alkali metals
(squares), alkaline-earth elements (triangles), elements with low melting
point (filled circles) and other nontransition metal elements (circles).
The straight line show the best fit to the equationdM-M ) A{rnd

s} +
0.74 (in Å), with A ) 4.35.

nc
1/3 aH* ∼ 0.26( 0.06 (20)

CTF ) aeff/aH* ≈ (0.74/0.074)1/3 ≈
2.16( 0.6 whenVeff ) 0.74 (21a)

CTF ) aeff/aH* ≈ (1/0.074)1/3 ≈
2.38( 0.6 whenVeff ) 1 (21b)

dM-M ≈ 4.73rs + 0.74 (in Å)≈
4.34{rnd

s} + 0.74 (in Å) (19)
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The difference between an isolated atom and an atom in a
bond is that there is an influence of an external charge. Its effect
is then to increase an atomic lengthratom to a screened length,
rscreen, given by

where we use the same scaling constant,CTF. The uncertainties
involved in the theoretical models preclude the use of such
models to distinguish between the theoretically calculated values
of, say,rs and{rnd

s} by examining the values of their respective
coefficients,C(. The values of the coefficientsC( (eq 19) of
the nodal-point-distance,{rnd

s}, are close toCTF obtained from
the experimental condition for metallisation (eq 21) whenVeff

) 0.74; the coefficientsC( (eq 19) of the orbital radius,rs,
obtained from the turning point are closer toCTF when we use
Veff ) 1 (eq 21b).

c. Core and Valence Regions.The separation of an atom
into a core and valence regions has been the subject of several
earlier studies and the basis of several approximate methods,6

including the pseudopotential method in which the valence wave
function is constructed as a smooth nodeless hydrogen 1s-like
wave function. Politzer64 has shown that, in the core region,
the relation between the electrostatic potential and the electron
density is that given by the Thomas-Fermi model involving
independent particles. In this approach, the Thomas-Fermi
model is not applicable64 in the valence region of an atom. In
our model, the condition of a universal equilibrium chemical
potential,µuniv ) 0, for the ground state of the chemical bond,
ensures that the semiclassical description is extended to the
bonding pair of electrons as well. Such anµuniv ) 0 condition
allows the transferability of the atom-specific as well as atom-
independent lengths of eq 2 to all bond distances at equilibrium.
If we impose the Thomas-Fermi condition thatV(r) ) µ ) 0
at equilibrium, one requires the electrostatic potential to be zero
at the equilibrium distance. A possible plot of the electrostatic
potential of a valence electron in the presence of another reacting
atom vs the distance from the nucelus is shown in Figure 3. In
this plot, we have assumedµ ) 0 ) V(r) at equilibrium. The
modified orbital radius (∼C(rs) at whichV(r) ) 0, coincides
with the minimum in the potential energy curve.

In the context of bonding between atoms, we may now
decompose the atom into core and valence regions such that
ratom ) rcore + rval, wherercore is the atom-specific core length
of eqs 2 and 18, andrval is the valence lengths,D( which are
are unchanged relative to hydrogen

The valence region in the chemical bond (the “stick” (≡ D+ +
D-)) is seemingly un-“screened”, continuing to exist as a bound
electron pair62 as in the hydrogen molecule. Such a picture is
consistent with some of the modern approaches perhaps initiated
by Julg and Julg,63 who first proposed to identify chemical bonds
with the regions of the low fluctuation of the electron pair.

