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We present a methodology for the theoretical evaluation of infrared intensities for molecules in solution in
the polarizable continuum model (PCM) framework. In particular we focus on the calculation of terms related
to the solvent polarization induced by the probing field (cavity field term) and on their dependence on the
cavity geometry. Numerical tests for few model molecules have been done and compared with semiclassical
models.

1. Introduction

This paper will treat the calculation of infrared (IR) intensities
for molecules in solution. We will propose a theoretical approach
with the aim of obtaining values for IR intensities directly
comparable with experimental data. Other papers with analogous
scopes with regard to linear and nonlinear optical properties
for molecules in solution have recently been done: we quote
for example the works of Wortmann et al.,1 of A° gren et al.,2

and of our group.3,4

Different formulations for the calculation of IR intensities in
solution have been proposed in the past, both regarding pure
liquids5-7 and systems in solution.8-12 The common point of
all these approaches is the derivation of relations between
absorption integrated intensities in liquid and in gas phase.

The mentioned classical formulations are generally based on
Onsager’s theory of dielectric polarization,13 with the exception
of Chako’s work.5 In the Onsager approach the molecule, which
is simply approximated by a dipole, is inside a cavity (of
spherical shape) created in the liquid, which is modeled as a
continuum, infinite, homogeneous and isotropic dielectric
medium. The effect of the medium on IR intensity is separated
in two terms: the first one, represented by mean of a “reaction
field”, is connected with the response (polarization) of the
dielectric medium to the molecule charge distribution. The
second term (the cavity field) depends on the polarization of
the dielectric induced by the externally applied electric field,
once the cavity has been created.

We intend to show how the ab initio calculation of vibrational
intensities for molecules in solution can be treated within the
polarizable continuum model (PCM).14 The approach we will
present is not limited to the treatment of molecules in isotropic
solutions but can be extended also to anisotropic dielectric media
(for example liquid crystals) or composite media (molecules
adsorbed on metal particles): that is due to the versatility of
the PCM method already pointed out in ref 15.

In the PCM, the solvent is modeled as a continuum, infinite,
homogeneous, and generally isotropic dielectric medium, char-

acterized by a dielectric constantε. The molecule is into a cavity
modeled on its real shape and the electrostatic solute-solvent
interaction (including also self-polarization effects) is calculated
by introducing an apparent surface charge distribution (ASC)
spread on the cavity surface. The differences between the PCM
and Onsager’s model is the use of a molecular-shaped cavity
(instead of a spherical cavity) and the fact that the solvent-
solute interaction is not simply reduced to the dipole term. In
addition, in the PCM the solute is described by mean of its
electronic wave function.

Solvent effects on IR intensities due to dielectric polarization
(which as already said are treated in the classical theory by using
the “reaction field”) have already been treated in the PCM
framework by assuming a complete response of the solvent
(equilibrium model).16 Other terms, similar to the “cavity field”,
have never been introduced in the PCM for the calculation of
IR intensities. We will then focus on the formulation of such
contributions.

In this paper we will not propose any comparison between
calculated and experimental data: that is due to the fact that
the study of other effects (in particular nonequilibrium effects),
which could in principle have some importance, is under
development in our group. We will then postpone this com-
parison to future communications.

2. Theory

The absorbance (Abs) relative to an absorption band can be
expressed by mean of the well-known Lambert-Beer Law, as

whereC is the molar concentration of the species under study,
l is the length of the cell which contains the absorbing sample,
anda is the so-called molar absorption coefficient (or extinction
coefficient). As clearly underlined in eq 1, the absorption
coefficienta and the absorbance depend on the wavenumberṼ
of the incident light. The total intensity of the transition is
obtained by integratinga over the entire range of frequencies
it spans (the band). This quantity can be expressed by means
of the integrated absorption coefficient,A, as
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If we neglect anharmonic effects, for the isolated molecule
the integrated absorptionA is related to the first derivative of
the dipole momentµ with respect to the mass-weighted normal
coordinateQ associated to the vibrational modei. The resulting
expression is

with NA being Avogadro’s number andc the velocity of light
in a vacuum.

