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A system of differential equations is presented for evolving the quantum potential as a function of its energy
levels. These inverse parametric equations of motion (i-PEM) offer a novel approach to determining quantum
molecular potentials from spectroscopic energy levels. The technique uses singular-value decomposition to
ensure that the chosen trajectory through energy space is representable by a smooth potential trajectory. The
i-PEM are facilitated by discretizing the vibrational Schro¨dinger equation with a spectral element method
which combines the features of Hamiltonian sparsity and exponential convergence of the wave function.
Often, spectroscopic data significantly affect only a specific region of the potential, and the spectral elements
offer a natural framework for identifying the appropriate portion of the potential. The i-PEM with spectral
elements are applied in a simulation for determining the potential of hydrogen fluoride.

I. Introduction

The rotational and vibrational energy level spacings of a
molecule contain valuable information about the underlying
potential energy surface. The ability to transform spectroscopic
energy data into useful potential energy surfaces has been an
important source of chemical information, but practical dif-
ficulties have often limited the ability to extract quantitative
potential information. Since the points on the potential surface
are electronic energies, a robust inversion procedure would also
furnish a novel approach to supplement electronic structure
calculations within the Born-Oppenheimer approximation.
Inversion methods analogous to those for potential surfaces
apply beyond chemistry to ill-posed problems1,2 in areas as
diverse as medicine3 and engineering.4 Within electronic
structure, both the density functional theory (DFT)5 and the
N-representability problem6-9 may be characterized as ill-posed
problems. Ill-posed problems arise when there is not enough
information to define a mathematically precise answer and yet
intuitively there seems to be enough information to generate a
realistic solution through the inclusion of additional natural
constraints such as smoothness. While the Rydberg-Klein-
Rees (RKR) technique for calculating potential curves of
diatomic molecules has existed for many years,10 more general
techniques that employ the regularization machinery for ill-posed
problems have recently been developed to determine the
potential energy surfaces for diatomic and other molecules
including van der Waals clusters from spectroscopic data.11-15

The purpose of this paper is to introduce a new approach for
the inversion of spectroscopic energy data. The present method
differs in several key respects from existing inversion tech-
niques. Earlier works have introduced a system of differential
equations, known as the parametric equations of motion (PEM),
for energy eigenvalues and eigenvectors as functions of
parameters in the Hamiltonian.16-19 Here we show how the PEM

method may be modified to follow the potential as a function
of the energy levels.17 These inverse parametric equations of
motion (i-PEM) allow for the evolution of an initial model
potential to a final potential which is fully consistent with the
spectroscopically observed energy levels. Most iterative tech-
niques for spectral inversion linearize the relationship between
the energy and the potential unknowns by invoking first-order
perturbation theory.11 The i-PEM can naturally use higher orders
of perturbation theory to take large steps along a trajectory to
identify the potential. Only an initial solution of the Schro¨dinger
equation is required in the iterative inverse procedure, after
which the i-PEM formulation implicitly reveals the appropriate
solution. Second, the present approach applies the spectral
element method,20-23 which has been used extensively in solving
partial differential equations in engineering, for the solution of
the rovibrational Schro¨dinger equation. The advantages of
spectral elements include the exponential convergence of
spectral methods, matrix sparsity, and weak coupling between
different regions of the potential surface. This last feature of
spectral elements is especially useful because it allows for
altering just a piece of the potential energy surface without
modifying the other pieces. Often, the spectroscopic data will
only be relevant for improving a specific region of the surface,
and the division of the potential into elements is ideal for
accomplishing these selective changes. Third, the portion of the
potential to be modified is expanded in terms of Legendre
polynomials whose coefficients are evolved by the i-PEM as
functions of the spectral energies. The exponential convergence
of the Legendre polynomials over a finite interval helps to
extract the maximum amount of information from the known
energies.22 Finally, the method possesses a strategy for making
efficient the evolution from the initial spectral energies to the
final target energies. At each point on the trajectory, the i-PEM
choose the differential energy changes to make the energies at
the next point as close as possible to the target energies while
preventing the potential from becoming ill-behaved. To illustrate
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this technique for inversion, we utilize the i-PEM to simulate
the determination of the potential for hydrogen fluoride from a
set of Morse vibrational energies.

