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A system of differential equations is presented for evolving the quantum potential as a function of its energy
levels. These inverse parametric equations of motion (i-PEM) offer a novel approach to determining quantum
molecular potentials from spectroscopic energy levels. The technique uses singular-value decomposition to
ensure that the chosen trajectory through energy space is representable by a smooth potential trajectory. The
i-PEM are facilitated by discretizing the vibrational Stflirgger equation with a spectral element method
which combines the features of Hamiltonian sparsity and exponential convergence of the wave function.
Often, spectroscopic data significantly affect only a specific region of the potential, and the spectral elements
offer a natural framework for identifying the appropriate portion of the potential. The i-PEM with spectral
elements are applied in a simulation for determining the potential of hydrogen fluoride.

I. Introduction method may be modified to follow the potential as a function

The rotational and vibrational energy level spacings of a of the energy level$’ These inverse parametric equations of

molecule contain valuable information about the underlying Metion (i-PEM) allow for the evolution of an initial model
potential energy surface. The ability to transform spectroscopic Potential to a final potential which is fully consistent with the
energy data into useful potential energy surfaces has been arpPectroscopically observed energy levels. Most iterative tech-
important source of chemical information, but practical dif- nidues for spectral inversion linearize the rglatlonshlp between
ficulties have often limited the ability to extract quantitative the energy and the potential unknowns by invoking first-order
potential information. Since the points on the potential surface Perturbation theory* The i-PEM can naturally use higher orders
are electronic energies, a robust inversion procedure would alsoof perturbation theory to take large steps along a trajectory to
furnish a novel approach to supplement electronic structure identify the potential. Only an initial solution of the ScHioger
calculations within the BornOppenheimer approximation. —€quation is required in the iterative inverse procedure, after
Inversion methods analogous to those for potential surfaceswhich the i-PEM formulation implicitly reveals the appropriate
apply beyond chemistry to ill-posed problefdsn areas as solution. Second, the present approach applies the spectral
diverse as medicifeand engineering. Within electronic element methoé?-22which has been used extensively in solving
structure, both the density functional theory (DFEnd the partial differential equations in engineering, for the solution of
N-representability problefn® may be characterized as ill-posed the rovibrational Schidinger equation. The advantages of
problems. lll-posed problems arise when there is not enoughspectral elements include the exponential convergence of
information to define a mathematically precise answer and yet spectral methods, matrix sparsity, and weak coupling between
intuitively there seems to be enough information to generate a different regions of the potential surface. This last feature of
realistic solution through the inclusion of additional natural spectral elements is especially useful because it allows for
constraints such as smoothness. While the Rydbitgin— altering just a piece of the potential energy surface without
Rees (RKR) technique for calculating potential curves of modifying the other pieces. Often, the spectroscopic data will
diatomic molecules has existed for many yednsiore general  only be relevant for improving a specific region of the surface,
techniques that employ the regularization machinery for ill-posed and the division of the potential into elements is ideal for
problems have recently been developed to determine theaccomplishing these selective changes. Third, the portion of the
_potent_ial energy surfaces for diatomic and other_ molecules potential to be modified is expanded in terms of Legendre
including van der Waals clusters from spectroscopic #até. polynomials whose coefficients are evolved by the i-PEM as

The purpose of this paper is to introduce a new approach for ¢, tions of the spectral energies. The exponential convergence
the inversion of spectroscopic energy data. The present method,¢ e Legendre polynomials over a finite interval helps to
differs in several key respects from existing inversion tech- o .-t the maximum amount of information from the known
niques. Earlier works have introdgced a system of Qifferential energieg? Finally, the method possesses a strategy for making
;equanons, knqwn as Ithe para(;net_rlc equations of met'On. (PEM)]; efficient the evolution from the initial spectral energies to the
p(iarra?::tre%)s/ irﬂ%inlj@rzﬁtzn?ér;rlgﬂ?afg\\:\?ecgnﬁwTwiwl:rr:gtlli?gl\s;l % final target energies. At each point on the trajectory, the i-PEM

' choose the differential energy changes to make the energies at
t Harvard University. the next point as close as possible to the target energies while
* Princeton University. preventing the potential from becoming ill-behaved. To illustrate
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this technique for inversion, we utilize the i-PEM to simulate
the determination of the potential for hydrogen fluoride from a
set of Morse vibrational energies.

