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Molecular vibrational frequency shifts are modeled by treating the vibrating solute as a breathing sphere with
repulsive (hard-core) and attractive (mean field) solvent-solute interactions. The solvent-induced repulsive
force exerted on the normal mode of a vibrating solute molecule is obtained using the derivative of the
molecular volume with respect to the normal mode coordinate in conjunction with an analytical expression
for the chemical potential of a hard sphere solute immersed in a solvent of hard spheres. The volume derivative
of the vibrating solute molecule is calculated by considering the solvent molecule as an assembly of
interpenetrating or fused hard spheres whose individual motions are given by normal mode coordinates. The
calculation of the repulsive force is simplified by equating the normal mode volume change of the multisphere
solute to a volume change of a spherical solute. The anisotropy of the solute-solvent system is used to adjust
the spherical solute diameter so its chemical potential matches the chemical potential of the multisphere
solute. This adjustment is critical to correctly scale the spherical volume change to the anisotropy of the
polyatomic solute. For the diatomic solutes, N2 and HCl, the breathing sphere model predicts repulsive forces
and frequency shifts that closely agree with a near exact diatomic hard sphere model. Applied to the three
different CO2 vibrations, the explicit calculation of the different excluded volume changes associated with
each vibration gives predicted frequency shifts that agree with available pressure-dependent frequency data.

I. Introduction

Changes in the molecular spectra of solute molecules are an
important experimental probe of intermolecular interactions in
the liquid state. Gas-to-liquid vibrational frequency shifts provide
a quantitative measure of the mean force exerted by a solvent
on a vibrating solute and an experimental test of solvent-solute
interaction models.1 Hard sphere fluids are useful model fluids
for calculating repulsive interactions between the solvent and
the solute,2,3 but analytical solutions of the solvent-induced
repulsive force on the vibrating solute have been limited
primarily to diatomic solute forms.4,5 This paper describes a
breathing sphere solute model that is more generally applicable
to the variety of complex motions associated with normal
vibrational modes of polyatomic solutes. In the breathing sphere
model, the volume derivative of a vibrating polyatomic solute,
∂V x/∂Q, is used within a hard sphere model to estimate the
repulsive force exerted by the solvent on the solute vibrational
mode,Q, and the effect of this force on the observed gas-to-
liquid vibrational frequency shift. The breathing sphere model
is patterned after other hard sphere models in which attractive
interactions are treated as a mean field continuum.4,5 The
strength of the attractive interactions are expressed using a single
parameter whose magnitude is normally fixed using experi-
mental frequency data.

Schweizer’s and Chandler’s seminal work4 concerning solvent
effects on molecular vibrations underscores the importance of
repulsive solvent-solute interactions on molecular vibrations
and how hard sphere fluids can be used to estimate these forces.
In their work, the force along the bond of a diatomic solute
represented by two overlapping spheres (or cavities) is calculated
using the cavity distribution function of two interpenetrating

hard spheres in a hard sphere solvent. This approach has been
used in modeling solvation effects on diatomic and polyatomic
solutes by Chandler and others,4,6-12 particularly Ben-Amotz
and co-workers,13-16 who extended Chandler’s original work
by developing closed analytical expressions for the average hard
sphere force along the “bond” separating the solute spheres.5

Polyatomic solutes have been adapted to the two-cavity model
by representing the polyatomic as a pseudodiatomic, in which
each cavity represents a group of atoms in the polyatomic
molecule on either side of the bond of interest.4,14,16,17Density-
dependent frequency shifts of a number of polyatomic stretching
vibrations, including ring breathing modes,6,7 can be reproduced
in this way. These successes can be attributed in part to the
semiempirical nature of the model in which the effect of
attractive interactions and the magnitude of the overall shift is
determined empirically using at least one experimental frequency
measurement. Thus, while density-dependent trends in many
polyatomic frequency shifts can be reproduced, some uncertainty
in the absolute magnitudes of the calculated repulsive shifts
remains.18 The pseudodiatomic adaptation relies on the assump-
tion that the change in the polyatomic solute volume with
vibrational excitation is similar to the change of a simple bond
stretch of a diatomic with a volume similar to that of the
polyatomic. While this may be true for some symmetric
stretching modes, its validity cannot be assumed for all such
vibrations, especially for nonlinear groups of bonds in which
multiple overlaps of spheres representing individual atoms
produce volume changes different than those produced by the
single overlap of two spheres.