The starting point to derive the integrated absorptionAgas in
eq 3 is the expression for the transition probability between two
vibrational states 0 and 1 as induced by a radiation of frequency
ω in the dipolar approximation

In eq 4,E1 and E0 are the energies of the vibrational state 1
and 0, respectively,µ is the dipole moment andF is the electric
field acting on the molecule.

Passing to molecules in solution, eq 4 is still valid but some
refinements are needed. It is in fact necessary to replaceF with
the (Maxwell) electric field of the radiation in the medium,FM,17

and the dipole momentµ with a quantity equivalent to the so-
called external dielectric moment in the Onsager approach.12,13,18

This quantity can be expressed as the sum of the dipole moment
µ of the molecule and the dipole momentµ̃ arising from the
polarization induced by the molecule on the dielectric: the total
interaction can then be written as-(µ + µ̃)‚FM. As we will
show later, the term related toµ̃ introduces the cavity field
effect.

By substituting this formula into eq 4 we obtain the transition
probability in solution between two vibrational states 0 and 1
as induced by a radiation of frequencyω

Similar to what has been previously shown for the isolated
molecule, it is possible to derive from eq 5 the analogue of eq
3 for molecules in solution

The calculation ofAµ+µ̃
sol by means of eq 6 requires the

knowledge of the∂µ/∂Q and ∂µ̃/∂Q terms. In the following
sections we will show how they can be computed for a PCM
solute described at the ab initio level within the finite basis set
approximation.

To end this section it is worth noticing the dependence of
Aµ+µ̃

sol in eq 6 on the refractive indexns of the solution under
study. It follows from the relation between the intensityI of
the radiation and the electric fieldFM in solution,19 namely,

In eq 7 we have assumed the dielectric constant of the solution
εs to be equal to square of the refractive indexns

2: this

corresponds to the assumption that the magnetic permittivity
of the medium is roughly equal to 1.

2.1. The Dµ/DQ Term. The dipole momentµ is written in
terms of the density matrixP of the unperturbed solute
calculated (in solution) at the HF or DFT level as

wheremt collects the integrals of thetth Cartesian component
of the dipole moment operator andµN,t indicates the nuclear
contribution to thet component ofµ.

The first derivative ofµ with respect to the normal coordinate
Qi is obtained by differentiating eq 8:

In the previous equationPi is the density matrix derivative
with respect toQi and is currently calculated by mean of the
CPHF formalism with the explicit inclusion of solvent-depend-
ent terms, i.e., terms dependent upon the solvent dielectric
response.20 These terms are determined by assuming an equi-
librium solvent response, so that their expression depends on
the static dielectric constantε of the solvent. The presence of
themt

i term, i.e., of the dipole moment matrix derivative in eq
9, is due to the dependence ofmt on the basis functions, which
in turn depend on the nuclear coordinates. Finally we stress
that the mass-weighted normal coordinates too are obtained
taking into account solvent effects.20

2.2. TheDµ̃/DQ term. When having the aim of obtaining an
expression of the∂µ̃/∂Q term, we need first of all an expression
for µ̃, which we recall is the dipole moment arising from the
molecule-induced dielectric polarization. In the PCM framework
this polarization is represented by mean of an apparent charge
distribution on the cavity surface. In the computational practice
this continuous distribution is discretized by point chargesq,
each associated with a small portion (tessera) of the cavity
surface and defined through a set of linear equations.

In the following we will exploit two different implementations
of the PCM method: the original method called D-PCM21 and
the recent IEF-PCM15 revised version. In the D-PCM the set
of chargesq is obtained in terms of the normal component of
the solute electric field to the cavity surface. Within the IEF-
PCM, in the case of an isotropic dielectric medium, the charges
are computed from the potential generated from the solute
charge distribution as follows15d

wherev is a column vector containing the solute potential, and
Q is a square matrix with dimension equal to the number of
tesserae, whose elements depend on geometrical cavity param-
eters and on the dielectric constant.