II. Theory

A. Inverse Parametric Equations of Motion. Consider the
Schrödinger equation

with the normalization condition

whereλ is a parameter in the Hamiltonian. The wave function
ψn(λ) may be expanded in a set of orthonormal basis functions
|φi〉

in which Φ is the row vector whose elements are the sets|φi〉
and Cn(λ) is the column vector whose elements are the
expansion coefficientsci,n(λ). By substituting eq 3 into eqs 1
and 2 and multiplying byΦ†, we generate the eigenvalue
equation

with the normalization condition

whereH(λ) ) Φ†H(λ)Φ. Solving eqs 4 and 5 usually entails
the determination of the energiesEn(λ) and wave functions
ψn(λ). This may be readily accomplished through well-
developed diagonalization techniques for solving both full and
large sparse matrices.24,25However, the goal in this work is not
to find the energies but, rather, to elucidate the potential from
a set of energies to be measured through spectroscopic
techniques. The determination of the Hamiltonian parameters
(e.g., the expansion coefficients of the potential in a suitable
basis) in eqs 4 and 5 requires the solution of nonlinear equations.

Beginning with eqs 4 and 5, we derived a system of PEMs
for evolving a family of Schro¨dinger equations characterized
by parametersλ in the Hamiltonian.16-18 The procedure calls
for only a single traditional solution of the Schro¨dinger equation
at a reference parameter valueλ0, and then the PEMs are solved
as functions ofλ for the additional desired solutions. BothEn(λ)
andCn(λ) may be determined with PEMs as functions of the
Hamiltonian parameterλ, which might represent nuclear charge
or internuclear distance. Simultaneous multiparameter evolution
may also be treated. The quantum single-state parametric
equations of motion (ss-PEM) derived in ref 18 are

and

where the projection matrixN(λ), which makes the matrix (H(λ)

- En(λ) + N(λ)) invertible, is defined by

En(λ) is the eigenvalueEn(λ) multiplied by the identity matrix
I , and H′ represents dH/dλ. Equation 6 is a matrix formu-
lation of the Hellmann-Feynman theorem.16,26,27 In practice,
(H(λ) - En(λ) + N(λ)) is not explicitly inverted in eq 7, but
rather, an LU decomposition of the matrix is performed to
determine the derivative ofCn(λ). The ss-PEM method can
evolve thenth energy levelEn(λ) and its wave functionCn(λ)
from an initial solution atλ0 without knowledge of the other
energy levels or wave functions. Additional energies and wave
functions can be easily calculated by propagating more ss-PEM
equations.

The PEM method may be easily modified for the inverse
problem. If M energiesEn(λ2) are known atλ ) λ2 but M
parametersVj(λ2) (j ) 1, ..., M) within the Hamiltonian are
unknown atλ ) λ2, the ss-PEM technique can be utilized to
find theM unknown parametersVj(λ2). In practice, the number
of input energies and potential parameters need not be the same.
The only information, required by the PEM equations, is the
known set ofEn(λ2) at λ ) λ2 and an initial guess for the
Hamiltonian parameters atλ ) λ2, which we define to be the
values of the Hamiltonian parametersVj(λ1) at λ ) λ1. Once
the parametersVj(λ1) are initialized, the values ofEn(λ1) and
Cn(λ1) may be calculated at the beginning of the trajectoryλ )
λ1 through diagonalization. Hereλ plays the role of an
evolutionary independent variable characterizing the inverse
process of moving from the reference potential specified by
Vj(λ1) to its final inverted form ofVj(λ2). As in the forward PEM
solution ofEn(λ) andCn(λ) as functions ofλ, eq 7 may be used
to propagateCn(λ). Now, however, we want to use eq 6 to
propagateVj(λ) rather thanEn(λ). The Hellmann-Feynman
theorem in eq 6 may be rewritten to express the linear
relationship between the energy changes and the changes in the
Hamiltonian parameters

The column vectors dE(λ)/dλ and dv(λ)/dλ contain the changes
in the M energy levelsEn and theM Hamiltonian parameters
Vj, respectively, andT is a transformation matrix which
interconverts these changes. We defineT to make eqs 6 and 9
equivalent. The most important feature of the Hellmann-
Feynman theorem in the i-PEM is that it provides a linear
relationship between the energy and the potential changes.
Within eq 4 the relationship between the energies and the po-
tential parameters is highly nonlinear because the Hamiltonian,
the wave functions, and the energies depend on the potential in
a complicated manner. While most papers on chemical inversion
utilize the Hellmann-Feynman theorem in the guise of first-
order perturbation theory,11-15,28,29 the i-PEM method will
employ higher-order derivatives of the relation to propagate the
energy levels as well as the potential efficiently along a
trajectory toward the target energies and a realistic potential.