The breathing sphere model proposed in this work seeks to
address the shortcomings of the pseudodiatomic adaptation by
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incorporating the explicit volume change associated with a
particular polyatomic vibration into the calculation of the
repulsive force. The polyatomic volume change associated with
a specific vibrational mode,Qk, is calculated using a hard fused
sphere polyatomic whose individual atomic spheres follow the
motions dictated byQk. The polyatomic volume derivative is
equated to an equivalent, “breathing sphere” derivative,∂Vx/
∂σo, where the change in the spherical solute diameter,σo, is
scaled such that∂V x/∂σo ) ∂V x/∂Qk. (The relevant volume,V x,
is the volume the solute excludes from the solvent centers.) The
breathing sphere model assumes that the volume change
associated with a vibrational excitation is the key parameter in
determining the repulsive force on that vibration and that both
the volume change and related repulsive force can be adequately
represented using a spherical solute. Within these constraints,
the breathing sphere model yields better estimates of the mean
repulsive force exerted by the solvent on different vibrational
modes, more accurate repulsive frequency shifts, and improved
attractive parameters that will allow better assessment of
attractive interactions in future work.

The transformation from a fused-sphere to spherical solute
derivative simplifies the calculation of the solvent-induced
repulsive force while preserving the volume change associated
with the multidimensional polyatomic vibration. The validity
of a spherical representation of a multisphere solute depends in
a large part to the degree and manner in which the solute
anisotropy is averaged over the different solvent configurations
of the fluid. If specific orientation forces are small, the
anisotropy of the solute is due chiefly to its aspherical shape,
and adjustments in a spherical solute diameter can compensate
for the solute’s asphericity.2 Molecular simulations of fused-
sphere solutes in spherical solvents show that a representative
hard sphere solute with equal excluded volume has a hard sphere
or excess chemical potential slightly greater than that of the
fused sphere solute.20,21 A small reduction in the solute’s hard
sphere diameter is therefore necessary to equate the chemical
potentials of the hard sphere and fused sphere solutes. The
required diameter correction has been observed to be propor-
tional to the excluded volume anisotropy of the fused sphere
solute.21,22 While various measures of anisotropy can be
employed, this study uses the difference in solute diameters
based on the fused sphere solute volume and spherical excluded
volume. This measure is an integral part of the breathing sphere
calculation and provides a simple correction for moderately
anisotropic solutes over the entire gas-to-liquid density range.
As will be seen in the ensuing discussion, small adjustments
(≈1%) in the breathing sphere diameter yield significant
differences in the calculated force and are thus an essential part
of the breathing sphere calculation.

The remainder of this paper is organized as follows: Section
II outlines breathing sphere repulsive force and frequency shift
calculations. Diameter corrections based on the excluded volume
anisotropy are discussed in section IIB. Section IIIA discusses
breathing sphere results for the diatomic solutes, N2 and HCl,
and compares them to a perturbed hard fluid (PHF) model that
is essentially exact for diatomic solutes.5 In section IIIB, the
breathing sphere model is applied to the three different normal
modes of CO2 and compared to available density-dependent
frequency shift data. Results and conclusions are summarized
in section IV.

II. The Breathing Sphere Model

IIA. Repulsive Force Calculations.Approximating repulsive
forces in solution by a reference hard sphere fluid composed of

spheres of an appropriate diameter is well-established.3 The
solvent-averaged repulsive force on a solute (〈Frep〉) is therefore
equated to a hard sphere force defined by the derivative of the
hard sphere chemical potential with respect to its diameter,σo.

An equation for the hard sphere chemical potential of a solute
at infinite dilution in a solvent of hard spheres with diameter,
σs, and number density,F, can be derived from the Boublik-
Mansoori-Carnahan-Starling-Leland equation of state for
mixed hard spheres,23,24

whered ) σo/σs, η ) 6πFσs
3, andkB andT are Boltzmann’s

constant and the Kelvin temperature, respectively. The above
expressions agree with chemical potentials obtained via com-
puter simulations spanning gas to liquid-like densities andd )
0.5 tod ) 1.25 To model real fluids, solvent diameters derived
from equation of state data provide diameters representative of
molecules in the liquid state.26,27 The best value for the solute
diameter, however, depends on the solute’s excluded volume
anisotropy, which is discussed in section IIB.

To model the vibrating solute as a breathing sphere, the
diameter change of the breathing sphere is correlated to thekth
normal mode,Qk, of the polyatomic solute.

Equation 4 transforms the generalized solvent force on a
spherical solute into the desired solvent-induced force on the
normal coordinate,Qk. Evaluating the derivative,∂σo/∂Qk,
requires a knowledge of how the volume of the polyatomic
solute (and hence the magnitude of the representative diameter,
σo) changes withQk. Because the solute chemical potential
depends on both solvent and solute, the volume the solute
excludes from the solvent centers is the relevant volume and
∂σo/∂Qk can be written as

where “x” superscripts are used to denote quantities related to
the solute excluded volume. The working equation of the
breathing sphere model is obtained by substituting eq 5 into eq
4. This simple chain rule result is exact in the low density limit

and yields viable results at high densities for moderately
aspherical solutes (see section IIIA). The density dependence
is contained within the spherical derivative,∂µHS/∂σo (eq 3),

