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Molecular vibrational frequency shifts are modeled by treating the vibrating solute as a breathing sphere with
repulsive (hard-core) and attractive (mean field) solvesaiute interactions. The solvent-induced repulsive
force exerted on the normal mode of a vibrating solute molecule is obtained using the derivative of the
molecular volume with respect to the normal mode coordinate in conjunction with an analytical expression
for the chemical potential of a hard sphere solute immersed in a solvent of hard spheres. The volume derivative
of the vibrating solute molecule is calculated by considering the solvent molecule as an assembly of
interpenetrating or fused hard spheres whose individual motions are given by normal mode coordinates. The
calculation of the repulsive force is simplified by equating the normal mode volume change of the multisphere
solute to a volume change of a spherical solute. The anisotropy of the-sebltent system is used to adjust

the spherical solute diameter so its chemical potential matches the chemical potential of the multisphere
solute. This adjustment is critical to correctly scale the spherical volume change to the anisotropy of the
polyatomic solute. For the diatomic solutes,&hd HCI, the breathing sphere model predicts repulsive forces
and frequency shifts that closely agree with a near exact diatomic hard sphere model. Applied to the three
different CQ vibrations, the explicit calculation of the different excluded volume changes associated with
each vibration gives predicted frequency shifts that agree with available pressure-dependent frequency data.

I. Introduction hard spheres in a hard sphere solvent. This approach has been

. used in modeling solvation effects on diatomic and polyatomic
Changes in the molecular spectra of solute molecules are an

. . X : ; " solutes by Chandler and othér%;12 particularly Ben-Amotz
important experimental probe of intermolecular interactions in

o s . . and co-workerd3-16 who extended Chandler’s original work
the liquid state. Gas-to-liquid vibrational frequency shifts provide by developing closed analvtical expressions for the average hard
a quantitative measure of the mean force exerted by a solvent y ping m P 9

on a vibrating solute and an experimental test of solveptute sphere fo'rce along the *bond” separating the solute §pﬁeres.
interaction model$.Hard sphere fluids are useful model fluids Polyatomic S0 lutes have beef? adapted to the_two-c_aw_ty quel
for calculating repulsive interactions between the solvent and by represgntlng the polyatomic as a pseudoqllatomlc, In Wh'c.h
the solute’?® but analytical solutions of the solvent-induced each cavity rgpresgnts a group of a}oms |n16t?7e polyatom|c
repulsive force on the vibrating solute have been limited molecule on either side of the bond of interést:®"Density-

primarily to diatomic solute formés This paper describes a dependent frequency shifts of a number of polyatomic stretching

breathing sphere solute model that is more generally applicableViPrations, including ring breathing modéscan be reproduced

to the variety of complex motions associated with normal " th_is way. These successes can bg attrit_)uted in part to the
vibrational modes of polyatomic solutes. In the breathing sphere S€Miémpirical nature of the model in which the effect of
model, the volume derivative of a vibrating polyatomic solute, attractlye mtera(.:t.lons anq the magnitude of the overall shift is
aV¥3Q, is used within a hard sphere model to estimate the determined empirically using at Iegst one experimental fr(_equency
repulsive force exerted by the solvent on the solute vibrational Measurement. Thus, while density-dependent trends in many
mode,Q, and the effect of this force on the observed gas-to- polyatom|c frequency §h|ft$ can be reproduced, some u.ncertallnty
liquid vibrational frequency shift. The breathing sphere model In the absolute magnitudes of the calculated repulsive shifts
is patterned after other hard sphere models in which attractive 'eMains:® The pseudodiatomic adaptation relies on the assump-
interactions are treated as a mean field contindérthe  tion that the change in the polyatomic solute volume with
strength of the attractive interactions are expressed using a single/iPrational excitation is similar to the change of a simple bond
parameter whose magnitude is normally fixed using experi- Stretch of a diatomic with a volume similar to that of the
mental frequency data. polyatomic. While this may be true for some symmetric
Schweizer's and Chandler's seminal wbgoncerning solvent stretching modes, its validity cannot be assumed for all such
effects on molecular vibrations underscores the importance of ViPrations, especially for nonlinear groups of bonds in which
repulsive solventsolute interactions on molecular vibrations Multiple overlaps of spheres representing individual atoms
and how hard sphere fluids can be used to estimate these forceg?roduce volume changes different than those produced by the
In their work, the force along the bond of a diatomic solute Single overlap of two spheres.
represented by two overlapping spheres (or cavities) is calculated The breathing sphere model proposed in this work seeks to
using the cavity distribution function of two interpenetrating address the shortcomings of the pseudodiatomic adaptation by
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incorporating the explicit volume change associated with a spheres of an appropriate diameter is well-establidhEde
particular polyatomic vibration into the calculation of the solvent-averaged repulsive force on a sollgfl) is therefore
repulsive force. The polyatomic volume change associated with equated to a hard sphere force defined by the derivative of the
a specific vibrational mode)y, is calculated using a hard fused hard sphere chemical potential with respect to its diameter,
sphere polyatomic whose individual atomic spheres follow the

motions dictated byQk. The polyatomic volume derivative is F RE..— (ﬂ_Hs) 1)
equated to an equivalent, “breathing sphere” derivatiey/ rep HS da,