To apply the i-PEM technique, we must choose a trajectory
for the energy levels as a function of the perturbation parameter
λ to guide the evolution ofVj(λ). We have the freedom of
choosing the trajectory because there is no unique path between
Vj(λ1) andVj(λ2). Since we know the values ofEn(λ) at bothλ
) λ1 andλ ) λ2, we want to choose the first derivatives of the
energies with respect toλ in the interval [λ1,λ2] to ensure that
the correct energies atλ ) λ2 are achieved. The natural

H(λ)ψn(λ) ) En(λ)ψn(λ) (1)

〈ψn(λ)|ψn(λ)〉 ) 1 (2)

ψn(λ) ) ΦCn(λ) (3)

H(λ)Cn(λ) ) En(λ)Cn(λ) (4)

Cn
†(λ)Cn(λ) ) 1 (5)

dEn

dλ
) Cn

†(λ)H′Cn(λ) (6)

dCn

dλ
) (H(λ) - En(λ) +

N(λ))-1((Cn
†(λ)H′Cn(λ)) - H′)Cn(λ) (7)

N(λ) ) Cn(λ)Cn
†(λ) (8)

dE(λ)
dλ

) T
dv(λ)

dλ
(9)
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assumption is to choose the first derivatives for theM energies
within the interval [λ1,λ2] to be constant

While this choice accounts sensibly for where the energies
should be atλ2, it fails to consider the complicated landscape
of the potential as it deforms as a function ofλ. The potential
will not always be able to move smoothly with these linear
changes in the energies. This constitutes a representability
problem. Not every smooth trajectory for theM energies may
be represented by a smooth trajectory in theM potential
parameters. To treat this problem, we require a flexible strategy
for choosing the energy changes which efficiently balance the
two goals: (1) reaching the known energy levels atλ2 and (2)
keeping the potential trajectory smooth. The key to understand-
ing when an energy change may be represented by a smooth
potential change lies in the invertibility of the transformation
matrix T. For the inverse problem,T must be inverted to
generate the changes in the Hamiltonian parameters dv(λ)/dλ
from the known shifts in the energy levels. When theT matrix
is well-conditioned, its inverse may be easily calculated to solve
the linear algebraic eq 9. However, if some of the eigenvalues
of the T matrix are much smaller than the largest eigenvalue,
theT matrix will be nearly singular or ill-conditioned, and the
resulting potential will become unsmooth from the large changes
in the potential parameters.

A remedy for this undesirable behavior of the potential
trajectory may be found from the singular value decomposition
(SVD)1,30 of T

whereP andQ are orthonormal matrixes whose columns contain
the eigenvectors ofTTT andTTT, respectively. BothTTT and
TTT possess the same set of nonnegative eigenvalues,{σn

2}.
The diagonal matrixΣ contains the square roots of these
eigenvalues,{σn}. The singular value decomposition exists for
any (m × n) matrix, although we are specifically interested in
the transformation matrixT which is square (M × M) and
nonsymmetric. The SVD is a standard procedure for inverse
problems1,2 and is employed frequently in chemical inversion.11-15

However, in the i-PEM, we use the SVD for smoothing the
potential trajectory throughλ space rather than simply smoothing
the potential surface. The need for smoothing the trajectory only
arises because i-PEM are a path-following procedure. From the
singular value decomposition, it follows that

whereqn andpn denote thenth columns of the matrixesQ and
P. TheM orthonormal vectorspn span the column space of the
Hamiltonian matrixH. Because of this, we can expand the
energy changes in terms of these vectors

The magnitude of the expansion coefficientsan(λ) will reflect
the magnitude of the energy changes which will not be too large
for a smooth trajectory. Multiplying eq 13 byT-1 and employing
eqs 11 and 12, we can write the change in the Hamiltonian

parameters as

wherern(λ) is

Hence, the largest ratiosrn(λ) will determine the magnitude of
the potential changes. To achieve a rapid evolution inλ, we
want both the energy and potential trajectories to be as smooth
as possible. However, small-energy expansion coefficients do
not guarantee that the potential expansion coefficients will have
similar magnitudes because one or more eigenvaluesσn(λ) may
be small if theT is singular.