〈Frep〉 ≈ FHS ) (∂µHS

∂σo
) (1)

µHS

kBT
) 2ηd3

(1-η)3
+ 3ηd2

(1-η)2
+

3ηd(1 + d - d2)

(1-η)
+

(3d2 - 2d3 - 1) ln(1-η) (2)

1
kBT(∂µHS

∂σo
) ) 1

σs
{ 6ηd2

(1-η)3
+ 6ηd2

(1-η)2
+

3η(1 + 2d - 3d2)

(1-η)
+

6(d-d2) ln(1-η)} (3)

FHS(Qk) ) (∂µHS

∂Qk
) ) (∂µHS

∂σo
) (∂σo

∂Qk
) (4)

(∂σo

∂Qk
) ) (∂σo

∂V x) (∂V x

∂Qk
) (5)

FHS(Qk)

kBT
) (∂µHS

∂Qk
) ) (∂µHS

∂σo
)(∂σo

∂Vx)(∂Vx

∂Qk
) (6)

11026 J. Phys. Chem. A, Vol. 104, No. 47, 2000 Devendorf



while the derivatives of eq 5 provide the necessary functional
dependence on solute geometry,Qk, and excluded volume.

Both the solute volume and the excluded volume are
calculated by considering the solute as an assembly of inter-
penetrating or fused spheres at a particular solute geometry.
Ratios of atomic diameters for the solute spheres are obtained
from volume increment data,28 and solute hard sphere volumes
are obtained from tabulations of hard sphere diameters.26,27

Absolute hard sphere values for the atomic diameters are
obtained by adjusting atomic diameters (maintaining their fixed
ratios from ref 28) to give a fused sphere volume consistent
with the hard sphere volume of the molecule (obtained from
molecular diameters of ref 26 or 27). The excluded volume is
obtained using excluded volume diameters for each solute atom,
σi

x, which are the sum of the solute atom diameter and solvent
diameter,σi

x ) σi + σs. Details of volume calculations are
contained in the appendix and relevant diameters are given in
Table 1.

IIB. Anisotropy Corrections to the Solute Diameter. For
a spherical solute, the excluded volume diameter,σx ) (6Vx/
π)1/3, is the sum of the solute diameter,σq ) (6Vq/π)1/3, and
solvent diameter,σs: σx ) σs + σq, where the subscript,q, refers
to a specific atomic geometry of the solute and labels fused
sphere solute quantities. In the spherical solute case,σq ) σo,
and becauseσs is constant,

For a nonspherical solute composed of several fused spheres,
however,σx > σs + σq, and a new solute diameter,σq

x ) σx -
σs, must be defined which is consistent with the larger excluded
volume of the fused sphere solute. The diameter,σq

x, corre-
sponds to a spherical solute with an excluded volume equal to
the excluded volume of the fused sphere solute. This diameter
must be decreased slightly for the spherical chemical potential
to match that of the fused sphere solute.20,21 Ben-Amotz and
Stamatopoulou21,22 used a scaled surface area measurement of
the anisotropy to adjustσq

x, but the difference between the two
solute diameters,δq ) σq

x - σq, provides a very similar
measure of the excluded volume anisotropy. Usingδq, a
satisfactory formula for the anisotropy corrected solute diameter
is given by

Equation 8 is purely empirical but provides a simple prescription
for obtainingσo. The factor of 1 in the denominator is required
to make the anisotropy correction go to zero in the limit of small
σs and also gives the most satisfactory results of several
anisotropy corrections investigated. The central derivative of
eq 6 is now

and contains an anisotropy term that is numerically evaluated
in this study.

Figure 1 shows calculated solute diameters for hard sphere
systems representing neat N2 and HCl in argon as a function of
the reduced bond length,R/re, of the fused sphere diatomic. (re

is the equilibrium bond length of the gas phase molecule.) The
bond length coordinate goes from fully enmeshed atoms (a
spherical solute) to contact separation and thus also represents
a scale of increasing solute anisotropy. The upper and lower
solid curves in each plot represent the solute diameters,σq

x and
σq, respectively, while the middle solid curve representsσo given
by eq 8. The dotted curves represent diameters corrected
according to the prescription given by ref 21, where the
anisotropy correction was scaled so that the chemical potential
of the spherical solute exactly matches the chemical potential
of a fused sphere diatomic with volume,Vq, and excluded
volume, V x. A mild density dependence is required in the
corrected solute diameters for the spherical chemical potentials
to exactly match hard diatomic chemical potentials at all
densities. The dotted curves therefore represent corrected
diameters at the reduced densities,F* ) 0.3, 0.6, and 0.9, where
larger corrections (lower curves) correspond to higher densities
(F* ) Fσs

3). The density-independent diameter of eq 8 corre-
sponds to a density-dependent correction atF* ≈ 0.68, which
is very close to normal liquid densities and, at the equilibrium
bond lengths, provides an average diameter correction sufficient
to predict density-dependent shifts up toF* ≈ 1.0 (see section
IIIA). Because the differences in all diameters diverge as the
anisotropy increases, a density-dependent correction should be
considered for reduced densities greater than 1.0 or for highly
anisotropic solutes.