d. Orbital Radius or Nodal Point? We have used another
approach for examining the validity of the core lengths,rs or
{rnd

s}. This is to search for a length that separates the insulating
elements from the metallic elements59b at atmospheric pressure
and room temperature. We show in Figures 7 and 8, the plots
of the orbital radius,rs, and the outermost nodal point,{rnd

s},
vs the atomic number of the element. Most of the insulators,
except notably, Te and I, are in the regionrs or {rnd

s} < |D+|
≈ 0.37 Å. All of the metals, except Be, havers or {rnd

s} >
|D+| ≈ 0.37 Å. The better separation, as measured by the

position of the exceptions from the separating line, is obtained
with rs rather than with{rnd

s}.
The above discrimination between metallic and insulating

elements seems to us to be a strong case in favor of the validity
of the core lengths such asrs or {rnd

s}as a significant radius.
This is schematically shown in Figure 9. SinceD+ is negative,
any element, M, in an M-X bond with X being negatively
charged (X may be the same as M) such thatrcore (M) < |D+|
would have (rcore(M) + D+) < 0. We may interpret this to
indicate that the nucleus of the concerned element,M, is exposed
to the electron cloud of the element X such that strongly bound
states are formed which cause localization. Whenrcore(M) >
|D+|, such bound states are not formed with the core electron
cloud serving to screen the nuclear charge and prevent the
formation of strongly bound states. The magnitudes ofD+ as
well asrcoreare expected to change with boundary conditions65

such as external pressure or polarizability and a true single-
atom criterion for metallization may finally still be derived from

rscreen) CTFratom (22)

CTFrcore) CTF(rcore+ rval) (23)

Figure 7. Plot of the orbital radius,rs (from refs 6 and 54) vs atomic
number of the elements: open circles, insulators at room tempertaure
and atmospheric pressure; filled circles, nontransition elements and filled
squares: transition metal elements which are metallic at room tem-
perature and atomospheric pressure. The horizontal full line corresponds
to 0.353 Å (see text) and the dashed line corresponds to 0.37 Å.

Figure 8. Plot of the outermost nodal point of valence s electron,{rnd
s}

(from ref 54) vs atomic number of the elements: open circles, insulators
at room tempertaure and atmospheric pressure; filled circles, nontran-
sition elements and filled squares: transition metal elements which are
metallic at room temperature and atomospheric pressure.
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considerations of dielectric function, such as the Herzfeld
criterion.59b,66

We conclude from the above discussions that it is difficult
to distinguish between the theoretically calculated values of the
orbital radius,rs, and the nodal point,{rnd

s} as the core valence
s electron radius that may be associated withrcore in eqs 2, 18,
and 19. If at all, there seems to be a better agreement with the
orbital radius,rs.

VI. Bond Lengths and Bond Polarity

The expressions forC+ andC- (eqs 2 and 18) show electron-
hole asymmetry. This inequality is essential to account for the
direction of polarity of heteronuclear bonds in terms of a
principal of maximum mechanical hardness67 (PMMH), pos-
tulated by Ganguly.17 PMMH requires that in heteronuclear
M-X bonds, the ground-state equilibrium interatomic separa-
tion, dM-X, given by

is the shortest possible distance, which in turn requires (from
the inequalityC+ < C- in eqs 2 and 18) that the element with
the smaller value ofrcore is the more electronegative element,68

X. The PMMH principle is also consistent with some of the
findings in the models of Pearson and Parr69 for the hard and
soft acid base (HSAB) principle. Indeed, as far back as 1884
or earlier, Muller-Erzbach70,71 expressed the law that “in any
chemical reaction the elements tend to arrange themselves in
those forms of combination which occupy the smallest volume
or that greater condensation is correlated with greater affinity”.

The inequality C+ < C- is expected to arise from the
asymmetry of the electron and the hole, with respect to a
positively charged nucleus. A simple qualitative argument is
that the inequality,C+ < C- may appear as a consequence of
changes in the core length scale due to the field of an external
positive or negative charge. An external positive charge would
add to the attractive terms and postpone the classical turning
point to smaller distances, thereby decreasingrs, while an
external negative charge would add to the repulsive terms and
increase,rs. The core length scale,rs, is then changed tors

+

and rs
- due to the external positive and negative charge,

respectively, withrs
+ < rs < rs

-.