Il. Theory

A. Inverse Parametric Equations of Motion. Consider the
Schralinger equation

HA)y(4) = E(A)y,(4) (1)
with the normalization condition
W (Mlya(A)0= 1 (2

wherel is a parameter in the Hamiltonian. The wave function
¥n(d) may be expanded in a set of orthonormal basis functions

i

Yu(h) = ®C(2) 3

in which @ is the row vector whose elements are the $&(3
and Cy(4) is the column vector whose elements are the
expansion coefficients; n(4). By substituting eq 3 into eqs 1
and 2 and multiplying by®*, we generate the eigenvalue
equation

H(A)C(2) = E(A)C(4) (4)
with the normalization condition
CiAC,(A) =1 (5)

whereH(1) = ®TH(1)®. Solving eqgs 4 and 5 usually entails
the determination of the energi€s(1) and wave functions
¥n(A). This may be readily accomplished through well-
developed diagonalization techniques for solving both full and
large sparse matricé42>However, the goal in this work is not
to find the energies but, rather, to elucidate the potential from

a set of energies to be measured through spectroscopic

techniques. The determination of the Hamiltonian parameters
(e.g., the expansion coefficients of the potential in a suitable
basis) in egs 4 and 5 requires the solution of nonlinear equations
Beginning with egs 4 and 5, we derived a system of PEMs
for evolving a family of Schidinger equations characterized
by parameterd in the Hamiltonian'®-18 The procedure calls
for only a single traditional solution of the Scllinger equation
at a reference parameter valugand then the PEMs are solved
as functions of. for the additional desired solutions. BdEh(4)
and Cy(4) may be determined with PEMs as functions of the
Hamiltonian parametet, which might represent nuclear charge
or internuclear distance. Simultaneous multiparameter evolution

may also be treated. The quantum single-state parametric

equations of motion (ss-PEM) derived in ref 18 are

n

5 = CiH'C@)

(6)

and

n

di

=HE@) - E() +
N(2) *(CAAH'C,(A)) — H)C,2) (7)

where the projection matriX(1), which makes the matrix{(1)
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— En(1) + N(4)) invertible, is defined by

(8)

En(1) is the eigenvalu&,(1) multiplied by the identity matrix

I, and H' represents Id/di. Equation 6 is a matrix formu-
lation of the Hellmanr-Feynman theorerif:26.27In practice,
(H(A) — En(4) + N(A)) is not explicitly inverted in eq 7, but
rather, an LU decomposition of the matrix is performed to
determine the derivative ofy(1). The ss-PEM method can
evolve thenth energy leveE,(1) and its wave functiorC,(4)
from an initial solution atlo without knowledge of the other
energy levels or wave functions. Additional energies and wave
functions can be easily calculated by propagating more ss-PEM
equations.

The PEM method may be easily modified for the inverse
problem. If M energiesk,(4,) are known atl = A, but M
parametergj(12) (j = 1, ..., M) within the Hamiltonian are
unknown ati = 1,, the ss-PEM technique can be utilized to
find the M unknown parameterg(4,). In practice, the number
of input energies and potential parameters need not be the same.
The only information, required by the PEM equations, is the
known set ofEn(1,) at A = A, and an initial guess for the
Hamiltonian parameters at= A,, which we define to be the
values of the Hamiltonian parametergli) at 4 = 1. Once
the parameters;(1,) are initialized, the values dEy(4,) and
Cn(41) may be calculated at the beginning of the trajectory
A1 through diagonalization. Heré plays the role of an
evolutionary independent variable characterizing the inverse
process of moving from the reference potential specified by
vi(A1) to its final inverted form ofj(42). As in the forward PEM
solution ofEn(4) andCr(4) as functions ofl, eq 7 may be used
to propagateCn(1). Now, however, we want to use eq 6 to
propagater;(A) rather thanEn(A). The Hellmana-Feynman
theorem in eq 6 may be rewritten to express the linear
relationship between the energy changes and the changes in the
Hamiltonian parameters