Within the i-PEM, we implement the following procedure
for dealing with transformation matrixesT with small eigen-
values:
1. At each step of the i-PEM throughλ, we choose energy
derivatives which would take us linearly from the current
position inλ to the target energies atλ2. These derivatives are
defined in eq 10, whereλ1 represents here the current value
rather than the initial value ofλ.
2. The SVD ofT is performed as in eq 11.
3. The energy expansion coefficients are calculated from eq 13,
in which we know the energy derivatives andp from the first
two steps.
4. With eq 15, we solve for the expansion coefficientsrn(λ) of
the potential change.
5. If the coefficientsrn(λ) are larger than a chosen threshold
valueε, they are not included in the calculation of the potential
change in eq 14. By eq 15, this is equivalent to setting thean(λ),
which corresponds to largern(λ), to zero.
6. Using the final potential change, we find the corresponding
changes inEn(λ) andCn(λ) with eqs 9 and 7, respectively.

An important property of the SVD is that neglecting the large
rn(λ) values gives us energy changes which are as close as
possible in a least-squares sense to the linear energy changes
while keeping the potential trajectory smooth according to a
threshold criterionε. Thus, the SVD helps to determine energy
changes which may be represented by locally realistic potential
changes.

B. Spectral Expansion of the Potential and Wave Func-
tion. In addition to the PEM stepping and the SVD strategy,
there are two other significant features of the present i-PEM
method: (1) the use of spectral elements to solve the vibrational
Schrödinger equation initially and to represent its PEM evolution
and (2) the expansion of the potential region to be modified
with Legendre polynomials. The spectral element method,
originally proposed by Patera,20 depends on the partitioning of
the coordinate space intop regions (or elements), within each
of which the underlying solution of the differential equation is
represented by a spectral expansion.21,22 The wave function in
each element is separately expanded in a basis set of Lagrangian
interpolants. While we will discuss spectral elements in the
context of the one-dimensional case, the technique is readily
extended to multiple dimensions through tensor products of the
Lagrangian interpolants in each dimension. The portion of the
wave function in thejth element will have the expansion

dEn(λ)

dλ
)

En(λ2) - En(λ1)

λ2 - λ1
(10)

T ) PΣQT (11)

Tqn ) σnpn (12)

dE(λ)

dλ
) ∑

n)1

M

an(λ)pn(λ) (13)

dv(λ)

dλ
) ∑

n)1

M

rn(λ)qn(λ) (14)

rn(λ) )
an(λ)

σn(λ)
(15)

ψn
j (x) ) ∑

i)0

N

ψn
j (xi)Li(x) (16)
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where the Lagrangian interpolants are

and xi are the roots of the derivative of theNth Legendre
polynomial plus the endpoints of the interval. These pointsxi

are usually called Gauss-Lobatto Legendre (GLL) nodes. The
ith Lagrangian interpolant for the points{xi} equals 1 at theith
grid point xi and vanishes identically at the other grid points.
The necessary integrals are performed with the Gauss-Lobatto
Legendre quadrature, which uses the same set of points{xi}.
As is well-known from the literature on the discrete variable
representation (DVR),31 the potential energy function translates
into a diagonal matrix in a basis of Lagrangian interpolants.
Whether the global domain is divided into elements or not, the
potential is diagonal. The advantage of domain decomposition
with Lagrangian interpolants is that the derivatives in the kinetic
energy operator only couple interpolants within the same
element. This increases the sparsity of the resulting Hamiltonian
matrix. Unlike standard finite element methods, the spectral
elements employ high-order expansions on each element to
maintain the exponential convergence of traditional spectral
methods. The elements are weakly coupled by the continuity
of the wave function. Lagrangian basis functions on the
boundary of two elements will have contributions to the kinetic
energy part of the Hamiltonian from both of these elements.
Because the spectral element method employs the variational
formulation of the Schro¨dinger equation

the first derivatives do not need to be explicitly matched at the
interfaces. The continuity of the first derivatives will automati-
cally be satisfied with an accuracy corresponding to the
convergence of the basis expansion.