IIC. Frequency Shift Calculations. Frequency shift calcula-
tions closely follow methods outlined in the perturbed hard fluid
(PHF) model.5 Using second-order perturbation theory, Buck-
ingham29 derived an expression for the frequency shift of a cubic

TABLE 1: Molecular Parameters Used in Breathing Sphere
Calculationsa

CO2 (neat)

N2 (neat) HCl in Ar Q1 Q2 Q3

σs (Å) 3.442426 3.241526 3.646527

σ1 (Å) 2.9928 1.9828 3.076428

σ2 (Å) 2.9928 3.428 2.714528

σo (Å) 3.4789 3.4848 3.7474
re (Å) 1.097715 1.274634 1.162141

νe (cm-1) 2358.5715 2990.9534 1354.9142 67342 2396.4942

νo (cm-1) 2329.9115 2886.034 1332.941 667.441 2349.141

f (105 d cm-1) 22.9515 5.16434 17.3 0.945 16.3
g (1013 d cm-2) -56.6915 -9.58034 -37.933 -1.07 -43.4
C1 0.3978 0.2330 0.3437 0.1006 0.07364
C2 (Å-2) -0.0914 0.1140 -0.0463 0.0607 -0.00213
Ca (cm-1 nm3) 0.2242 0.825 0.02 0.48 0.006

a Superscripts attached to table entries denote references from which
data was obtained. Other entries are calculated as described in the text.

Figure 1. Plots of solute diameters for hard sphere systems representing
neat N2 (a) and HCl in Ar (b) as a function of the reduced bond length.
Lower curves are spherical solute diameters based on the fused sphere
solute volume, and upper curves are solute diameters based on excluded
volumes of the fused sphere solute. The middle curves represent
anisotropy corrected diameters. The solid curve is given by eq 8, and
dotted curves are density-dependent diameters from ref 21. Note that
the range of the diameter scale for N2 is twice that of HCl’s.
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diatomic oscillator due to a perturbing solvent potential,U,

wheref andg are the quadratic and cubic force constants of the
gas-phase vibrational potential, andνe is the harmonic gas-phase
frequency.F andG are given by the solvent-averaged derivatives
of U,

where R is the bond length of the diatomic solute, and the
derivatives are evaluated at the equilibrium bond length,re. The
first derivative ofU is the force the surrounding solute exerts
along the diatomic bond and, in the first term of eq 10,
contributes 70% or more to the total frequency shift.16 The
quantity, 1/2(∂F/∂R)re, is a mean field approximation forG used
in this work and is negative for homonuclear diatomics but can
be positive or negative for other molecules (see Figures 3 and
5). While this approximation probably underestimates the
magnitude ofG, which should also include a positive fluctuation
term,30 the contribution ofG to the overall shift is small, and
such an omission has negligible effects on most predicted
frequency shifts.

The calculated frequency shift is broken into repulsive and
attractive parts corresponding to the repulsive and attractive parts
of the solvent-solute interaction. The repulsive part of the
frequency shift is calculated by settingF of eq 10b equal to
FHS(Q) of eq 6. (The single vibrational mode of the diatomic is
labeled by the bond length,R.) Using the density independent
σo given by eq 8, the density-dependent repulsiveF andG terms
of eq 10b can be expressed as

whereC1 andC2 are density-independent constants determined
at the equilibrium nuclear configuration (qe) of the solute.

The constants,C1 andC2, are sensitive scaling factors that adjust
the spherical derivatives to match the excluded volume deriva-
tive of the fused sphere solute vibrating with the normal mode
motion,Qk.

Single force constants characterizing the normal modes of
CO2 were evaluated to utilize the diatomic form of eq 10.
Results using polyatomic forms of eq 1029,31will be investigated
in the future, but the diatomic form was retained in the transition
from diatomic to polyatomic molecules in this work. Quadratic
constants for each mode were calculated usingfk ) (2πcνk)2µk,
whereνk is the harmonic frequency of a given modek, and the
mass terms areµ1 ) mO andµk ) mOmC/(2mO +mC) for k ) 2
andk ) 3.32 A value for the cubic constant of theν1 symmetric

stretch was obtained from ref 33, and the cubic constants for
other modes were calculated assuming all modes follow the
relation: g/f ) A(νe - νo/νe), whereA is a constant determined
using f1 andg1, andνe andνo are the harmonic and the 1r 0
gas-phase transition frequencies for a given mode. Values for
the vibrational constants are given in Table 1.