000, Where the change in the spherical solute diametgris

scaled such thalV ¥/do, = 9V */dQx. (The relevant volumey ¥, An equation for the hard sphere chemical potential of a solute

is the volume the solute excludes from the solvent centers.) Theat infinite dilution in a solvent of hard spheres with diameter,
breathing sphere model assumes that the volume changes,, and number density, can be derived from the Boubtik
associated with a vibrational excitation is the key parameter in Mansoori-Carnahar Starling-Leland equation of state for
determining the repulsive force on that vibration and that both mixed hard sphere%;24

the volume change and related repulsive force can be adequately

represented using a spherical solute. Within these constraintsuys — 2pd® | 3pd? | 3pd(1+d— d?)

the breathing sphere model yields better estimates of the mearn, +— 3 2 )

repulsive force exerted by the solvent on different vibrational rkBT CONNCY) (27)

modes, more accurate repulsive frequency shifts, and improved (8 — 2d* — 1) In(14) (2)

attractive parameters that will allow better assessment of )

attractive interactions in future work. 1 (uus| _ 1| eyd? n 6yd’® y3nd+2d—3d)
The transformation from a fused-sphere to spherical solute kgT\ do, | 05 | (1-9)° (1) (1)

derivative simplifies the calculation of the solvent-induced
repulsive force while preserving the volume change associated 6(d-d® In(1-n)} (3)
with the multidimensional polyatomic vibration. The validity

of a spherical representation of a multisphere solute depends ir\/vhered = 040s
a large part to the degree and manner in which the solute '
anisotropy is averaged over the different solvent configurations
of the fluid. If specific orientation forces are small, the
anisotropy of the solute is due chiefly to its aspherical shape,
and adjustments in a spherical solute diameter can compensat

for the solute’'s asphericityy Molecular simulations of fused- molecules in the liquid staf:2” The best value for the solute

sphere solutes in spherical solvents show that a representativedi(,jlmeter however, depends on the solute’s excluded volume
hard sphere solute with equal excluded volume has a hard Spher%nisotrop;y which i’s discussed in section 1B

or excess chemical potential slightly greater than that of the To model the vibrating solute as a breathing sphere, the

21 i i ! . . .
fushed s;()jhere fo"%?@t-h A ?mall reduction Itn the S?lutﬁ N hr?rd . ajlameter change of the breathing sphere is correlated tilthe
sphere diameter is therefore necessary to equate the chemicgl, a1 mode,, of the polyatomic solute.

potentials of the hard sphere and fused sphere solutes. The
required diameter correction has been observed to be propor- Wi s\ 9o,
Fus(Qo ==~ =

n = 6mpos®, andkg and T are Boltzmann’s
constant and the Kelvin temperature, respectively. The above
expressions agree with chemical potentials obtained via com-
puter simulations spanning gas to liquid-like densities @rl

0.5 tod = 1.2 To model real fluids, solvent diameters derived
From equation of state data provide diameters representative of

tional to the excluded volume anisotropy of the fused sphere 20 Py 5 4)
solute?:22 While various measures of anisotropy can be k °

employed, this study uses the difference in solute diameters . .

. quation 4 transforms the generalized solvent force on a
based on the fused sphere solute volume and spherical eXC'Ude(slj':-pherical solute into the desired solvent-induced force on the
volume. This measure is an integral part of the breathing spherenormal coordinate Q. Evaluating the derivativedoy/aQs

calculation and provides a simple correction for moderately . .
. . ! - . requires a knowledge of how the volume of the polyatomic
anisotropic solutes over the entire gas-to-liquid density range. X " .
solute (and hence the magnitude of the representative diameter,

As will be seen in the ensuing discussion, small adjustmentsa) changes withQ,. Because the solute chemical potential
~ 0 . . . . . . 0, K-
(~1%) in the breathing sphere diameter yield significant pepends on both solvent and solute, the volume the solute

differences in the calculated force and are thus an essential par X
. ) excludes from the solvent centers is the relevant volume and
of the breathing sphere calculation. .
004/0Qx can be written as

The remainder of this paper is organized as follows: Section

Il outlines breathing sphere repulsive force and frequency shift do, 30, [gv*

calculations. Diameter corrections based on the excluded volume (ﬁk) = ( ) ( 90 )
anisotropy are discussed in section IIB. Section IllIA discusses k
ZLedaggr?]%;Fehse:ﬁeﬁstlgt; L%rrggﬁ)géa:%%cﬂE?Ju(tgi?:r;umHoggl thatWhere ‘K’ superscripts are used to denote_ quantitie_s related to
the solute excluded volume. The working equation of the

breathing sphere model is obtained by substituting eq 5 into eq

is essentially exact for diatomic solutesn section 1lIB, the
4. This simple chain rule result is exact in the low density limit