The electron hole asymmetry also appears in the Thomas-
Fermi model.57 When a point-charge impurity potentialV (
Z/r is introduced into the electron gas of a Thomas-Fermi atom
with Fermi energy,kF, one requires the adjusted Fermi energy
kmax to be given by57 (p ) 1)

Electrons are allowed to have higher kinetic energy when the
potential energy is lowered (attractive potential) and vice versa.
When VP is repulsive (in the case of holes in the field of a
positive charge), the conservation of energy requireskmax

2 to
decrease with an increase in the magnitude ofVP, until at very
small values ofr, kmax

2 takes negative values. This is not the
case whenVP is an attractive potential (in the case of electrons
in the field of a positive charge). In this case,kmax may be
allowed to increase continuously with decreasingr. One may
anticipate, therefore, an asymmetry in the magnitude of the
screening constantsCTF

+ and CTF
- for electrons and holes,

respectively. The condition

and, perhaps,

may follow from a conservation of energy such that there is a
transfer of the forbidden kinetic energy of the hole (in the
negative kinetic energy region) to the electron. Equation 26 is
consistent with the empirical observations of Ganguly,17 if we
relateCTF

+ to C+ andCTF
- to C- in eqs 2 and 18, respectively.

The universality condition is maintained whenrs
(/rs ) C(/CTF.

One expects a minimum in the screened potential as shown in
Figure 3. This aspect has not been investigated in the literature.

The inequalityC+ < C- is crucial to the understanding of
polarity of a bond by PMMH,17 which asserts that there is only
one ground-state configuration corresponding to the charge-
transfer state, M+-X-. In this sense, it implies that the
coefficients,p andr of eq 1, are zero in the ground state. The
distance (eq 26) corresponding to M+-X- is always less than
that corresponding to M--X+ sinceC+ < C-, of which dM-X

< (dM-M + dX-X)/2 for single bonds. Such a contraction in the
heteronuclear bond distance relative to that of homonuclear
bonds had been noticed quite early by Scho¨maker and Steven-
son,72 who found that “the lengths of bonds are significantly
affected by even quite small amounts of ionic character”. These
authors have related the contractionδdM-X of heteronuclear
bond distance over that of homonuclear bond distances by

δdM-X is in turn related to the difference in Pauling’s elec-
tronegativity73 scale by

whereøM and øX are the electronegativity in Pauling’s scale
and the Scho¨maker-Stevenson coefficientcSS depends on the
row to which the elements belong. The important point is that
the Scho¨maker-Stevenson contraction,δdM-X, follows naturally
from PMMH and is given from eqs 2, 18, 19, and 28 by

Figure 9. Schematic diagrams of homonuclear bonds illustrating (see
Figure 1) (a) the exposure of the nucleus directly to the electron cloud
of the bonding partner (the nucleus is inside the larger radius of (D-)
when rs < |D+| since (b) whenrs > |D+|, the nucleus is outside the
larger radius ofD-, so that the nucleus is not directly exposed to the
electron cloud of the bonding partner. Thomas-Fermi screening due
to the presence of the bonding atom acts such that the dimensions of
the core length scale are changed as in Figure 2.

dM-X ) CR+(M) + CR-(X) (24)

(1/2)kmax
2 + VP ) (1/2)kF

2 (25)

CTF
+ < CTF < CTF

- (26)

CTF
+ + CTF

- ≈ 2CTF (27)

δdM-X ) (rcov(M) + rcov(X)) - dM-X (28)

|øM - øX| ) δdM-X/cSS (29)

δdM-X ) rcov(M) + rcov(X) - {CR+(M) + CR- (X)} )
0.125{rs(M) - rs(X)} (30)
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A relation between atomic lengths and electronegativity is
expected to follow once the extent of contraction is related to
changes in thermochemical quantities.