The attractive portion of the frequency shift is due to a
combination of dispersive, dipolar, and multipolar interactions,
whose effect on the frequency shift is characterized by a single
empirical parameter,Ca. If the relatively long-range attractive
interactions are modeled as a mean field continuum, the
attractive frequency shift is a linear function of the solvent
density,4,5

and both ∆νa and Ca are determined using experimental
frequency data and calculated repulsive shifts. For simple
systems such as neat N2, empirical Ca values have been
reproduced using a simple dispersion formula.15 GenerallyCa

values are more difficult to predict13,19 and the improved
repulsive shifts of the breathing sphere model will enable a more
accurate partitioning of polyatomic frequency shifts into repul-
sive and attractive parts and better empirical assessments ofCa

for different polyatomic vibrations.

III. Results and Discussion

IIIA. Diatomic Solutes. Breathing sphere calculations were
done on systems representing neat N2 and HCl in Ar to examine
the functionality of the breathing sphere model on the vibrational
coordinate,R, and to compare breathing sphere calculations to
PHF results and experimental frequency shifts. Figure 2 shows
the three derivative quantities of eq 6 plotted against the reduced
separation of the solute atoms at a reduced solvent density of
0.7. The functional behavior of the repulsive force (shown in
Figure 3) is shaped primarily by the volume derivative,∂Vx/∂R
(solid curves in Figure 2), which passes through a maximum
when the diameter of the smaller solute atom intersects the
surface of the larger atom. For a homonuclear diatomic, this
occurs atR ) 0, while increasing differences in size between
the solute atoms shifts the maximum in∂Vx/∂R to larger values
of R. This functional behavior influences both the sign and
magnitude of the second derivative quantity,∂2µ/∂R, which is
twice the mean field approximation forG (eq 10b).

The solid curves in Figure 3 show∂µ/∂R as a function of the
reduced bond length for both the N2 and HCl/Ar hard sphere
systems (F* ≈ 0.7). The breathing sphere calculations are in
close agreement with PHF results (dashed curves), differing by
less than 1.5% over the entire range ofR examined. The dotted
curves show results obtained using the uncorrected solute

Figure 2. Derivative quantities from eq 6 plotted vs reduced bond
length for N2 (a) and HCl in Ar (b) hard sphere systems. The bond
length scale extends from fully enmeshed solute atoms to atoms at
contact. Solid curves are the derivatives,∂V x/∂R, and the right-hand
scale pertains to the labeled dashed curves.
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diameters,σq (lower curves) orσq
x (upper curves). For all

curves,∂V x/∂R is the same, and the dramatic differences in the
calculated force are due to the sensitivity of the calculation to
the diameter derivative,∂σo/∂V x, rather than to the small changes
(≈ 1% or less atre) in absolute values of the different solute
diameters. The scaling factors,C1 andC2, are thus very sensitive
to the functional form ofσo, and it is imperative thatσo be
correctly scaled to reflect both the correct solute size and the
excluded volume anisotropy.

Figure 4 shows experimental and calculated density-depend-
ent frequency shifts for N215 and HCl.34 The N2 experimental
frequency shifts range from normal liquid densities (P ≈ 1 kbar
@ 23°C) to densities typical of highly compressed liquids (P
≈ 30 kbar), while the HCl shifts span the density range between
normal gas and liquid densities. (Ar pressures≈ 0.01-1 kbar.)
The upper curves in the plots are the repulsive part of the
frequency shift (∆νr) calculated using eq 10 via the PHF (dashed
curves) or breathing sphere (solid curves) model. For N2, the
attractive shift parameter was calculated using a simple disper-
sion formula,15 and the predicted N2 frequency shift calculation
contains no adjustable parameters. For HCl, the attractive
parameter was determined by a best fit to the experimental shifts
but is less than 10% larger than an attractive parameter
determined from an accurate HCl-Ar potential.35 For both
diatomics, the breathing sphere model gives results in close
agreement with the PHF model, although at densities of highly
compressed fluids, the breathing sphere calculations result in a
slightly larger repulsive force and hence larger blue shifts. This
is not surprising given that a density-independent diameter was
used in the breathing sphere calculations. Using the density-
dependent diameter of ref 21 gives breathing sphere results in
closer agreement with PHF predictions at the high densities of
compressed liquids.

IIIB. Carbon Dioxide. To apply the breathing sphere model
to the different modes of vibration in a polyatomic molecule, a

direct excluded volume calculation, such as performed with
diatomics, is not sufficient. For example, both∂V x/∂Q2 and∂V x/
∂Q3 are zero at the equilibrium geometry of CO2 and even have
negative values elsewhere. For any molecule, however, excita-
tion to a higher vibrational state implies that the individual atoms
of the molecule are sweeping out larger vibrational amplitudes.
Because this occurs over time scales much faster than solvent
reorientation, the net effect of the complete vibration cycle will
be an increase in the excluded volume. To calculate the repulsive
force, therefore, an effective∂V x/∂Qk is defined in which only
positive changes to the excluded volume over the complete
vibrational cycle are considered. To accomplish this, the center
of mass of the solute is fixed (this fixes the location of the
excluded volume in the equilibrated solvent), and a Cartesian
coordinate description of each atom’s normal mode motion is
considered rather than the simpler internal coordinate description
of Qk.