N(1) = C,(A)Cl(A)

dE() _ dv(?)
T A

The column vectorsE(1)/dA and d/(4)/dA contain the changes
in the M energy levelsE, and theM Hamiltonian parameters
vj, respectively, andT is a transformation matrix which
interconverts these changes. We deflne®® make egs 6 and 9
equivalent. The most important feature of the Hellmann
Feynman theorem in the i-PEM is that it provides a linear
relationship between the energy and the potential changes.
Within eq 4 the relationship between the energies and the po-
tential parameters is highly nonlinear because the Hamiltonian,
the wave functions, and the energies depend on the potential in
a complicated manner. While most papers on chemical inversion
utilize the Hellmanar-Feynman theorem in the guise of first-
order perturbation theory}; 152829 the i-PEM method will
employ higher-order derivatives of the relation to propagate the
energy levels as well as the potential efficiently along a
trajectory toward the target energies and a realistic potential.
To apply the i-PEM technique, we must choose a trajectory
for the energy levels as a function of the perturbation parameter
A to guide the evolution ok;(1). We have the freedom of
choosing the trajectory because there is no unique path between
vi(A1) andvj(d2). Since we know the values @&,(4) at bothA
= A1 and1 = 1,, we want to choose the first derivatives of the
energies with respect toin the interval },,4;] to ensure that
the correct energies at = 1, are achieved. The natural

9)
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assumption is to choose the first derivatives forMhenergies
within the interval f1,47] to be constant

dE,(4) E\(4) — Ej(4y)
- A4,

(10)

While this choice accounts sensibly for where the energies
should be afl,, it fails to consider the complicated landscape
of the potential as it deforms as a function/ofThe potential

will not always be able to move smoothly with these linear
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parameters as

—dV(l) = S A)g,(4 14
o2 r(A)0q(4) (14)
whererp(4) is
_aW

changes in the energies. This constitutes a representabilityri€nce, the largest ratiog(4) will determine the magnitude of

problem. Not every smooth trajectory for thé energies may

be represented by a smooth trajectory in tke potential
parameters. To treat this problem, we require a flexible strategy
for choosing the energy changes which efficiently balance the
two goals: (1) reaching the known energy leveldaand (2)
keeping the potential trajectory smooth. The key to understand-

the potential changes. To achieve a rapid evolutiod,imve
want both the energy and potential trajectories to be as smooth
as possible. However, small-energy expansion coefficients do
not guarantee that the potential expansion coefficients will have
similar magnitudes because one or more eigenvaty@3$ may

be small if theT is singular.

ing when an energy change may be represented by a smooth Within the i-PEM, we implement the following procedure

potential change lies in the invertibility of the transformation
matrix T. For the inverse probleml must be inverted to
generate the changes in the Hamiltonian parametepy/di
from the known shifts in the energy levels. When Thenatrix

is well-conditioned, its inverse may be easily calculated to solve
the linear algebraic eq 9. However, if some of the eigenvalues
of the T matrix are much smaller than the largest eigenvalue,
the T matrix will be nearly singular or ill-conditioned, and the
resulting potential will become unsmooth from the large changes
in the potential parameters.

A remedy for this undesirable behavior of the potential
trajectory may be found from the singular value decomposition
(SVD)L30of T

T=pPZQ" (1)
whereP andQ are orthonormal matrixes whose columns contain
the eigenvectors of TT andTTT, respectively. BotirTT and
TTT possess the same set of nonnegative eigenvalugy..

The diagonal matrixX contains the square roots of these
eigenvalues{on}. The singular value decomposition exists for
any (m x n) matrix, although we are specifically interested in
the transformation matrix which is square Nl x M) and
nonsymmetric. The SVD is a standard procedure for inverse
problem32and is employed frequently in chemical inverstrs
However, in the i-PEM, we use the SVD for smoothing the
potential trajectory through space rather than simply smoothing
the potential surface. The need for smoothing the trajectory only
arises because i-PEM are a path-following procedure. From the
singular value decomposition, it follows that

Tq,=o.p, (12)
whereq, andp, denote theith columns of the matrixe® and
P. TheM orthonormal vectorg, span the column space of the
Hamiltonian matrixH. Because of this, we can expand the
energy changes in terms of these vectors

dE()) M

T ,,Zla"a)p"w (13)

The magnitude of the expansion coefficiea$l) will reflect

the magnitude of the energy changes which will not be too large
for a smooth trajectory. Multiplying eq 13 By~ and employing
egs 11 and 12, we can write the change in the Hamiltonian

for dealing with transformation matrixeg with small eigen-
values:

1. At each step of the i-PEM through we choose energy
derivatives which would take us linearly from the current
position inA to the target energies at. These derivatives are
defined in eq 10, wheré; represents here the current value
rather than the initial value of.