VII. Bond Energies

In homonuclear M-M bonds the charge-transfer states are
degenerate. Because of this there is likely to be a rapid
fluctuation between the two possible configurations.

where Ma and Mb correspond to different nucleii of the same
species. As long as the fluctuation time is fast compared to the
measurement time, the charge-difference on the two atoms will
average out to zero. This is the situation discussed in terms of
the homogeneous mixed valence systems in condensed matter
studies.23 In writing such a valence fluctuation, we are really
exchanging the bonding pair of electrons. Because of the rapid
fluctuations we may define a covalent radius

such that 2rcov ) 2dM-M and where the term 0.37 Å is an
expression of sharing of the bonding lengths of the hydrogen
molecule,dH-H () 0.74 Å).

For heteronuclear bonds, we may consider thermochemical
quantities via the electronegativity scale in terms of (what we
will term) the Scho¨maker-Stevenson contraction,δdM-X, of
eqs 29 and 30. In our approach,δdM-X is a measure of the
contraction of ground-state bond distances, with universal
chemical potential,µuniv ) 0. The utility of the electronegativity
scale is in specifying the position of an element “in an ordinal
listing such that it would be negative with any element listed
below it”. The thermochemical electronegativity scale73 of
Pauling, where chemical reactivity is really a measure of the
changes in the energy from an excited nonequilibrium state,
has necessarily to be different from the “spatial” electronega-
tivity scale in which the atoms are “rank-ordered” by their sizes
in the ground equilibrium state. This aspect will be dealt with
in another communication, especially since we have not yet
discussed the observed relation between multiple-bond dis-
tances74 and core lengths.

We may use eqs 29 and 30 as a first approximation75 to set
up a relation between thermochemical quantities such as the
standard heat of formation,∆Hf°, of compounds and a “spatial”
electronegativity difference,∆ør(s) ) {-(rs(X)-1 - rs(M)-1)},
derived from atomic lengths.76 We have used the values of the
standard heat of formation, (∆Hf°)X(gas) or (∆Hf°)X(solid), of
MXn (n g 1) compounds per g at X. Here, (∆Hf°)X(gas) is
identical to Pauling’s extraionic energy term,73 ∆. We find75,77

that ∆ør(s) ) {-(rs(X)-1 - rs(M)-1)}, the difference in the
inverse68 of the valence s electron length,rs, is related to
thermochemical quantities78-80 by the relation (see Figure 10)

The term due tob (which is small and positive) becomes
important81 in solids at large size differences between M and
X. Equation 33 sets an upper limit, (∆Hf°)X(gas), to the standard
heat of formation per single bond of∼104 kcal/mol of alkali.

(∆Hf°)X(gas) is close to the bond-dissociation energy,DH-H,
of the hydrogen molecule. Similarly, eq 34 sets an upper limit
for the heat of formation, (∆Hf°)X

max(solid) ∼ 160 kcal/mol of
the standard heat of formation in the condensed phase.

The limiting values of (∆Hf°)X(gas) and (∆Hf°)X
max(solid)

may arise from simple geometric conditions. In the gas phase,
the molecules are isolated with considerable edge effects and
cannot be treated as a three-dimensional dielectric continuum.
The same is true for molecular solids in which the molecules
are packed by van der Waals’ interactions. The requirement of
the conservation of spin during charge transfer (eqs 16 and 17)
could impose a constraint on the allowed orbital geometries in
isolated bonds such as that in the hydrogen molecule. We treat
the spins classically. In an ideal isotropic 3-D continuum
medium, every orientation of a spin on an electron (hole) is
likely to find a corresponding antiparallel spin on another
electron (hole). Because of this, the three-dimensional geometry
itself does not impose a constraint on the pairing of electron
spins. In the case of the fixed geometry of an isolated bond,
the orbit (virtual or real) of the interatomic electron-hole Bohr
orbit is confined at any instant to a plane (say, thexy plane)
which includes the bonding axis (say, thex axis). The plane of
the orbit may be related to the plane of precession of the electron
spin oriented along thez-axis, as required from the uncertainty
principle. Because of the confinement to a 2-D plane, a degree
of freedom is lost, in effect. This leads to a loss of kinetic energy
by one-third and, from the virial theorem, the total stabilizing
energy is also decreased by one-third.82