5
v (®)

breathing sphere model is applied to the three different normal
modes of CQ and compared to available density-dependent

:‘:\eg:;?ocr)]/ Isvhlft data. Results and conclusions are summarized Fus(Q) B (3ﬂHs) - (3ﬂHs)(300)(avx)
' = = (6)
9Q¢ aVv*J\9Qk

ke T

and yields viable results at high densities for moderately
IIA. Repulsive Force Calculations.Approximating repulsive aspherical solutes (see section IlIA). The density dependence
forces in solution by a reference hard sphere fluid composed of is contained within the spherical derivativéyns/do, (eq 3),

Il. The Breathing Sphere Model
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TABLE 1: Molecular Parameters Used in Breathing Sphere
Calculations?

CO; (neat)

Nz (neat) HClin Ar Q Q: Qs
os(A) 3.44245 3.2413° 3.64657
o1 (A) 2998 1988  3.07648
o2 (A) 2998 348 2.71438
0o (R) 3.4789  3.4848  3.7474
re(A) 1.09775 1.2746* 1.16211
ve (cm™ ) 2358.575 2990.954 1354.912 6732 2396.492
vo (cmL) 2329.915 2886.0* 1332.9! 667.41 2349.71
f(1°dcml) 22955 51644 17.3 0.945 16.3
g(108dcm?) —56.695 —9.580% —37.92 —1.07 —43.4
C 0.3978 0.2330 0.3437 0.1006 0.07364
C, (A3 —0.0914 0.1140 —0.0463 0.0607 —0.00213
Ca(cm™nmd) 0.2242 0.825 0.02 0.48  0.006
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Figure 1. Plots of solute diameters for hard sphere systems representing
neat N (a) and HCl in Ar (b) as a function of the reduced bond length.
Lower curves are spherical solute diameters based on the fused sphere
solute volume, and upper curves are solute diameters based on excluded
volumes of the fused sphere solute. The middle curves represent
anisotropy corrected diameters. The solid curve is given by eq 8, and
dotted curves are density-dependent diameters from ref 21. Note that

a Superscripts attached to table entries denote references from Wthhthe range of the diameter scale fOE N twice that of HClI's.
data was obtained. Other entries are calculated as described in the text.

while the derivatives of eq 5 provide the necessary functional
dependence on solute geomei®y, and excluded volume.
Both the solute volume and the excluded volume are

calculated by considering the solute as an assembly of inter-

Equation 8 is purely empirical but provides a simple prescription
for obtainingo,. The factor of 1 in the denominator is required
to make the anisotropy correction go to zero in the limit of small
os and also gives the most satisfactory results of several

penetrating or fused spheres at a particular solute geometry.qnisotropy corrections investigated. The central derivative of
Ratios of atomic diameters for the solute spheres are obtalnedeq 6 is Nnow

from volume increment da#&,and solute hard sphere volumes
are obtained from tabulations of hard sphere diaméfers.

Absolute hard sphere values for the atomic diameters are

obtained by adjusting atomic diameters (maintaining their fixed
ratios from ref 28) to give a fused sphere volume consistent
with the hard sphere volume of the molecule (obtained from
molecular diameters of ref 26 or 27). The excluded volume is

9o, (2,02 1/3_ 1 aéq
R AR T

and contains an anisotropy term that is numerically evaluated
in this study.

9)

obtained using excluded volume diameters for each solute atom,  igyre 1 shows calculated solute diameters for hard sphere
O?(, which are the sum of the solute atom diameter and solvent Systems representing neat a&hd HCl in argon as a function of

diameter,o] = 0; + o5 Details of volume calculations are

the reduced bond lengtR/re, of the fused sphere diatomic,(

contained in the appendix and relevant diameters are given injs the equilibrium bond length of the gas phase molecule.) The

Table 1.

1I1B. Anisotropy Corrections to the Solute Diameter. For
a spherical solute, the excluded volume diamet&r= (6V*/
)3, is the sum of the solute diametery = (6Vy/7)3, and
solvent diameteiys. 0* = s+ oq, Where the subscript, refers
to a specific atomic geometry of the solute and labels fused
sphere solute quantities. In the spherical solute aage; oo,
and becauses is constant,

905\ _ (99| _ (2 X2)1/3
)]~

)

bond length coordinate goes from fully enmeshed atoms (a
spherical solute) to contact separation and thus also represents
a scale of increasing solute anisotropy. The upper and lower
solid curves in each plot represent the solute diamezbérand

og, respectively, while the middle solid curve representgiven

by eq 8. The dotted curves represent diameters corrected
according to the prescription given by ref 21, where the
anisotropy correction was scaled so that the chemical potential
of the spherical solute exactly matches the chemical potential
of a fused sphere diatomic with volum¥g, and excluded
volume, V*. A mild density dependence is required in the
corrected solute diameters for the spherical chemical potentials