The D-PCM and the IEF-PCM are formally and physically
equivalent, and the use of either is a matter of computational
convenience and straightforwardness in the theoretical formula-
tion.22 The expression ofµ̃ as a function of the previously
mentioned apparent charges is

In eq 11qj is the point charge on thej tessera, whose position
is given by the vectorsj.

To derive an expression ofµ̃ as a function of the external
field-induced apparent charges let us write

A ) ln 10∫ a(Ṽ) dṼ (2)

Agas)
πNA

3c2 ( ∂µ
∂Qi

)2
(3)

W1r0
gas ) 2π

p
δ(E1 - E0 - pω)|〈1|µ‚F|0〉|2 (4)

W1r0
sol ) 2π

p
δ(E1 - E0 - pω)|〈1|(µ + µ̃)‚FM|0〉|2 (5)

Aµ+µ̃
sol )

πNA

3nsc
2(∂(µ + µ̃)

∂Qi
)2

(6)

I )
εsc

2πns
(FM)2 ≈ nsc

2π
(FM)2 (7)

µt ) -tr[Pmt] + µN,t (8)

∂µt

∂Qi
) -tr[Pimt + Pmt

i] + µN,t
i (9)

q ) -Qv (10)

µ̃ ) ∑
j

qjsj (11)
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whereVM is the electric potential associated to theFM field

By exploiting eq 10 and using the symmetry of theQ matrix
the previous expression, eq 12 can be rewritten as

whereql
M are the external field-induced polarization charges.

These charges depend linearly on theFM field, so that eq 14
can be rewritten as follows

The final expression ofµ̃ we were looking for is then

It is worth noticing that exactly the same relation (eq 15)
could have been obtained in a totally equivalent way by
considering the electric fieldF acting on the molecule as a sum
of the external field (which originates theµ‚FM term in eq 4)
and of the field generated from the response of the solvent to
the external field when the volume representing the molecular
cavity has been created in the bulk of the solvent.4 The latter
field generates an interaction term in eq 4 equal to the one
previously shown in eq 15.

Similarly to what is already said in the previous section, it is
convenient to writeµ̃ in terms of the density matrixP as

whereµ̃N,t indicates the nuclear contribution to thet component
of µ̃. By definingVN(r ) as the potential generated by the nuclei
at the positionr , we obtain

Them̃t matrix in eq 17 is defined starting from theVκλ potential
integrals evaluated at the pointsl as

Onceµ̃t has been obtained we can finally write a relation for
the first derivative ofµ̃ with respect to the nuclear coordinates.
By differentiating eq 17 with respect to the normal coordinate
Qi we obtain by analogy with eq 9

In this case,m̃t
i, the derivative of them̃t matrix with respect

to Qi, can be written as a sum of two contributions: the first

one (m̃t,fix
i ) arises from the dependence of the basis functions

(and then of theVκλ potentials) on the nuclei positions and the
other (m̃t,geom

i ) is due to the dependence of the cavity geometry
(i.e., of the charge positionsql

M) on the nuclear geometry.3 The
expression of the first term,m̃t,fix

i , is

On the other hand, the expression of them̃t,geom
i terms is

We will come back to this term in a following section.
To end this section, we remark that also the nuclear term in

eq 20,µ̃N,t
i can be similarly decomposed in two contributions.

Their expressions are

2.3. Evaluation of theDql
M/DFt

M Terms. The starting point
to derive an expression for the∂ql

M/∂Ft
M terms (eqs 21-24) is

a relation between theFM field-induced chargesql
M and FM

itself. Regarding this point two choices are possible: the first
one is to exploit an IEF-like equation, which would connect
the charges to the field through the potential. The second
approach consists of using relations analogous to those used in
the D-PCM method, which would directly relate the charges to
the field. In the following we will present only a treatment based
on the D-PCM method, which in this case is computationally
convenient especially for the evaluation of the geometry-
dependent terms in eqs 22 and 24. Regardless, numerical tests
confirmed the substantial equivalence in the results obtained
by means of both of the approaches.