By representing the Hamiltonian and with a different basis
expansion in each region, we can use spectroscopic energy data
in the spectral element method to modify only selected parts of
a model potential. Often, spectroscopic data are only relevant
to identifying certain features of the potential energy surface.
Permitting the whole surface to change would simply renderT
even more ill-conditioned. On an element where we wish to
evolve the potential, we may write the potential in terms of
that element’s Lagrangian interpolants

We transform the potentialV(x,λ) from the Lagrange basis to a
basis of Legendre polynomialsPj(x)

The expressions for the potential in eqs 19 and 20 are equivalent.
Because we utilize the Gauss-Lobatto Legendre points for the
interpolation, both potential expressions converge exponentially
fast asN increases. The spectral elements generate an accurate
local approximation for the wave function and potential. The
number of points in the spectral elementN + 1 will usually be

much larger than the number of known energy levelsM. This
is necessary to provide an accurate representation of the
underlying vibrational Schro¨dinger equation. Hence, there are
more unknown potential expansion coefficientsVj(λ) than energy
levelsM. We could still solve for the potential by supplementing
explicitly the energy equations with smoothness conditions in
the SVD, but we explore a different approach here. The
Legendre expansion for the potential in eq 20 may be truncated
to its first M terms

As described earlier, we then use this expression (eq 21) with
the Hellmann-Feynman theorem in eq 9 to solve for the
changes in theM potential parameters from the changes in the
M known energies. Since the Legendre expansion converges
exponentially for smooth functions, the truncation error will be
approximately equal to the first neglected term|VM(λ)| in eq
21.32 In more than one dimension, we would employ the tensor
products of Legendre polynomials in each coordinate. IfV(λ1)
andV(λ2) are not too different from each other, the truncation
error introduced into the initial potentialV(x,λ1) will provide a
method for estimating the numberM of known energy levels
En(λ2) required to obtain an accurate representation of the
potential atλ ) λ2. We may utilize the truncated potential
Ṽ(x,λ1) to calculate the initial energies and wave functions atλ
) λ1. Propagation of the potential parametersVj(λ) through the
λ parameter space may then be accomplished using the i-PEM
method with the SVD stepping strategy. Atλ ) λ2, the firstM
energies equal the known energies, and the potential corresponds
to an approximation of the desired potential. Because the
underlying inverse spectral problem is ill-posed, different
potentials could produce the same set ofM eigenvalues. In the
i-PEM algorithm, the problem is “regularized” by (i) starting
with a spatially smooth potential atλ ) λ1 and (ii) using the
SVD to select only smooth changes inVj(λ) for the evolution
to Vj(λ2).

III. Applications

To illustrate the i-PEM method, we consider the Morse
potential as a model for hydrogen fluoride. Although diatomic
molecules such as HF can be treated effectively through other
techniques such as RKR,10 they furnish a convenient testing
ground at this point for i-PEM. The Schro¨dinger equation for
HF may be written as

in which x ) r - r0 represents the displacement from the
equilibrium internuclear separationr0 and µ ) 19/20 is the
reduced mass. Atλ ) λ1, we choose an initial non-Morse
approximationV(x,λ1) to the Morse potentialVexact(x), which
will be viewed as the exact potential. Using the i-PEM
technique, we then evolve this initial guessV(x,λ1) through the
λ -parameter space to a more accurate approximationV(x,λ2),
which reproduces a supplied set of Morse energies. The Morse
potential has the form

Li(x) ) ∏k*i(x - xk)

∏k*i(xi - xk)
(17)

En ) ∫ p
2m

∇ψn
/∇ψn + ψnV(x)ψn dx (18)

V(x,λ) ) ∑
i)0

N

V(xi,λ)Li(x) (19)

V(x,λ) ) ∑
j)0

N

Vj(λ)Pj(x) (20)