For a nonspherical solute composed of several fused spheres, exactly match hard diatomic chemical potentials at all

however,o* > o5+ 04, and a new solute diameteﬁ; =X —
o5, must be defined which is consistent with the larger excluded
volume of the fused sphere solute. The diamed%r,corre-

densities. The dotted curves therefore represent corrected
diameters at the reduced densitigs= 0.3, 0.6, and 0.9, where
larger corrections (lower curves) correspond to higher densities

sponds to a spherical solute with an excluded volume equal to (o* = p03)_ The density-independent diameter of eq 8 corre-
the excluded volume of the fused sphere solute. This diameterspondS tcs, a density-dependent correctiop*at- 0.68, which

must be decreased slightly for the spherical chemical potential jg very close to normal liquid densities and, at the equilibrium

to match that of the fused sphere soltfté! Ben-Amotz and

bond lengths, provides an average diameter correction sufficient

Stamatopouloth-??used a scaled surface area measurement of ¢ predict density-dependent shifts upgto~ 1.0 (see section

the anisotropy to adju31,§, but the difference between the two
solute diameterspq = o0, — 0q, provides a very similar
measure of the excluded volume anisotropy. Usihg a

[l1A). Because the differences in all diameters diverge as the
anisotropy increases, a density-dependent correction should be
considered for reduced densities greater than 1.0 or for highly

satisfactory formula for the anisotropy corrected solute diameter anjisotropic solutes.

is given by

(Sq 8
T ot D) ©)

0o

IIC. Frequency Shift Calculations. Frequency shift calcula-
tions closely follow methods outlined in the perturbed hard fluid
(PHF) modek Using second-order perturbation theory, Buck-
inghan?® derived an expression for the frequency shift of a cubic
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diatomic oscillator due to a perturbing solvent potential,

v, 272 f (10a)

e

wheref andg are the quadratic and cubic force constants of the
gas-phase vibrational potential, ands the harmonic gas-phase
frequencyF andG are given by the solvent-averaged derivatives

of U,
2
U) DG:; °U D
aRre 2 3R2re

where R is the bond length of the diatomic solute, and the
derivatives are evaluated at the equilibrium bond lengtiThe
first derivative ofU is the force the surrounding solute exerts
along the diatomic bond and, in the first term of eq 10,
contributes 70% or more to the total frequency sHiffhe
quantity, 1/2¢F/9R),,, is a mean field approximation f@ used
in this work and is negative for homonuclear diatomics but can

F= (10b)
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Figure 2. Derivative quantities from eq 6 plotted vs reduced bond
length for N> (&) and HCIl in Ar (b) hard sphere systems. The bond
length scale extends from fully enmeshed solute atoms to atoms at
contact. Solid curves are the derivative¥,*/dR, and the right-hand
scale pertains to the labeled dashed curves.

stretch was obtained from ref 33, and the cubic constants for
other modes were calculated assuming all modes follow the
relation: g/f = A(ve — volve), WhereA is a constant determined
usingf; andg;, andve andv, are the harmonic and the<t 0
gas-phase transition frequencies for a given mode. Values for

be positive or negative for other molecules (see Figures 3 andthe vibrational constants are given in Table 1.

5). While this approximation probably underestimates the
magnitude of5, which should also include a positive fluctuation
term3° the contribution ofG to the overall shift is small, and

The attractive portion of the frequency shift is due to a
combination of dispersive, dipolar, and multipolar interactions,
whose effect on the frequency shift is characterized by a single

such an omission has negligible effects on most predicted €mpirical parameteiC,. If the relatively long-range attractive

frequency shifts.

interactions are modeled as a mean field continuum, the

The calculated frequency shift is broken into repulsive and attra(;tive frequency shift is a linear function of the solvent
attractive parts corresponding to the repulsive and attractive partsOlenSltY‘:"5

of the solventsolute interaction. The repulsive part of the
frequency shift is calculated by settirkgof eq 10b equal to
Frus(Q) of eq 6. (The single vibrational mode of the diatomic is
labeled by the bond lengtiR.) Using the density independent
0, given by eq 8, the density-dependent repul$handG terms

of eq 10b can be expressed as

WYhys
Frep = kBT( )Cl

do,

a
Cl+ (8“7“3)02} (11b)
o]

(11a)

_ kg T (32/4Hs

rep 2 80'02

whereC; andC; are density-independent constants determined

at the equilibrium nuclear configurationgd of the solute.