The relation between theql
M charges and theFM field is

wheref n
M is a vector collecting the normal components of the

radiation electric fieldFM to the cavity surface andD-1 is a
matrix (different from theQ matrix in eq 10) whose elements
depend on the geometrical parameters of the cavity and on the
dielectric constant of the medium.21 Strictly speaking, the
dielectric constant to be used should, in principle, be the one at
the field frequency. Anyway, sufficiently far from frequencies
that correspond to absorption bands of the solvent, it is a good
approximation to use the permittivity value as measured in the
field of optical frequencies (sodium D-line)εopt. It is in fact
reasonable to assume that for values of the frequency compa-
rable to the ones of the vibrational motions, the contribution to
the dielectric constant due to the reorientation of the solvent
molecules is negligible and that the electronic contribution is
fairly well approximated by what is measured at optical
frequencies. On the other hand, this assumption prevents us from
treating pure liquids, because in that case the absorption bands
of the “solvent” would coincide with those of the “solute” so

-µ̃‚FM ) ∑
j

qjV
M(sj) (12)

VM(sj) ) -FM‚sj (13)

-µ̃‚FM ) - ∑
j,l

(Q)jlV(sl)V
M(sj) ) ∑

l

V(sl)ql
M (14)

-µ̃‚FM ) (∑
l

V(sl)
∂ql

M

∂FM)‚FM (15)

µ̃ ) -(∑
l

V(sl)
∂ql

M

∂FM) (16)

µ̃t ) -tr[Pm̃t] + µ̃N,t (17)

µ̃N,t ) -(∑l

VN(sl)
∂ql

M

∂Ft
M) (18)

m̃t,κλ ) -(∑l

Vκλ(sl)
∂ql

M

∂Ft
M) (19)

∂µ̃t

∂Qi
) -tr[Pim̃t + Pm̃t

i] + µ̃N,t
i (20)

(m̃t,κλ
i )fix ) - ∑

l
(∂Vκλ(sl)

∂Qi
)∂ql

M

∂Ft
M

(21)

(m̃t,κλ
i )geom) - ∑

l

Vκλ(sl)[ ∂

∂Qi
(∂ql

M

∂Ft
M)] (22)

(µ̃N,t
i )fix ) - ∑

l
(∂VN(sl)

∂Qi
)∂ql

M

∂Ft
M

(23)

(µ̃N,t
i )geom) - ∑

l

VN(sl)[ ∂

∂Qi
(∂ql

M

∂Ft
M)] (24)

qM ) -D-1fn
M (25)
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that the approximation of the dielectric constant withεopt would
not be justified.

Coming back to the evaluation of the∂ql
M/∂Ft

M term, the
relation to use can be obtained by applying eq 25 and
differentiating it with respect to Ft

M

In eq 26,nt indicates the vector collecting thet components of
the normal versors to the cavity surface.

2.4. Evaluation of the Geometry-Dependent Terms:
m̃t,geom

i , µ̃t,geom
i . The evaluation of them̃t,fix

i andµ̃t,fix
i terms (the

ones independent from the geometry) has already been treated
in previous works concerning the calculation of static vibrational
polarizabilities and first hyperpolarizabilities for molecules in
solution.3 The geometry-dependent terms, instead, have never
been treated. We will report in the following a way of
analytically evaluating them.