For theν1 mode of CO2, the C atom remains stationary at
the center of mass and a Cartesian coordinate description is
equivalent to an internal coordinate description. The normal
coordinate,Q1, consists of two bond stretches, and thusQ1 )
2RCO whereRCO is the C-O separation. The excluded volume
derivative is therefore,∂V x/∂Q1 ) 0.5(∂V x/∂RCO). (Qk is the
sum of all atom displacements without mass weighting.) The
C atom does not remain fixed in the antisymmetric stretch,ν3,
but must move in an opposite direction to the O atoms for the
center of mass to remain fixed. Because the C atom is lighter
than the O atoms, its relative displacement is more than twice
that of a single O atom and much of theQ3 motion consists of
the oscillatory motion of the C atom, which contributes very
little to changes in the excluded volume. The calculation of∂Vx/
∂Q3 is simplified by assuming the contribution of the C atom
motion to ∂V x/∂Q3 is zero, and only the small outward
displacements of the O atoms need be considered. With the C
atom fixed, theQ3 calculation is similar to the symmetricQ1

calculation, but the displacement coordinate,RCO, only repre-
sents that part of theQ3 motion contributing to a change in the
excluded volume. The completeQ3 motion (including the C
atom displacement) is

wheremi andxi are the mass and displacement of atomi, xO )
RCO and∂V x/∂Q3 ) 0.107(∂V x/∂RCO). The first factor of 2 is
required because the total positive volume change requires two
vibrational displacements or one complete vibrational cycle.

The Cartesian displacements and volume calculations of the
ν2 bending mode are somewhat different than an internal bond
bending description ofν2. Just as with theν3 mode, the larger
C atom displacement must compensate for two O atom
displacements to keep the center of mass constant, but the center
of mass displacements are perpendicular to the bond axis. When
considering the complete vibration, the C atom displacement
almost completely overlaps with the O atom displacements that
are primarily directed inward. The net positive∂V x/∂Q2 is
therefore approximated by the oscillatory motion of the C atom
only, and theQ2 calculations are based on a four-sphere volume
calculation in which two spheres perpendicular to the bond axis
are used to represent the C atom at each turning point of the
vibration. (See Figure 8 of the appendix.)

The calculated repulsive force on the three different vibra-
tional modes of CO2 is shown in Figure 5. In plot a, the repulsive
force for each vibrational mode is plotted versus its respective

Figure 3. The repulsive hard sphere force (divided bykBT) plotted vs
reduced bond length for hard sphere systems representing neat N2 (a)
and HCl in Ar (b). The dotted curves represent calculations using
uncorrected diameters, the solid curves use asymmetry corrected
diameters, and the dashed curves are PHF predictions. Reduced solvent
density is 0.7.

Figure 4. Calculated and experimental 295 K frequency shifts for neat
N2 (a) and HCl in Ar (b) vs reduced density. Solid curves are breathing
sphere predictions, and dashed curves are PHF predictions. Both models
use the same attractive force parameters.

Q3 ) 2(2xO + xC) ) 2(2RCO + 2
mO

mC
RCO) ) 9.33RCO
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molecular coordinate,RCO or θ. Two different PHF predictions
for theQ1 symmetric stretch are also plotted: The dashed curve
represents a PHF calculation for a hard sphere C-O diatomic,
and the dotted curve represents the pseudodiatomic, [OC]-O.
At the equilibrium bond length, the PHF calculations differ from
one another by less than 0.5% (The breathing sphere calculation
is ≈ 2% larger), but the larger [OC] sphere of the pseudodi-
atomic gives significant differences elsewhere along the vibra-
tional coordinate as well as different second derivative values
at re. The insensitivity of the PHF repulsive force calculation
at re to variations in solute atom diameters and separations is
commonly observed,16 and theQ1 curves in Figure 5a suggest
that the importance of the model solute lies in its ability to
reproduce the changing excluded volume associated with a
specific solute vibration, rather than reproducing an exact solute
form or volume.