The universal relationship between (∆Hf°)X(gas) and (∆Hf°)X-
(solid) suggested by eqs 33 and 34, is satisfying. To a first
approximation, the core atomic lengths play an important role
in determining not only lengths but also the bond energies in a
simple transparent manner, in a manner that is consistent with
PMMH.17 The term [1/rs(X) - 1/r(M)] may be taken as a
measure of difference in energy between two negatively charged
states, X- and M-, once 1/rs is related to an energy scale.
Zunger6 has suggested that the theoreticalrs

-1 can be used as
an energy scale“ much like Mulliken’s electronegativity”.

There are several issues arising from the observations in eqs
33 and 34. One of these, of immediate relevance to this

Figure 10. Plot of standard heat of formation (∆Hf°)X(gas) (≡
extraionic energy per bond,∆X of Pauling), of MXn compounds in the
gas-phase (see ref 78) (triangles) and the standard heat of formation,
(∆Hf°)X(solid) of the corresponding solids (squares) vs∆ør(s) ) (rs(X)-1

- rs(M)-1). The (∆Hf°)X of some other compounds including alkaline-
earth oxides and chalcogenides (filled circles), as well as InSb, GaAs,
and As4O6 are shown (open circles). The dashed and full lines
correspond to eqs 33 and 34 in the text withb ) 0.

CR+(Ma) + CR-(Mb) S CR- (Ma) + CR+(Mb) (31)

rcov (M) ) (C+ + C-)rcore(M)/2 + 0.37 Å (32)

(∆Hf°)
X(gas)∼ -104 [1- exp(-∆ør(s))] +

bgexp(∆ør(s)) (in kcal) (33)

(∆Hf°)
X(solid)∼ -160[1- exp(-∆ør(s))] +

bs exp(∆ør(s)) (in kcal) (34)
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communication, is that the maximum values of (∆Hf°)X
max(gas)

or (∆Hf°)X
max(solid) are independent of the valence,V, of the

X atom. The limiting value for the heat of formation, (∆Hf°)X-
(solid), in the solid alkali halides is∼159 kcal/mol≈ Eexc, the
maximum excitonic binding energy83, for ε ) 1. For example,78

LiF, MgF2, and MgO have the same standard heat of formation,
(∆Hf°)X, per anion (-140 ( 7 kcal/X atom) at room temper-
ature. The excess interaction energy due to the ionic character
is not related to the formal valence of the anion or the cation.
Instead, we may consider the solid medium as a continuum
dielectric medium with the strength of the interaction between
each heteronuclear bond being limited by the maximum
excitonic binding energy,82 Eexc, in an isotropic dielectric
medium. Discrete structural details or coordination numbers are
seemingly unimportant since BeO with the zinc blende, ZnO
structure and MgO, with the rock-salt structure, yield nearly
the same heat of formation, (∆Hf°)X.

One expects a universal relationship between∆ør*s and
(∆Hf°)X/V (or ∆X/V), theg equivalent thermochemical quantities.
This is the point made by Vijh84 who found that the standard
state heat of formation per equivalent,-(∆Hf°)X/V ≈ (Eg ((
20%))/2. Each unpaired electron state of an atom X of valence
V is stabilized by-(∆Hf°)X/V so that the band gap,Eg, is twice
this value. It seems to us that the heat of formation of M-X
bonds is better expressed in terms ofg of X, because the most
elementary excitonic excitation may be considered to be
localized on the anion since the anionic X atoms dominate the
properties of the valence band of the crystal. This emphasizes
the possible role of the smaller X atoms in attracting electrons
and initiating single charge separation between the multivalent
M and X atoms for each M-X bond (see eq 17). This charge
separation has been traditionally related to the electronegativ-
ity2,14or the “power of an atom in a molecule to attract electrons
to itself ”. The important consequence then seems to be that
bonding between two atoms, M and X, is initiated by the
annihilation of spins to create a single negative charge on the
more electronegative atom, X.