2. The SVD ofT is performed as in eq 11.

3. The energy expansion coefficients are calculated from eq 13,
in which we know the energy derivatives apdrom the first
two steps.

4. With eq 15, we solve for the expansion coefficien{d) of

the potential change.

5. If the coefficientsrn(1) are larger than a chosen threshold
valuee, they are not included in the calculation of the potential
change in eq 14. By eq 15, this is equivalent to settingtf®,
which corresponds to largg(4), to zero.

6. Using the final potential change, we find the corresponding
changes irEy(4) and Cy(4) with egs 9 and 7, respectively.

An important property of the SVD is that neglecting the large
ra(1) values gives us energy changes which are as close as
possible in a least-squares sense to the linear energy changes
while keeping the potential trajectory smooth according to a
threshold criteriore. Thus, the SVD helps to determine energy
changes which may be represented by locally realistic potential
changes.

B. Spectral Expansion of the Potential and Wave Func-
tion. In addition to the PEM stepping and the SVD strategy,
there are two other significant features of the present i-PEM
method: (1) the use of spectral elements to solve the vibrational
Schrainger equation initially and to represent its PEM evolution
and (2) the expansion of the potential region to be modified
with Legendre polynomials. The spectral element method,
originally proposed by Patefd depends on the partitioning of
the coordinate space inforegions (or elements), within each
of which the underlying solution of the differential equation is
represented by a spectral expansib?? The wave function in
each element is separately expanded in a basis set of Lagrangian
interpolants. While we will discuss spectral elements in the
context of the one-dimensional case, the technique is readily
extended to multiple dimensions through tensor products of the
Lagrangian interpolants in each dimension. The portion of the
wave function in thgth element will have the expansion

N

) =S PLoLI(X)

(16)



Quantum Molecular Potentials J. Phys. Chem. A, Vol. 104, No. 43, 2000773

where the Lagrangian interpolants are much larger than the number of known energy lewdlsThis
is necessary to provide an accurate representation of the
(X — %) underlying vibrational Schidinger equation. Hence, there are
L(x) = a7 more unknown potential expansion coefficienf{&) than energy
|_| =i~ %) levelsM. We could still solve for the potential by supplementing

explicitly the energy equations with smoothness conditions in
and x; are the roots of the derivative of théth Legendre the SVD, but we explore a different approach here. The
polynomial plus the endpoints of the interval. These poigts  Legendre expansion for the potential in eq 20 may be truncated
are usually called Gaus4.obatto Legendre (GLL) nodes. The to its first M terms
ith Lagrangian interpolant for the poirs} equals 1 at théh
grid pointx and vanishes identically at the other grid points. . M-1
The necessary integrals are performed with the Galsbatto V(xA) = Z y(A)P,(X) (21)
Legendre quadrature, which uses the same set of ppuits =
As is well-known from the literature on the discrete variable
representation (DVR3L the potential energy function translates As described earlier, we then use this expression (eq 21) with
into a diagonal matrix in a basis of Lagrangian interpolants. the Hellmann-Feynman theorem in eq 9 to solve for the
Whether the global domain is divided into elements or not, the changes in th&/ potential parameters from the changes in the
potential is diagonal. The advantage of domain decomposition M known energies. Since the Legendre expansion converges
with Lagrangian interpolants is that the derivatives in the kinetic €xponentially for smooth functions, the truncation error will be
energy operator only couple interpolants within the same approximately equal to the first neglected tefom(4)| in eq
element. This increases the sparsity of the resulting Hamiltonian 21 In more than one dimension, we would employ the tensor
matrix. Unlike standard finite element methods, the spectral Products of Legendre polynomials in each coordinat&/(if)
elements employ high-order expansions on each element toandV(42) are not too different from each other, the truncation
maintain the exponential convergence of traditional spectral rror introduced into the initial potenti&(x,41) will provide a
methods. The elements are weakly coupled by the continuity method for estimating the numbt of known energy levels
of the wave function. Lagrangian basis functions on the En(12) required to obtain an accurate representation of the
boundary of two elements will have contributions to the kinetic Potential atZ = 1,. We may utilize the truncated potential
energy part of the Hamiltonian from both of these elements. V(X41) to calculate the initial energies and wave functions at