90, \[av>
C, = 12
! [(avx)(an)Le (12a)
82Oo E)VX)2 32VX (800)
C,= + 12b
? avxz)(an anz) v, (120

Av,=Cp (13)

and both Av, and C, are determined using experimental
frequency data and calculated repulsive shifts. For simple
systems such as neatyNempirical C, values have been
reproduced using a simple dispersion formtil&enerallyC,
values are more difficult to predié'® and the improved
repulsive shifts of the breathing sphere model will enable a more
accurate partitioning of polyatomic frequency shifts into repul-
sive and attractive parts and better empirical assessme@ts of
for different polyatomic vibrations.

I1l. Results and Discussion

IIIA. Diatomic Solutes. Breathing sphere calculations were
done on systems representing neaelNd HCI in Ar to examine
the functionality of the breathing sphere model on the vibrational
coordinateR, and to compare breathing sphere calculations to
PHF results and experimental frequency shifts. Figure 2 shows
the three derivative quantities of eq 6 plotted against the reduced
separation of the solute atoms at a reduced solvent density of
0.7. The functional behavior of the repulsive force (shown in
Figure 3) is shaped primarily by the volume derivati®&/oR
(solid curves in Figure 2), which passes through a maximum

The constants;; andC,, are sensitive scaling factors that adjust when the diameter of the smaller solute atom intersects the
the spherical derivatives to match the excluded volume deriva- surface of the larger atom. For a homonuclear diatomic, this
tive of the fused sphere solute vibrating with the normal mode occurs atR = 0, while increasing differences in size between
motion, Q. the solute atoms shifts the maximumavi*/aR to larger values
Single force constants characterizing the normal modes of of R. This functional behavior influences both the sign and
CO, were evaluated to utilize the diatomic form of eq 10. magnitude of the second derivative quanti¥§y/oR, which is
Results using polyatomic forms of eq?@will be investigated twice the mean field approximation f@ (eq 10b).
in the future, but the diatomic form was retained in the transition ~ The solid curves in Figure 3 shodu/dR as a function of the
from diatomic to polyatomic molecules in this work. Quadratic reduced bond length for both the, ldnd HCI/Ar hard sphere
constants for each mode were calculated ugirg (27cvi)u, systems g* ~ 0.7). The breathing sphere calculations are in
wherevy is the harmonic frequency of a given madkieand the close agreement with PHF results (dashed curves), differing by
mass terms arg; = mp andux = Momg/(2mo +mg) for k = 2 less than 1.5% over the entire rangeRdéxamined. The dotted
andk = 3.32 A value for the cubic constant of the symmetric curves show results obtained using the uncorrected solute
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direct excluded volume calculation, such as performed with
e diatomics, is not sufficient. For example, ba¥*/0Q, andaV */

9Qs are zero at the equilibrium geometry of €é&nd even have
negative values elsewhere. For any molecule, however, excita-
tion to a higher vibrational state implies that the individual atoms

- of the molecule are sweeping out larger vibrational amplitudes.
ST Because this occurs over time scales much faster than solvent
0.0 L ! T — TS ST SR R reorientation, the net effect of the complete vibration cycle will

6008 ot B0 S 0608 1O AR T4 T T8 20 be an increase in the excluded volume. To calculate the repulsive

Figure 3. The repulsive hard sphere force (dividedHKayl) plotted vs force, therefore, an effectivé/ */dQ is defined in which only

reduced bond length for hard sphere systems representing péa) N ppsitiye changes to the ?XC|Uded volume over the complete
and HCI in Ar (b). The dotted curves represent calculations using Vibrational cycle are considered. To accomplish this, the center

uncorrected diameters, the solid curves use asymmetry correctedof mass of the solute is fixed (this fixes the location of the
diamgte_rs, and the dashed curves are PHF predictions. Reduced solvergxcluded volume in the equilibrated solvent), and a Cartesian
density is 0.7. coordinate description of each atom’s normal mode motion is
considered rather than the simpler internal coordinate description
of Q.

For thev; mode of CQ, the C atom remains stationary at
the center of mass and a Cartesian coordinate description is
equivalent to an internal coordinate description. The normal
coordinate Q1, consists of two bond stretches, and tlQus=
2R-0 whereR¢o is the C-0 separation. The excluded volume
derivative is thereforegV X/dQ; = 0.5@V Y0Rco). (Qx is the
sum of all atom displacements without mass weighting.) The
C atom does not remain fixed in the antisymmetric stretgh,
but must move in an opposite direction to the O atoms for the
Figure 4. Calculated and experimental 295 K frequency shifts for neat center of mass to remain fixed. Because the C atom is lighter
N2 (a) and HClin Ar (b) vs reduced density. Solid curves are breathing than the O atoms, its relative displacement is more than twice
322‘1&";&2'g'&fégg\?ed{?rlggdpgﬁ;vrﬁztﬂi.PHF predictions. Both mOOIeI?hat of a single O qtom and much of tig motion cqnsists of

the oscillatory motion of the C atom, which contributes very

diameters,ay (lower curves) oray (upper curves). For all jittle to changes in the excluded volume. The calculatiof\6f
curves,dV X/oRis the same, and the dramatic differences in the 5Q; is simplified by assuming the contribution of the C atom