Ṽ(x,λ) ) ∑
j)0

M-1

Vj(λ)Pj(x) (21)

- p
2µ

d2ψn(λ)

dx2
+ V(x,λ)ψn(λ) ) En(λ)ψn(λ) (22)

Vexact(x) ) D(e-2ax - 2e-ax) (23)
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where in the case of HF

The energiesEn
exact of the Morse model may be calculated to

high accuracy by the formula

Like spectroscopic data, these energiesEn
exactcorrespond to the

energies from a complete basis. In practice, we must use a finite
basis set whose matrix Hamiltonian in the projected space may
have an eigenvalue spectrum that deviates from the exact energy
spectrumEn

exact. By choosing a large basis set, however, we
can minimize these deviations.

To represent the wave functions, we partition the coordinate
space into three spectral elements, on each of which the wave
function is expanded in terms of Lagrangian interpolants at
Gauss-Lobatto Legendre (GLL) nodes. Mappings are per-
formed to match the three regions of coordinate space with the
domain [-1,1] of the Legendre polynomialsPn(u). The elements
I and III which cover the asymptotic regions of the potential
curve employ an algebraic mapping that stretches the domain
[-1,1] to (-∞,a] and [b,∞), respectively. The mapping for
element I has the form

in which LI (8 × 10-10) is a stretching parameter. We employ
a similar mapping for element III

whereLIII (4 × 10-9) is also a stretching parameter while the
finite domain [a,b] for element II requires only a linear mapping

The initial potential is allowed to vary in element II while
elements I and III, extending over the asymptotic regions, remain
fixed. We choose element II to include the portion of the Morse
potential that is less than-1 eV; with this criterion, we
calculated the values fora and b, which are approximately
-2.9357× 10-9 cm and 1.1119× 10-8 cm. The initial model
potential and the exact potential for element II are shown in
Figure 1. Weak coupling of the three spectral elements produces
a sparse Hamiltonian matrix with three overlapping blocks on
the diagonal. The overlap of the blocks imposes the essential
continuity of the wave function.

In addition to the approximation of the underlying Hilbert
space, which determines how well we reproduce the exact
energy levelsEn

exact, the accuracy of the final potential also
depends on the flexibility of the potential model. To maximize
flexibility and accuracy, we utilize an expansion in terms of
Legendre polynomials

to represent the potential on element 2 whereu, the mapped
variable, is defined on [-1,1], a andb are the fixed values of
the potential at the boundaries of elements I and II and elements
II and III, respectively, andN2 indicates the number of Lagrange
functions inside element II. Using spectral elements is important
because a Legendre expansion of the whole potential would
not converge spectrally, since the potential becomes infinite as
|x| approaches infinity. Furthermore, the GLL nodes of element
II are the optimalN2 interpolation points for generating a
Legendre polynomial expansion of orderN2 - 1 on element II.
Lagrange interpolants of one global element would not cor-
respond to the optimal interpolation points of the local Legendre
expansion. On element II, the sequence of expansion coefficients
Vn(λ), decreasing rapidly in magnitude, can be truncated after
M terms to produce a spectrally accurate approximation to the
potential atλ2.

The Morse potential curve for HF and the initial guess are
shown in Figure 1. Evolving the potential through theλ
parameter space with the first 14 energy levels produces a
potential which agrees with the exact Morse potential at the
GLL nodes to∼8 decimals. More accuracy can be achieved by
following more energy levels. The initial guess for the potential,
which was too high in energy, relaxes naturally into the exact
potential to satisfy the 14 known energy levels. For this
calculation, we used the first 14 energy levels of the (6,24,6)-
Hamiltonian matrix (theH matrix formed from 6 GLL cardinal
functions in elements I and III and 24 GLL cardinal functions
in element II) rather than the exact Morse energies. In a finite
basis set with the eigenvalues of the Hamiltonian matrix, the
energy levels of the truncated space may deviate from the exact
Morse energies in the complete Hilbert space. Figure 2 presents
the average error in the first 15 energy levels for basis sets of
different sizes when compared with the exact Morse energies.
The rapid lengthening of the bars with increasing basis set size
demonstrates the exponential convergence of the spectral
elements. Employing energies from the complete space (i.e.,
simulated experimental values) to determine a potential in the
truncated space will naturally introduce errors. The second
source of error in the potential arises from theM energy levels
that are followed to determine the firstM terms of the Legendre
expansion. By using energy levels from the truncated space as
the “known” Morse energies, we may suppress the first source