The problem of calculating them̃t,geom
i and µ̃t,geom

i terms
concerns the evaluation of the derivatives [∂/∂Qi(∂ql

M/∂Ft
M)]

(see eqs 22 and 24). To obtain a relation for the [∂/∂Qi(∂ql
M/

∂Ft
M)] terms, let us derive eq 26 with respect toQi. The

resulting formula is

The elements of (∂/∂Qi)D-1 can be calculated from the relation

The evaluation of (∂/∂Qi)D requires the calculation of the
derivatives of cavity geometrical parameters (such as, for
example, areas and positions of the tesserae). For the explicit
expressions of such derivatives and of the column vector (∂/
∂Qi)nt, we address the reader to ref 23.

3. Numerical Results and Discussion

We will report in this section data on IR intensities for various
model molecules (HCHO, CH3CHO, CH3CH2CHO, (CH3)3-
CCHO, and HCtCCHO) in water (ε ) 78.39,εopt ) 1.776, at
298 K). All of the calculations were performed using the density
functional theory (with the B3LYP hybrid functional) and the
6-31G* basis set. The use of this quite limited basis set is
justified, as the scope of the present paper is the analysis of
relative quantities obtained as ratios of values computed at the
same level of approximation and not the evaluation of absolute
values of intensities. To evaluate the quality of our results,
additional calculations exploiting the 6-31+G* basis set were
done.

The calculation of the∂µ/∂Q terms was implemented in a
development version of the GAUSSIAN package,24 which
performs also analytical second derivatives with respect to
nuclear coordinates within the IEF-PCM framework. Molec-
ular-shaped cavities were used. The cavities were defined in
terms of interlocking spheres centered on the solute nuclei. The
CH3, CH2 and CH groups were included in a single sphere.
The radii of the spheres exploited in the calculations are listed
in Table 1. Such values were multiplied by a cavity size factor
R equal to 1.2. To evaluate the dependence of the results on
the cavity size, additional calculation were performed by using
R ) 1.1 and R ) 1.3. The geometrical parameters of the
molecules were optimized both in vacuo and in solution.

We will present calculated IR intensities for the carbonyl
stretching mode of the series of aldehydes mentioned above.
We report in Table 2 the calculated frequencies of this
vibrational mode both in vacuo and in water. As already noticed,
there exist in the literature semiclassical relations between the
absorption intensity in solution,Asol, and in vacuo,Agas. Such
expressions, used to rationalize solvent effects on IR intensities
(see for example refs 25 and 26) are of the type

In eq 29,f is a numerical factor for the expression of which
various relations have been proposed. Some of the most used
defining statements for such factor are reported in Table 3. In
such expressions,ε and εopt are the already defined static
dielectric constants of the solvent and dielectric constants of
the solvent at the sodium D-line:n is the refractive index of
the pure solute (i.e., of the aldehyde under study). We would
like to remark that rigorously speaking we should consider,
rather thanε and εopt, the dielectric constant of the solution:
because we will refer to infinitely dilute solutions, we can safely
approximate them with the dielectric constants of the pure
solvent.

It is necessary to specify that the expression forf originally
proposed by Buckingham11 contains a term that is dependent
on the derivative of the molecular polarizability with respect to
the normal coordinate. Unlike dielectric constants and refractive
indexes, this quantity is not immediately available (theoretical
calculations or Raman measurements are needed to estimate it).
For this reason we will use in the following the simplified
formula shown in Table 3. It is worth noticing the analogy
between the Mallard-Straley, Person (MSP) equation9,10 for
solutions and the Polo-Wilson6 for pure liquids, which reads

The MSP equation reduces to the Polo-Wilson by considering

xεopt ) n.