The maximum heat of formation of a heteronuclear bond in
a solid is thus not expected to be greater than the maximum
value ofEexc ∼ -159 kcal per X atom and is independent of
the formal valence state.

VIII. On the Ionic Character of a Bond

Pauling attributed additional electrostatic stabilization of
heteronuclear bonds in the limit of large∆ør*s to ionic character
measured by the contribution of the so-called“ ionic resonance
energy” to ∆, the extra-ionic stabilization energy.2 This term
was considered by Pauling to come from the inclusion of the
ionic terms,ΨM+-X- andΨM--X+ in eq 1. Our model for the
homonuclear chemical bond (eqs 2 and 10/18) involves only
oppositely (singly) charged species. In heteronuclear bonds the
charge fluctuations are slow relative to that of the homonuclear
bond. The different charged states may be distinguished during
some measurement times as in “heterogeneous” mixed valence
system. This additional charge separation contributes to the heat
of formation of heteronuclear bonds. Such a charge separation
is equivalent to a transfer of lengths associated with the bonding
pair of electrons () D+ + D- ) 0.74 Å) fromM to X. We may
thus write

and

From PMMH, the ground state is M+-X-. At finite tempera-
tures, one may expect an admixture of the M+-X- and M-X+

states at finite temperatures with the equilibrium

shifted to the left. The extent of admixture of the two states is
expected to decrease with an increase in the Scho¨maker-
Stevenson contraction or the spatial mismatch, (∆ør*s), in eqs
35 and 36. The interatomic distance at a finite temperature,
dM-X

(T), is then changed by the extent of admixture,x, given
by

In effect, there will be an admixture of “homogeneous mixed
valence” states into the “heterogeneous mixed valence” states,
with an increase in bond distance. Such an admixture is expected
to reduce the heat of formation. The relation exp(-[1/rs(X) -
1/r(M)]/kT) is now a measure of the probability of mixing-in
of the excited X+-M- state into the ground M+-X- state. As,
what we shall term, spatial electronegativity scale [1/rs(X) -
1/r(M)] increases, one could expect, the ground state to be purely
the M+-X- configuration, for large difference in core lengths.
In this case, eqs 33 and 34 represent the maximum thermo-
chemical quantities, (whenb ) 0) as indicated, respectively,
by the dashed and full lines, in Figure 10. Pauling’s interpreta-
tion of the heat of formation as an expression of “ionic
character” is therefore a valid description of the bonding.
However, the number and nature of terms in eq 1 require
modification in the light of our interpretation relating changes
in the atom-bond transition to changes in core atomic length
scales.

IX. Conclusions

The present manuscript deals with the atom-bond transition,
concerning itself mainly with expressing the length of the single
bond between all M and X atoms and the heat of formation of
heteronuclear bonds in terms of universal functions of core
atomic lengths. The chemistry of elements seems to be describ-
able simply by a Thomas-Fermi-like kernel and the bond in
the hydrogen molecule. One recovers, by our approach, the
“ball” and “stick” model of the classical chemist that has been
so useful in understanding chemical reactions in real space. The
central requirement is the existence of a universal chemical
potential,µuniv ) 0, at equilibrium. The main conclusions of
our model are reminiscent of another early idea of Pauling who
introduced2 the concept of univalent radii,R1, of atoms, which
is the radii that the atoms (even if multivalent) would possess
“ if they were to retain their electron distribution but to enter
into Coulomb interaction as if they were univalent” . The
approach of this communication has the following new features
that rationalizes the early observation17 wherein all single-bond
interatomic (covalent, ionic, or metallic) distances,dM-X, are
given by the sum of components17 associated with positive and
negative charges,CR+(M) and CR-(X):