Figure 1. Initial model potential and the exact Morse potential
displayed in the region where they differ. Applying i-PEM with the
first 14 energy levels (ranging from-5.8598 to-1.1484 eV) yields a
potential which agrees with the exact Morse potential to about 8
decimals at the interpolation points. V(u,λ) ) a(1 - u) + b(1 + u) +

(1 - u)(1 + u) ∑
n)0

N2-3

Vn(λ)Pn(u) (28)

a ) wxπcµ
pD

D ) 49310 cm-1

w ) 4139 cm-1.

En
exact) -D + (n + 1/2)w -

(n + 1/2)
2w2

4D
(24)

x ) LI( u - 1
1.0001+ u) + a (25)

x ) LIII ( 1 + u
1.0001- u) + b (26)

x ) b - a
2

u + b + a
2

(27)
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of error in the calculation to explore more fully the error from
the truncation of the potential expansion atM terms with this
procedure. Figure 3 shows that the accuracy of the Legendre
potential expansion increases exponentially as additional terms
are added. The fast convergence of the spectral potential
expansion allows for extracting a nearly optimal amount of
information about the potential from the knownM energy levels.

Unlike traditional PEM where known changes in a reference
potential are employed to find new energy levels, the i-PEM
invert this process by using known changes in the energy levels
to determine the appropriate modifications of the reference
potential. The main difficulty of the inverse process arises from
the fact that small changes in energy can produce large changes
in the potential. In section II, we expressed this mathematically
by noting that the changes in energies and potential parameters
are connected by a transformation matrixT, as shown in eq 9.
Expressing the changes in the energies and the potential
parameters as in eqs 13 and 14 demonstrates how a small change
in the energy can correspond to a big change in the potential
when some of the eigenvaluesσi are small compared to the
size of the expansion coefficientsai. This difference in
magnitude is shown in Figure 4, where the values ofai andri

are given for different values ofi at the beginning of the i-PEM
evolution of 14 energy levels of the (6,24,6)-Hamiltonian. We
see that the magnitude of the potential expansion coefficient
r14 is much larger than any of the energy expansion coefficients
ai’s. Because the changes in the potential parameters will be so

much larger than the corresponding changes in the energies,
only small steps inλ will be permitted.

The i-PEM/SVD procedure, introduced in section II A,
surmounts this problem by following a path for the change in
energies that balances the smoothness in the potential and energy
trajectories. The optimal path will be one which allows us to
move as close to the final energies as possible after each step.
If we seta14 ) 0 in eqs 13 and 14, as prescribed in step 5 of
the i-PEM algorithm, thenr14 also vanishes, and we significantly
decrease the magnitude of the potential change. Theλ-Taylor
series for the potential now will not diverge. For the first step
in the HF calculation, Figure 5 presents the step size inλ as a
function of the Taylor Series order. By invoking high orders,
the i-PEM method takes a large step in the direction of the target
energies. The target energies are achieved when the step size
equals unity and all of the singular values are included. As the
norm of dE/dλ decreases with the steps of i-PEM, the
magnitudes of the energy expansion coefficientsai also diminish.
If the magnitude of the singular value 1/σ14 remains relatively
constant, the magnitude of the potential expansion coefficient
r14 (a14/σ14) will also decrease. In Table 1, the absolute values
of a14, σ14, and ri are reported as functions of the number of
steps. Because the magnitude ofr14 decreases significantly after
the first step, ther14 coefficient may then be included in the
potential expansion without disrupting the potential’s trajectory
through theλ parameter space. Energy errors in Table 1 are
measured by reporting the largest deviation observed in the 14
energy levels. After only sixλ steps, the i-PEM method reaches

Figure 2. Average error in the first 15 energy levels (eV) given for 7
different basis sets of spectral elements. The bar graph illustrates the
exponential convergence of the basis with the number of grid points.