TABLE 1: Sphere Radii Used to Build the Molecular Cavity
(Å)

CH3 CH2 CH C tC O H

R 2.0 2.0 1.9 1.7 1.9 1.5 1.2

TABLE 2: Carbonyl Stretching Frequency Values for
Various Solutes in Gas Phase and in Water (cm-1)

gas aq

HCHO 1850 1823
CH3CHO 1843 1809
CH3CH2CHO 1838 1803
(CH3)3CCHO 1831 1799
HCtCCHO 1776 1744

TABLE 3: Semiclassical Expressions forf

Hirota8

fH )
(n2 + 2)(2ε + 1)

3(n2 + 2ε)
Buckingham11

fB )
9εopt

(εopt + 2)(2εopt + 1)[(n2 + 2)(2ε + 1)

3(n2 + 2ε) ]
Mallard-Straley,9

Person10 fMSP ) 1

xεopt
[ n2 + 2

(n2/εopt) + 2]

Asol

Agas
) f (29)

f ) 1
n(n2 + 2

3 )2

(30)

∂qM

∂Ft
M

) -D-1nt (26)

∂

∂Qi(∂qM

∂Ft
M) ) -( ∂

∂Qi
D-1) nt - D-1( ∂

∂Qi
nt) (27)

∂

∂Qi
D-1 ) -D-1( ∂

∂Qi
D)D-1 (28)
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We report in Table 4 the calculated results for thef factor.
For the sake of comparison we also report what we obtain by
exploiting the above-mentioned semiclassical approaches (see
Table 3). Thefµ+µ̃ factor in Table 4 is defined fromAµ+µ̃

sol (as
obtained by using eq 6) andAgas(defined by mean of eq 3), as

wherefµ+µ̃ takes into account both the effects on the IR intensity
arising from the dielectric polarization (as caused by the
molecule) and the so-called “cavity effects” (connected to∂µ̃/
∂Q).

The data reported in Table 4 deserve some comments. First,
it is evident that our calculated results are generally different
from what was obtained by means of semiclassical relations.
The difference not only concerns values for the same compound,
but there is also a discrepancy in the observed trend in passing
from one species to another. It is clear, for example, that the
minimum value of f calculated by means of semiclassical
approaches is the value for CH3CHO. The minimum value for
f in our formulation is instead shown by HCHO. We can also
see that the greatest difference between our and semiclassical
data is shown by the results calculated by exploiting the MSP
equation: these data are in fact the lowest in the series. In our
opinion this is reasonable; in fact, the dependence onε, which
is explicitly considered in our approach as well as in Hirota’s
and Buckingham’s equations, is not present infMSP (we recall
that in our formulation this dependence is explicit in the
calculation of the∂µ/∂Q terms).

In Table 5 we report the calculated results for thefµ+µ̃ factor
as obtained by using the larger 6-31+G* basis set and different
values of theR cavity size factor. The differences in the results
are less than 10% as a function of both the basis set and the
cavity size.

It is useful to evaluate the contribution to the solvent effect
on IR intensities due only to the “cavity” term, which, as already
said before, is connected to the derivative∂µ̃/∂Q. To extract
such contribution we will definefµ̃ as

In eq 32Aµ
sol is obtained from eq 6 by neglecting the∂µ̃/∂Q

term.

This quantity can be reasonably compared with the classical
parameterfOns deriving from Onsager’s theory of dielectric
polarization, which states for a spherical cavity that

The data reported in Table 6 show thatfOns is a fairly good
approximation of our result when the molecular cavity we are
using is almost spherical (i.e., in the case of HCHO and (CH3)3-
CCHO). In the other cases the difference is larger. The
maximum deviation occurs for HCtCCHO, whose molecular
cavity, more or less of a cylindrical shape, is badly approximated
by a sphere.

The results reported in Table 7 show that only small
differences (of the order of 1%) arise as a result of the change
in the cavity size.

To end this section it is worth evaluating the weight of the
m̃t,geom

i , µ̃t,geom
i terms, which, as already said in the theoretical

section, depend on the variation of the cavity geometry as a
result of molecular vibration. We report in Table 8 the intensity
values obtained by including these terms,Aµ+µ̃

sol , and by ne-
glecting them, (Aµ+µ̃

sol )fix. As it is clearly shown, the account of
geometrical terms is not crucial in the calculations. For this
reason, as already pointed out by Cammi et al. as regards the
calculation of effective vibrational polarizabilities,3 they can be
neglected: this will require less computational effort. The
behavior of theAµ+µ̃

sol values as a function of the cavity size is
finally reported in Table 9.