(i) The fundamental universal bonding length scales are those
of the hydrogen molecule for which the experimental interatomic
distancedH-H ) D+ + D- ≈ 4aH/3, whereD+ ≈ -2aH/3 and

CR+(M) )
rcov(M) - (C- - C+)rcore(M)/2 - 0.74 (in Å) (35a)

CR-(X) )
rcov(X) + (C- - C+)rcore(X)/2 + 0.74 (in Å) (35b)

M+ + X- S M- + X+ (36)

dM-X
(T) ) (1 - x)dM-X (M+ - X-) + xdX-M(M-X+)

) (1 - 2x)dM-X(M+ - X-) + 2x[rcov(M) + rcov(X)]
(37)
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D- ) 2aH, may be obtained in terms of the Bohr radius of the
hydrogen atom,aH, to a close approximation.

(ii) The lengthsCR+ andCR- are defined in the context of
a universal chemical potential,µuniv ) 0, which acts as a fixed
point of reference to which every atomic constituent of a system
adjusts itself when approaching/realizing equilibrium.

(iii) Arguments based on spin-orbit interaction of electrons
in l * 0 orbitals are presented to show that the transferable
“core” length may be derived from valence s electrons alone.

(iv) The core length,rcore, is best obtained from the orbital
radii defined by the classical turning point,rs, or the outermost
nodal point,{rnd

s}, of the valence s electron. A novel criterion,
based on the metallisation of elements, is used to show that the
orbital radii, rs, is preferred.

(v) The formation of a chemical bond involves the delocal-
ization of a charge from one atom to another. The atom-to-
bond transition has been examined in the Thomas-Fermi
screening model employed for the insulator-metal transition.
On the formation of a chemical bond, these core lengths are
transformed toC+rcore or C-rcore depending on the direction of
charge transfer.

(vi) The electron/hole asymmetry of the transferred charge
relative to the positively charged nucleus gives a rationale for
the empirically observed feature thatC+ < C-. The principal
of maximum mechanical hardness17(PMMH) that gives a
justification for the direction of polarity of a bond is thus
rationalized.

(vii) Upper limits to thermochemical quantities such as the
“extraionic” energies for gas-phase compounds or the heats of
fomation for solid-state compounds have been pointed out.
These limits are based on the dissociation energy of the
hydrogen molecule and the upper bounds of an excitonic binding
energy.

(viii) The concept of an “ionic character” obtained from
thermochemical quantities has been rationalized in terms of what
has been called a Scho¨maker-Stevenson contraction72 of
heteronuclear bond distances relative to that obtained from the
average of the corresponding homonuclear bond distances. This
helps in obtaining a “spatial” electronegativity scale, from which
thermochemical quantities may be obtained.

In arriving at our conclusions regarding interatomic distances
in this communication, we have circumvented the problems
underlying the rigorous approaches of the “new” Schro¨dinger
equation based quantum mechanics. Instead we have relied on
application of some semiclassical methods to “new” quantum
mechanical results obtained in the atomic limit and a new
application of the “old” Bohr model to molecules. The chemistry
of elements85 may finally be understood in terms of their core
transferable atomic properties, even if additional theoretical and
experimental efforts may be required to define these core lengths
more accurately. Hopefully, the “ball” and “stick” model will
result in identifying the participation of all chemical elements
in a chemical bond as a hydrogen-atom problem. The atom-
specific “core” properties of the “ball” is a function of properties
of integers and the “stick” is described by the Bohr model for
hydrogen-atom-like charge-transfer states. Such an approach
could give rise to the much sought after universal density func-
tional that will save on the computational time for biologically
important systems. This could pave the way for a better ab initio
understanding/exploiting of nature, which, finally/fortunately
may be manyfold less exciting than just living with nature.
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