calculated force are due to the sensitivity of the calculation to motion to 8V */aQ; is zero, and only the small outward
the diameter derivativepy/dV %, rather than to the small changes  displacements of the O atoms need be considered. With the C
(~ 1% or less afe) in absolute values of the different solute  atom fixed, theQs calculation is similar to the symmetri@;
diameters. The Scaling faCtOGl andCQ, are thus very sensitive calculation, but the disp|acement Coordin&mo, 0n|y repre-

to the functional form ofo,, and it is imperative thab, be sents that part of th&; motion contributing to a change in the
correctly scaled to reflect both the correct solute size and the excluded volume. The complet@; motion (including the C
excluded volume anisotropy. atom displacement) is

Figure 4 shows experimental and calculated density-depend-
ent frequency shifts for N> and HCI3* The N, experimental Mo
frequency shifts range from normal liquid densiti®s¥ 1 kbar Q;=2(Xg + %) = Z(ZRCO + Z_Rco) =9.3R,
@ 23°C) to densities typical of highly compressed liquids ( Me
~ 30 kbar), while the HCI shifts span the density range between
normal gas and liquid densities. (Ar pressuxe6.01-1 kbar.) wherem; andx; are the mass and displacement of aiony =
The upper curves in the plots are the repulsive part of the Rco anddV */dQs = 0.107¢V ¥/dRcq). The first factor of 2 is
frequency shift ;) calculated using eq 10 via the PHF (dashed required because the total positive volume change requires two
curves) or breathing sphere (solid curves) model. Fgrthe vibrational displacements or one complete vibrational cycle.
attractive shift parameter was calculated using a simple disper- The Cartesian displacements and volume calculations of the
sion formulal® and the predicted Nrequency shift calculation  v2 bending mode are somewhat different than an internal bond
contains no adjustable parameters. For HCI, the attractive bending description of,. Just as with the’s mode, the larger
parameter was determined by a best fit to the experimental shiftsC atom displacement must compensate for two O atom
but is less than 10% larger than an attractive parameter displacements to keep the center of mass constant, but the center
determined from an accurate HEAr potential®®> For both of mass displacements are perpendicular to the bond axis. When
diatomics, the breathing sphere model gives results in closeconsidering the complete vibration, the C atom displacement
agreement with the PHF model, although at densities of highly almost completely overlaps with the O atom displacements that
compressed fluids, the breathing sphere calculations result in aare primarily directed inward. The net positi® ¥dQ, is
slightly larger repulsive force and hence larger blue shifts. This therefore approximated by the oscillatory motion of the C atom
is not surprising given that a density-independent diameter wasonly, and theQ, calculations are based on a four-sphere volume
used in the breathing sphere calculations. Using the density-calculation in which two spheres perpendicular to the bond axis
dependent diameter of ref 21 gives breathing sphere results inare used to represent the C atom at each turning point of the
closer agreement with PHF predictions at the high densities of vibration. (See Figure 8 of the appendix.)
compressed liquids. The calculated repulsive force on the three different vibra-
I1IB. Carbon Dioxide. To apply the breathing sphere model tional modes of C@is shown in Figure 5. In plot a, the repulsive
to the different modes of vibration in a polyatomic molecule, a force for each vibrational mode is plotted versus its respective
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Figure 5. Calculated repulsive force (divided byT) for normal modes [ ]
of CO,. Plot a shows force vs molecular coordinateg*at= 0.7 (COC L B J
angle,d, pertains tdQ,). Solid curves are breathing sphere calculations. ol o] . SPEIFIFEN ENEFENE EFEFE Wil S
Dotted and dashed curves are PHF calculations using two different 6o 02 04 06 08 1.0
pseudodiatomic forms (see text). Plot b shows density dependent force p*

vs solvent density at equilibrium geometry of €iatomic force

curves are included for comparison. Figure 6. Density-dependent 295 K frequency shifts f@rv,, andvs;

modes of CQ@. Points are author’s data corrected for Fermi resonance.
molecular coordinateRco or . Two different PHF predictions Dotte_d curves are fits to faverage_shifts taken _from ref 36 (with same
for the Q; symmetric stretch are also plotted: The dashed curve Fermi resonance correction applied), and solid curves are breathing
represents a PHF calculation for a hard spheréQliatomic, sphere predictions. Dashed curve is predioteghift.

and the dotted curve represents the pseudodiatomic,{OC]

At the equilibrium bond length, the PHF calculations differ from
one another by less than 0.5% (The breathing sphere calculatio
is ~ 2% larger), but the larger [OC] sphere of the pseudodi-
atomic gives significant differences elsewhere along the vibra-
tional coordinate as well as different second derivative values
at re. The insensitivity of the PHF repulsive force calculation
at re to variations in solute atom diameters and separations is
commonly observe#f and theQ; curves in Figure 5a suggest
that the importance of the model solute lies in its ability to
reproduce the changing excluded volume associated with a
specific solute vibration, rather than reproducing an exact solute
form or volume.