Because the spectral element method employs the variationaF= 41. Propagation of the potential parametefd) through the
formulation of the Schinger equation A parameter space may then be accomplished using the i-PEM

method with the SVD stepping strategy. At= 1,, the firstM
A . energies equal the known energies, and the potential corresponds
En=f%wnvwn+wnv(x)wn dx (18) to an approximation of the desired potential. Because the
underlying inverse spectral problem is ill-posed, different

the first derivatives do not need to be explicitly matched at the Potentials could produce the same seMbeigenvalues. In the

interfaces. The continuity of the first derivatives will automati- "PEM algorithm, the problem is “regularized” by (i) starting

cally be satisfied with an accuracy corresponding to the With @ spatially smooth potential dt= 1, and (ii) using the

convergence of the basis expansion. SVD to select only smooth changes) for the evolution
By representing the Hamiltonian and with a different basis to j(%2).

expansion in each region, we can use spectroscopic energy data

in the spectral qlement method to modjfy only selected parts of ||| Applications

a model potential. Often, spectroscopic data are only relevant

to identifying certain features of the potential energy surface.

Permitting the whole surface to change would simply refider

even more ill-conditioned. On an element where we wish to

evolve the potential, we may write the potential in terms of

that element’s Lagrangian interpolants

To illustrate the i-PEM method, we consider the Morse
potential as a model for hydrogen fluoride. Although diatomic
molecules such as HF can be treated effectively through other
techniques such as RKR,they furnish a convenient testing
ground at this point for i-PEM. The Schdimger equation for

N HF may be written as

VxA) = S VAL, 19
(x,4) 2 (AL (19) Y ()

2u gy

+VxA)y,4) = EMv,d)  (22)
We transform the potentidl(x,4) from the Lagrange basis to a

basis of Legendre polynomiafg(x) in which x = r — ro represents the displacement from the

equilibrium internuclear separationy and u = 19, is the
_ reduced mass. AL = 11, we choose an initial non-Morse
V(x4) = Z)”i(’l)PJ(X) (20) approximationV(x,4;) to the Morse potential/exac(X), Which

= will be viewed as the exact potential. Using the i-PEM

The expressions for the potential in eqs 19 and 20 are equivalent.teChn'que’ we then evolve this initial gues,A,) through the

Because we utilize the Gauskobatto Legendre points for the A -parameter space to a more accurate apprOX|_rnait(mi2),
interpolation, both potential expressions converge exponentially which _reproduces a supplied set of Morse energies. The Morse
fast asN increases. The spectral elements generate an accuraté’o'[emIal has the form

local approximation for the wave function and potential. The Coax o

number of points in the spectral eleméht- 1 will usually be Vexad®) =D(e ™" — 2e ™) (23)

N
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0 The initial potential is allowed to vary in element Il while
elements | and lll, extending over the asymptotic regions, remain
fixed. We choose element Il to include the portion of the Morse
potential that is less thar-1 eV; with this criterion, we
calculated the values faa and b, which are approximately
—2.9357x 10°cm and 1.1119< 1078 cm. The initial model
potential and the exact potential for element Il are shown in
Figure 1. Weak coupling of the three spectral elements produces
a sparse Hamiltonian matrix with three overlapping blocks on
the diagonal. The overlap of the blocks imposes the essential
continuity of the wave function.
In addition to the approximation of the underlying Hilbert
Mo oon 106 a0 a0 706 oo 1106 space, which determines how well we reproduce the exact
Displacement xx, (10°® om) energy levelsES®® the accuracy of the final potential also
depends on the flexibility of the potential model. To maximize
flexibility and accuracy, we utilize an expansion in terms of
Legendre polynomials

L

& 0

IS

Initial and Exact Potentials (eV)

Figure 1. Initial model potential and the exact Morse potential
displayed in the region where they differ. Applying i-PEM with the
first 14 energy levels (ranging from5.8598 to—1.1484 eV) yields a
potential which agrees with the exact Morse potential to about 8

decimals at the interpolation points. V(ud) = a(l—u) + b(1+u) +
Np—3
where in the case of HF (1—u)(1+u) v (A)PL(U) (28)
&
_ U
a=w, "D to represent the potential on element 2 wheréhe mapped
_1 variable, is defined on-{1,1], a andb are the fixed values of
D =49310cm the potential at the boundaries of elements | and Il and elements

[l and IIl, respectively, and\ indicates the number of Lagrange

functions inside element Il. Using spectral elements is important
because a Legendre expansion of the whole potential would
not converge spectrally, since the potential becomes infinite as
|X| approaches infinity. Furthermore, the GLL nodes of element

w=4139cm™.