TABLE 4: PCM ( fµ+µ̃) and Semiclassicalf Values (see Table
3 for the definition)

fH fB fMSP fµ+µ̃

HCHO 1.667 1.442 1.210 1.434
CH3CHO 1.567 1.355 1.188 1.586
CH3CH2CHO 1.640 1.418 1.205 1.609
(CH3)3CCHO 1.673 1.447 1.212 1.791
HCtCCHO 1.729

TABLE 5: fµ+µ̃ as a Function of the Basis Set and of the
Cavity Size Factor r

6-31G*
R ) 1.2

6-31+G*
R ) 1.2

6-31G*
R ) 1.1

6-31G*
R ) 1.3

HCHO 1.434 1.502 1.553 1.345
CH3CHO 1.586 1.655 1.744 1.453
CH3CH2CHO 1.609 1.711 1.809 1.475
(CH3)3CCHO 1.791 1.948 2.008 1.647
HCtCCHO 1.729 1.861 1.936 1.585

fµ+µ̃ )
Aµ+µ̃

sol

Agas
(31)

fµ̃ )
Aµ+µ̃

sol

Aµ
sol

(32)

TABLE 6: Classical (fOns) and PCM (fµ̃) Cavity Field
Factors (see text)

fOns fµ̃

HCHO 1.287
CH3CHO 1.257
CH3CH2CHO 1.370 1.250
(CH3)3CCHO 1.285
HCtCCHO 1.235

TABLE 7: fµ̃ as a Function of the Cavity Size Factorr

R ) 1.1 R ) 1.2 R ) 1.3

HCHO 1.281 1.287 1.305
CH3CHO 1.243 1.257 1.271
CH3CH2CHO 1.235 1.250 1.264
(CH3)3CCHO 1.269 1.285 1.290
HCtCCHO 1.221 1.235 1.251

TABLE 8: Calculated IR Intensities (km/mol) a

Aµ+µ̃ (Aµ+µ̃)fix

HCHO 142 145
CH3CHO 249 248
CH3CH2CHO 241 242
(CH3)3CCHO 292 295
HCtCCHO 306 301

a Aµ+µ̃ includes geometrical terms, (Aµ+µ̃)fix neglects them. For the
definition, see text

TABLE 9: Aµ+µ̃ (km/mol) as a Function of the Cavity Size
Factor r

R ) 1.1 R ) 1.2 R ) 1.3

HCHO 154 142 133
CH3CHO 276 249 230
CH3CH2CHO 270 241 220
(CH3)3CCHO 325 292 266
HCtCCHO 343 306 281

fOns) ( 3εopt

2εopt + 1)2

(33)
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4. Conclusions

We have given and justified algorithms for the calculation
of IR intensities for solutes in infinite dilute solutions, on the
basis of physical models more detailed than the ones previously
used. These algorithms have been implemented in a molecular
calculation package of great diffusion and versatility.

The present work is a part of a larger research program under
development in our group addressed to put in evidence merits
and limitations of the continuum model in the description of
molecular properties in solution. To coherently develop this
program, the models to be used for the properties have to be
accurately elaborated, with the aim of eliminating, as much as
possible, any inaccuracy not strictly related to the model. With
this scope we will list below some limitations of the present
implementation that we will overtake in the future.

(1) The model has been developed within the harmonic
approximation. The PCM approach is suitable for describing
electric and mechanical anharmonic effects on IR intensities,
but our experience is thus far limited to old versions of the
PCM.16

(2) The model assumes an equilibrium response of the solvent
to vibrations. The description of dynamic effects is under study
and will be the subject of future communications.27

(3) The model does not account for solvent fluctuation effects,
which could, in principle, influence the band shape. Our
intention is to resume approaches partially developed in the
past.28
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