The use of the €0 diatomic to model the C&Osymmetric
stretch is based on a polyatomic treatment suggested by
Schweizer and Chandlérjn which a weighted average of
separate diatomic motions is used to approximate the normal
mode motion. (Two equivalent €0 stretches average to a

single C-0 stretch forQ;.) The C-0 diatomic and breathing ters for the diff t vibrational mod dth ted
sphere results are approximately the same because the overlal arameters for the ditierent vibrational modes and the expecte
ontributions of dispersive, dipolar and multipolar interactions.

between the two O atoms is contained entirely within the C onl h larizability derivat tth ilib
atom, and breathing sphere volume changes are due only to.nle as a nonzero poiarizability derivative at the equilib-

changes in two equivalent-€0 overlaps. In the nonlinedp, fium geometry pf the ”?O'eC“'e’ yet its small value suggests
and asymmetri®s; motions, the breathing sphere calculation th"’_‘t dlspe_rswe Interactions have a small (_effec_t_/pfrequency
incorporates volume change differences due to nonlinear andSh'ﬂﬁ']'l (G|verllcthe lmag?ltu;jhe of th% poltalrlzalt)mtyl of Q;(Dn(tah i
asymmetric vibrational motions that a simple pseudodiatomic would Expect, values for %’1 mode at least as large as tha
form cannot reproduce. The different form and magnitude of for N2.) Ab initio caI_cuIanné O_f dipole moment derivatives
the Q dependent force on these vibrations is evident in Figure Eh?v;/hthng (illtznvatl\l/e to fbe Sf“%htlyt Iargt]ﬁrttha_m tTat df'QS’I
5a, while Figure 5b shows the density-dependent force of each. ut the smallt, value of vs indicates that simpie dipoiar
mode along with the diatomic systems discussed previously. interactions likewise have very small effects on thérequency

Clearly, the smaller volume changes associated @itrand shifts. Only in calculated second derivative values of the
Qs result in smaller repulsive forces, while the exact forms of polarizability and dipole and quadrupole moments doesxhe

the volume changes associated with each mode are impor'[anfnOde have significantly larger values that might account for

in determining second derivative terms (mean field G) for its large red shifts.
frequency shift calculations.

Experimental and predicted density-dependent frequency
shifts for all three vibrational modes of G@re shown in Figure The empirical C, values and electro-optical parameters
6. Predicted shifts using the breathing sphere model are shownassociated with each vibrational mode of £early demon-
as solid curves and points denote the authors experimentaPdata. strates the complexity of accurately assessing the effects of
The experimentab; shifts are corrected for Fermi resonance repulsive and attractive solvensolute interactions on the
according to a density-dependent Fermi resonance parametefrequencies of polyatomic vibrational transitions. The breathing
given by Garrabdg-38and an exact Fermi resonance at a density sphere model provides a simple method for estimating the
intermediate between that of the gas and liquid. Thehifts repulsive part of this interaction on polyatomic vibrations. It
in the figure are one-half of the Fermi resonance corrected shiftsevaluates the average solvent-induced repulsive force on a given
corresponding to thei3 overtone. The dotted curves are from vibration by equating the excluded volume change of a vibrating

polynomial fits of data (corrected for Fermi resonance) given
rpy Garrabo® and span approximately the same density range
as our own data. The solid and dashed curves are breathing
sphere predictions. Values f@, parameters were fixed by
fitting to the experimental points and are listed in Table 1. The
dashed curve represertts; shifts based on &, that gives initial
red shiftsx~ —0.006 cnt¥nm=3, which is one-third of the
average pressure-induced shift observed for individual rotational
lines in the 3— 0 vibrational transition in the low-pressure ¢és.
Qualitatively, the breathing sphere model appears to give shifts
for all three modes consistent with existing data, although the
lack of high-pressure IR frequency data makes it impossible to
make quantitative judgments. Also, the density dependence of
the unperturbea; and 2/, modes is very sensitive to the Fermi
resonance correctioif,and this introduces an additional degree
of uncertainty to the Fermi-corrected experimental shifts and
Ca values for these modes.