The energie€*® of the Morse model may be calculated to
high accuracy by the formula

(n+1/2)2v\/2 Il are the optimalN, interpolation points for generating a
Eﬁxam: -D+(n+ 1/2)W — (24) Legendre polynomial expansion of ordés — 1 on element Il
4D Lagrange interpolants of one global element would not cor-

respond to the optimal interpolation points of the local Legendre
! ) . __.._expansion. On element Il, the sequence of expansion coefficients
energies from a comp_lete ba_S|s. I_n practice, we must use af'n'teun(/l), decreasing rapidly in magnitude, can be truncated after
basis set yvhose matrix Hamiltonian n the projected space may ;' tormg 1o produce a spectrally accurate approximation to the
have an eigenvalue spectrum that deviates from the exact energ){)otential atl,
spectrumE,™*. By choosing a large basis set, however, we "~ The Morse potential curve for HF and the initial guess are
can minimize these deviations. o , shown in Figure 1. Evolving the potential through the

To rgpresent the wave functions, we partition thg coordinate parameter space with the first 14 energy levels produces a
space into three spectral elements, on each of which the waveystential which agrees with the exact Morse potential at the
function is expanded in terms of Lagrangian |_nterpolants at GLL nodes to~8 decimals. More accuracy can be achieved by
Gauss-Lobatto Legendre (GLL) nodes. Mappings are per- fo|iowing more energy levels. The initial guess for the potential,
forme_d to match the three regions of c_oordmate space with the\ynhich was too high in energy, relaxes naturally into the exact
domain [-1,1] of the Legendre polynomials(u). The elements  potential to satisfy the 14 known energy levels. For this
I and 1l which cover the.asymptptlc regions of the potentlall calculation, we used the first 14 energy levels of the (6,24,6)-
curve employ an algebraic mapping that stretches the domainyyamijtonian matrix (théd matrix formed from 6 GLL cardinal
[~1,1] to (~e,a] and [b,0), respectively. The mapping for  fynctions in elements 1 and Il and 24 GLL cardinal functions

Like spectroscopic data, these enerdi&€ correspond to the

element | has the form in element I1) rather than the exact Morse energies. In a finite
u—1 basis set with the eigenvalues of the Hamiltonian matrix, the
X= L,(m) +a (25) energy levels of the truncated space may deviate from the exact

Morse energies in the complete Hilbert space. Figure 2 presents

the average error in the first 15 energy levels for basis sets of

different sizes when compared with the exact Morse energies.

The rapid lengthening of the bars with increasing basis set size

1+u demonstrates the exponential convergence of the spectral

X= Lm(m) +b (26) elements. Employing energies from the complete space (i.e.,

simulated experimental values) to determine a potential in the

whereLy (4 x 1079) is also a stretching parameter while the truncated space will naturally introduce errors. The second
finite domain p,b] for element Il requires only a linear mapping ~ source of error in the potential arises from teenergy levels
that are followed to determine the fifgt terms of the Legendre

_ b— au + b+a 27) expansion. By using energy levels from the truncated space as

2 2 the “known” Morse energies, we may suppress the first source

in which L, (8 x 10719) is a stretching parameter. We employ
a similar mapping for element 111

X
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Figure 2. Average error in the first 15 energy levels (eV) given for 7 gigure 4. Two expansion coefficients; and r; for the energy and
different basis sets of spectral elements. The bar graph illustrates thepotential changes displayed in a logarithmic plot of their absolute values
exponential convergence of the basis with the number of grid points. for the first i-PEM step. Because the magnitude afis greater than

1, we eliminate it from the potential’'s Taylor series expansioh fo
increase convergence.