The use of the C-O diatomic to model the CO2 symmetric
stretch is based on a polyatomic treatment suggested by
Schweizer and Chandler,4 in which a weighted average of
separate diatomic motions is used to approximate the normal
mode motion. (Two equivalent C-O stretches average to a
single C-O stretch forQ1.) The C-O diatomic and breathing
sphere results are approximately the same because the overlap
between the two O atoms is contained entirely within the C
atom, and breathing sphere volume changes are due only to
changes in two equivalent C-O overlaps. In the nonlinearQ2

and asymmetricQ3 motions, the breathing sphere calculation
incorporates volume change differences due to nonlinear and
asymmetric vibrational motions that a simple pseudodiatomic
form cannot reproduce. The different form and magnitude of
the Q dependent force on these vibrations is evident in Figure
5a, while Figure 5b shows the density-dependent force of each
mode along with the diatomic systems discussed previously.
Clearly, the smaller volume changes associated withQ2 and
Q3 result in smaller repulsive forces, while the exact forms of
the volume changes associated with each mode are important
in determining second derivative terms (mean field G) for
frequency shift calculations.

Experimental and predicted density-dependent frequency
shifts for all three vibrational modes of CO2 are shown in Figure
6. Predicted shifts using the breathing sphere model are shown
as solid curves and points denote the authors experimental data.36

The experimentalV1 shifts are corrected for Fermi resonance
according to a density-dependent Fermi resonance parameter
given by Garrabos37,38and an exact Fermi resonance at a density
intermediate between that of the gas and liquid. Theν2 shifts
in the figure are one-half of the Fermi resonance corrected shifts
corresponding to the 2ν2 overtone. The dotted curves are from

polynomial fits of data (corrected for Fermi resonance) given
by Garrabos38 and span approximately the same density range
as our own data. The solid and dashed curves are breathing
sphere predictions. Values forCa parameters were fixed by
fitting to the experimental points and are listed in Table 1. The
dashed curve represents∆ν3 shifts based on aCa that gives initial
red shifts ≈ -0.006 cm-1/nm-3, which is one-third of the
average pressure-induced shift observed for individual rotational
lines in the 3r 0 vibrational transition in the low-pressure gas.39

Qualitatively, the breathing sphere model appears to give shifts
for all three modes consistent with existing data, although the
lack of high-pressure IR frequency data makes it impossible to
make quantitative judgments. Also, the density dependence of
the unperturbedν1 and 2ν2 modes is very sensitive to the Fermi
resonance correction,38 and this introduces an additional degree
of uncertainty to the Fermi-corrected experimental shifts and
Ca values for these modes.

EmpiricalCa values are difficult to correlate to electro-optical
parameters for the different vibrational modes and the expected
contributions of dispersive, dipolar and multipolar interactions.
Only Q1 has a nonzero polarizability derivative at the equilib-
rium geometry of the molecule, yet its smallCa value suggests
that dispersive interactions have a small effect onν1 frequency
shifts. (Given the magnitude of the polarizability of CO2, one
would expectCa values for theν1 mode at least as large as that
for N2.) Ab initio calculations40 of dipole moment derivatives
show theQ2 derivative to be slightly larger than that forQ3,
but the smallCa value of ν3 indicates that simple dipolar
interactions likewise have very small effects on theν3 frequency
shifts. Only in calculated second derivative values of the
polarizability and dipole and quadrupole moments does theQ2

mode have significantly larger values that might account for
its large red shifts.

IV. Summary

The empirical Ca values and electro-optical parameters
associated with each vibrational mode of CO2 clearly demon-
strates the complexity of accurately assessing the effects of
repulsive and attractive solvent-solute interactions on the
frequencies of polyatomic vibrational transitions. The breathing
sphere model provides a simple method for estimating the
repulsive part of this interaction on polyatomic vibrations. It
evaluates the average solvent-induced repulsive force on a given
vibration by equating the excluded volume change of a vibrating

Figure 5. Calculated repulsive force (divided bykBT) for normal modes
of CO2. Plot a shows force vs molecular coordinates atF* ) 0.7 (COC
angle,θ, pertains toQ2). Solid curves are breathing sphere calculations.
Dotted and dashed curves are PHF calculations using two different
pseudodiatomic forms (see text). Plot b shows density dependent force
vs solvent density at equilibrium geometry of CO2. Diatomic force
curves are included for comparison.

Figure 6. Density-dependent 295 K frequency shifts forν1, ν2, andν3

modes of CO2. Points are author’s data corrected for Fermi resonance.
Dotted curves are fits to average shifts taken from ref 36 (with same
Fermi resonance correction applied), and solid curves are breathing
sphere predictions. Dashed curve is predictedν3 shift.
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multisphere solute in a solvent of hard spheres to that of a
breathing sphere solute, for which a relatively simple analytical
solution for the solvent-induced repulsive force exists. This
calculation is very sensitive to the solute diameter, whose value
must be adjusted according to the anisotropy of the excluded
volume of the multisphere solute. The breathing sphere model
provides a simple prescription for the anisotropy adjusted solute
diameter and gives results for diatomic solutes in agreement
with simulation tested diatomic models over a large range of
bond lengths and densities.