Empirical C, values are difficult to correlate to electro-optical

IV. Summary
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Figure 7. Cross section through centers of three overlapping spheres, Figure 8. Four-sphere system used to calculate .G volume

A, B, and C. The triple overlap regioNa is indicated by crosshatch  derivative. Heavy solid lines outline sphere segments. Volume formulas
marks and represents the intersectionVgf (horizontal hatch marks) for segments are given in the text.

and Vqc (diagonal hatch marks). Labels refer to sphere centers and

intersection points of spheres. Vij (crosshatched area in Figure 7) is the intersection of volumes

V; and Vi . The factor of 1/2 in the sum ovdyis included
becaus&/jx andVj represent the same volume. Additional terms
must be added to eq Al if it is to generally hold for
configurations containing 4-fold and higher overlaps. Appropri-
ate segment volumes can be obtained for any planar system
using only double and triple overlap terms, however, if the sums
in eq Al are adjusted to fit a particular system of spheres. For
example, triple and higher order overlaps formed by double
overlaps completely contained within other double overlaps in
linear and near linear systems of spheres may be ignored if only

bond lengths and densities. ; . .
For CO,. the lack of hiah f dat densit double overlaps between nearest neighbors are included in the
or CQ,, the lack of high-pressure frequency data, a density- sum overj. For nonlinear systems, however, triple overlaps are

depen_dent Fermi resonance interaction and pO.SSible higher OrdeEn‘ten formed from the partial overlap of two doubly overlapped
attractive (_affects dependent on second der|vat_|ve values Ofregions as shown in Figure 7, and triple overlap volumes must
electro-optical parameters complicate the comparison of l:’re""th'be included in the volume calculation. For the particular case

ing sphere results to existing frequency shift data. The breathing. . 9\, _ B .
sphere treatment of GQloes demonstrate the model's adapt- " Flgur§g7, the volume segments af"= Vig Vab — (Ve
Vabc), VE =Vb — Vba— (Vbc - Vbca)y and\/i =Ve— Vep—

ability and sensitivity to different vibrational modes and h . be obtained by either visual
molecular geometriesfeatures that are not present in previous .(Vca N \./Cba)' T ese equations can )€ 0 tained by either visua
inspection of Figure 7 or the application of eq Alwhere the

diatomic adaptations to polyatomic solutes. Work continues on 8 . . -
refining a general breathing sphere application to nonplanar €quivalent volumesyj andVig, have been combined into single
terms. An example of a four-sphere system containing a 4-fold

polyatomics and testing the breathing sphere model against ' . A ) X .
available high-pressure frequency data for polyatomic vibrations. ©Verlap is depicted in Figure 8. This configuration was used to
calculateQ, derivative quantities for C&and is a symmetrical

arrangement where spheres A and C and spheres B and D are
the same size. Sphere segment formulas containing only triple
overlap terms were obtained by visual inspection.

multisphere solute in a solvent of hard spheres to that of a
breathing sphere solute, for which a relatively simple analytical

solution for the solvent-induced repulsive force exists. This

calculation is very sensitive to the solute diameter, whose value
must be adjusted according to the anisotropy of the excluded
volume of the multisphere solute. The breathing sphere model
provides a simple prescription for the anisotropy adjusted solute
diameter and gives results for diatomic solutes in agreement
with simulation tested diatomic models over a large range of
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Appendix: Fused Sphere Volume Calculations Va9= V=V, = Vo= (Vag = Vand

A fused sphere volume is obtained by summing individual eg_ \feU_\; _ _ _
sphere segment volumes/®® Sphere segments, whose Vo= Va®= Vo = Voo 2(Vba ~ Voud
boundaries are depicted in Figure 7 with bold lines, are obtained
by removing those portions of the sphere that penetrate into  The overlap volumeyj, for two spheres with radi; andr,
neighboring sphere segments. In cases where no more than thregeparated by the distanag, is

spheres overlap as shown in Figure 7, a general formula for the
25, (" > e+’
éri + lij E =il Iij = —2r (A2)

volume of theith segment is given by
1 L
Vo=V, - Z Vi — _z Vi
= 25 The length/;, is the perpendicular distance from the center of
sphere to the intersection plane (or chord in Figure 7) formed
whereVj; (horizontal and diagonal ruled regions in Figure 7) is by the intersection of sphefeand spherg. Placing sphere at
the volume of sphere penetrating into sphere segmgnand the origin and defining the positivedirection to be toward the

Vij =x

(A1)
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center of spherg Vi is given by

Xi i
Vi = fmk AXdx+ [, ’dx

AK) = rf(% - sin‘l[f—x]) Sy -y (A9

whereA(x) is the area of a slice o¥ at a givenx, and the
limits in the integrals correspond to the labeled intersection
points in Figure 7. The Cartesian coordinates ofithietersec-
tion points areq; = lj andy; = % (ri® — 1;?)Y2 Theik Cartesian

coordinates are obtained similarly but must be rotated through

the anglejik defined by the sphere centers. The radius of the
A(X) slice isry = (ri2 — x3Y2, andy, = myx + by defines a
straight-line boundary o&(x) where the slice intersects the plane
containing chordK. The parametersy, andby, are the slope
and intercept, respectively, of the chdi€. The first integral

in eq A3 is evaluated numerically. The second integral is
required if the triple overlap regioivjj, extends over both sides
of they = 0 line through the centers of sphereandj and
evaluates to eq A2 withk substituted forlx. The above

treatment is applicable to any planar array of spheres of varying

size and geometric arrangement.
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