2
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- Vi,exact 1
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Figure 3. Potential approximation from i-PEM converging exponen-
tially with the numberM of known energy levels. Each additional
energy level allows us to calculate another term in the Legendre
expansion and, hence, the spectral convergence. The potential erro
(eV) is calculated from an average of the absolute errors at the
interpolation nodes.

Figure 5. Logarithm of the step size given as a function of the Taylor
eries order inl. The i-PEM’s ability to invoke high orders enables
arge steps through the parameter space.

much larger than the corresponding changes in the energies,

of error in the calculation to explore more fully the error from  ©nly small steps irt will be permitted.
the truncation of the potential expansionhatterms with this The i-PEM/SVD procedure, introduced in section II A,
procedure. Figure 3 shows that the accuracy of the Legendresurmounts this problem by following a path for the change in
potential expansion increases exponentially as additional termsenergies that balances the smoothness in the potential and energy
are added. The fast convergence of the spectral potentialtrajectories. The optimal path will be one which allows us to
expansion allows for extracting a nearly optimal amount of move as close to the final energies as possible after each step.
information about the potential from the knowhenergy levels. If we setays = 0 in eqs 13 and 14, as prescribed in step 5 of
Unlike traditional PEM where known changes in a reference the i-PEM algorithm, them also vanishes, and we significantly
potential are employed to find new energy levels, the i-PEM decrease the magnitude of the potential change.Athaylor
invert this process by using known changes in the energy levelsseries for the potential now will not diverge. For the first step
to determine the appropriate modifications of the reference in the HF calculation, Figure 5 presents the step sizé as a
potential. The main difficulty of the inverse process arises from function of the Taylor Series order. By invoking high orders,
the fact that small changes in energy can produce large changethe i-PEM method takes a large step in the direction of the target
in the potential. In section Il, we expressed this mathematically energies. The target energies are achieved when the step size
by noting that the changes in energies and potential parametergquals unity and all of the singular values are included. As the
are connected by a transformation maffixas shown in eq 9.  norm of E/d1 decreases with the steps of i-PEM, the
Expressing the changes in the energies and the potentialmagnitudes of the energy expansion coefficienaso diminish.
parameters as in eqs 13 and 14 demonstrates how a small chandé the magnitude of the singular valuecl4 remains relatively
in the energy can correspond to a big change in the potential constant, the magnitude of the potential expansion coefficient
when some of the eigenvalues are small compared to the  ri4 (214014) Will also decrease. In Table 1, the absolute values
size of the expansion coefficients;. This difference in of aj4, 014, @andr; are reported as functions of the number of
magnitude is shown in Figure 4, where the valuesyaindr; steps. Because the magnitude afdecreases significantly after
are given for different values ofat the beginning of the i-PEM  the first step, the14 coefficient may then be included in the
evolution of 14 energy levels of the (6,24,6)-Hamiltonian. We potential expansion without disrupting the potential’s trajectory
see that the magnitude of the potential expansion coefficient through thed parameter space. Energy errors in Table 1 are
ri4is much larger than any of the energy expansion coefficients measured by reporting the largest deviation observed in the 14
a’s. Because the changes in the potential parameters will be soenergy levels. After only six steps, the i-PEM method reaches
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TABLE 1: Step Size, Taylor Series Order, Energy Error, and the Magnitudes of the Expansion Coefficients for the Energies
and the Potentials of the Six i-PEM Steps of the HF Calculation

step number step size order energy error |aw4| |o14] [P 4]
1 0.693 11 —9.97x 102 1.51x 104 411x 10°° 3.67
2 0.234 9 —7.64x 1072 1.34x 10°° 1.67x 10°° 8.02x 10t
3 0.345 10 —5.01x 10°? 5.67x 10°© 1.49x 104 3.80x 101
4 0.408 9 —2.96x 1072 4.35x 107° 1.35x 10°° 3.21x 10
5 0.263 6 —2.18x 1072 1.81x 10°® 1.29x 10°° 0.140
6 1.000 9 0 1.86< 1076 1.28x 10°° 0.145

the exact target energies and generates a potential which isspectroscopic inversion. The present work lays the foundation
correct to 8 decimals. for combining PEM and spectral elements to produce a new
tool for revealing the landscapes of potential energy surfaces.
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