Figure 3. Potential approximation from i-PEM converging exponen-
tially with the numberM of known energy levels. Each additional
energy level allows us to calculate another term in the Legendre
expansion and, hence, the spectral convergence. The potential error
(eV) is calculated from an average of the absolute errors at the
interpolation nodes.

Figure 4. Two expansion coefficientsai and ri for the energy and
potential changes displayed in a logarithmic plot of their absolute values
for the first i-PEM step. Because the magnitude ofr14 is greater than
1, we eliminate it from the potential’s Taylor series expansion inλ to
increase convergence.

Figure 5. Logarithm of the step size given as a function of the Taylor
series order inλ. The i-PEM’s ability to invoke high orders enables
large steps through theλ parameter space.
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the exact target energies and generates a potential which is
correct to 8 decimals.

IV. Conclusions

A new approach for using spectroscopic rovibrational data
to generate realistic potential surfaces has been presented. The
method, known as the inverse parametric equations of motion
(i-PEM), evolves from an initial model potential to an improved
potential as a function of the rovibrational energy levels. We
address the problem of finding an efficient energy path that leads
to the target spectroscopic energies. There is an underlying
representability problem in that not every trajectory of energy
levels may be represented by a smooth trajectory in the potential.
This problem appears in the ill-conditioned transformation
matrix T, which converts changes in the potential to changes
in the energies. With the singular value decomposition ofT, a
strategy was developed for moving systematically in the
direction of the target energies while keeping the trajectory of
the potential smooth.

Spectroscopic energy data are often relevant to refining
features in specific parts of the potential surface. However, DVR
expansions that cover the global domain in a single expansion
are often employed to represent large potential energy sur-
faces.33,34 We propose the use of spectral elements20-23 for
solving the rovibrational Schro¨dinger equation. As a domain
decomposition method, the spectral elements represent the
wavefunction with separate Lagrange basis expansions on each
element. Because it uses the variational formulation of the
Schrödinger equation, the technique only requires imposing
continuity of the wave function across elemental boundaries.
With spectral elements, the potential matrix is diagonal, as with
DVR, but the kinetic energy matrix is also sparse because the
derivatives only couple interpolants on the same element. While
the sparsity of the Hamiltonian is increased, spectral element
methods use sufficiently large expansions on each domain to
preserve the exponential convergence of the wave function with
the number of grid points that is characteristic of DVR and other
global spectral methods.21,22 Domain decomposition methods
provide a natural approach to focusing attention on a specific
region of the potential for improvement. We show that the
spectral elements may be combined with a Legendre expansion
on the elements selected for alteration.

Application of the i-PEM method was made to a simulated
inversion of the vibrational energy levels of hydrogen fluoride.
Using 14 energies, we evolved an initial approximation or the
HF potential to a final potential that was equivalent to the Morse
potential to within 10-8 eV. Additional accuracy may be
achieved by including more energy levels. The example
illustrates how the local Legendre expansion helps through its
spectral convergence in obtaining a maximum amount of
information from the known energy levels. Future work should
extend the method to multidimensional rovibrational systems
such as van der Waals clusters and problems with significant
noise. As a path-following method, the i-PEM differ signifi-
cantly from other inversion techniques currently employed for

spectroscopic inversion. The present work lays the foundation
for combining PEM and spectral elements to produce a new
tool for revealing the landscapes of potential energy surfaces.
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TABLE 1: Step Size, Taylor Series Order, Energy Error, and the Magnitudes of the Expansion Coefficients for the Energies
and the Potentials of the Six i-PEM Steps of the HF Calculation

step number step size order energy error |a14| |σ14| |r14|
1 0.693 11 -9.97× 10-2 1.51× 10-4 4.11× 10-5 3.67
2 0.234 9 -7.64× 10-2 1.34× 10-5 1.67× 10-5 8.02× 10-1

3 0.345 10 -5.01× 10-2 5.67× 10-6 1.49× 10-4 3.80× 10-1

4 0.408 9 -2.96× 10-2 4.35× 10-9 1.35× 10-5 3.21× 10-4

5 0.263 6 -2.18× 10-2 1.81× 10-6 1.29× 10-5 0.140
6 1.000 9 0 1.86× 10-6 1.28× 10-5 0.145
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