For CO2, the lack of high-pressure frequency data, a density-
dependent Fermi resonance interaction and possible higher order
attractive effects dependent on second derivative values of
electro-optical parameters complicate the comparison of breath-
ing sphere results to existing frequency shift data. The breathing
sphere treatment of CO2 does demonstrate the model’s adapt-
ability and sensitivity to different vibrational modes and
molecular geometriessfeatures that are not present in previous
diatomic adaptations to polyatomic solutes. Work continues on
refining a general breathing sphere application to nonplanar
polyatomics and testing the breathing sphere model against
available high-pressure frequency data for polyatomic vibrations.
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Appendix: Fused Sphere Volume Calculations

A fused sphere volume is obtained by summing individual
sphere segment volumes,Vi

seg. Sphere segments, whose
boundaries are depicted in Figure 7 with bold lines, are obtained
by removing those portions of the sphere that penetrate into
neighboring sphere segments. In cases where no more than three
spheres overlap as shown in Figure 7, a general formula for the
volume of theith segment is given by

whereVij (horizontal and diagonal ruled regions in Figure 7) is
the volume of spherei penetrating into sphere segmentj, and

Vijk (crosshatched area in Figure 7) is the intersection of volumes
Vij and Vik . The factor of 1/2 in the sum overk is included
becauseVijk andVikj represent the same volume. Additional terms
must be added to eq A1 if it is to generally hold for
configurations containing 4-fold and higher overlaps. Appropri-
ate segment volumes can be obtained for any planar system
using only double and triple overlap terms, however, if the sums
in eq A1 are adjusted to fit a particular system of spheres. For
example, triple and higher order overlaps formed by double
overlaps completely contained within other double overlaps in
linear and near linear systems of spheres may be ignored if only
double overlaps between nearest neighbors are included in the
sum overj. For nonlinear systems, however, triple overlaps are
often formed from the partial overlap of two doubly overlapped
regions as shown in Figure 7, and triple overlap volumes must
be included in the volume calculation. For the particular case
in Figure 7, the volume segments areVa

seg) Va - Vab - (Vac -
Vabc), Vb

seg ) Vb - Vba - (Vbc - Vbca), andVc
seg ) Vc - Vcb -

(Vca - Vcba). These equations can be obtained by either visual
inspection of Figure 7 or the application of eq A1where the
equivalent volumes,Vijk andVikj, have been combined into single
terms. An example of a four-sphere system containing a 4-fold
overlap is depicted in Figure 8. This configuration was used to
calculateQ2 derivative quantities for CO2 and is a symmetrical
arrangement where spheres A and C and spheres B and D are
the same size. Sphere segment formulas containing only triple
overlap terms were obtained by visual inspection.

The overlap volume,Vij, for two spheres with radii,ri andrj,
separated by the distance,rij, is

The length,lij, is the perpendicular distance from the center of
spherei to the intersection plane (or chord in Figure 7) formed
by the intersection of spherei and spherej. Placing spherei at
the origin and defining the positivex direction to be toward the

Figure 7. Cross section through centers of three overlapping spheres,
A, B, and C. The triple overlap region,Vabc, is indicated by crosshatch
marks and represents the intersection ofVab (horizontal hatch marks)
and Vac (diagonal hatch marks). Labels refer to sphere centers and
intersection points of spheres.

Figure 8. Four-sphere system used to calculate CO2 Q2 volume
derivative. Heavy solid lines outline sphere segments. Volume formulas
for segments are given in the text.

Vi
seg) Vi - ∑

j*1
[Vij -

1

2
∑
k*i,j

Vijk] (A1)

Va
seg) Vc

seg) Va - Vab - (Vad - Vabd)

Vb
seg) Vd

seg) Vb - Vbd - 2(Vba - Vbda)

Vij ) π[23ri
3 + l ij(l ij23

- ri
2)], (l ij )

rij
2 + ri

2 - rj
2

2rij
) (A2)
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center of spherej, Vijk is given by

whereA(x) is the area of a slice ofVijk at a givenx, and the
limits in the integrals correspond to the labeled intersection
points in Figure 7. The Cartesian coordinates of theij intersec-
tion points arexij ) lij andyij ) ( (ri

2 - lij2)1/2. Theik Cartesian
coordinates are obtained similarly but must be rotated through
the anglejik defined by the sphere centers. The radius of the
A(x) slice is rx ) (ri

2 - x2)1/2, andyx ) mikx + bik defines a
straight-line boundary ofA(x) where the slice intersects the plane
containing chordIK. The parameters,mik andbik, are the slope
and intercept, respectively, of the chordIK. The first integral
in eq A3 is evaluated numerically. The second integral is
required if the triple overlap region,Vijk, extends over both sides
of the y ) 0 line through the centers of spheresi and j and
evaluates to eq A2 withxik substituted forlik. The above
treatment is applicable to any planar array of spheres of varying
size and geometric arrangement.
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