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We report a theoretical study on the calibration of the semiempirical quantum mechanical/molecular mechanical
(QM/MM) Hamiltonian for the interaction of a series of functional groups with a TIP3P water molecule.
Both AM1 and PM3 methods are employed to describe the quantum mechanical groups, which include neutral
and charged molecules. Following most of the current QM/MM formalisms, the QM/MM Hamiltonian is
built up by combining an electrostatic term and a van der Waals 6-12 potential. Owing to the lack of a
precise definition of the electrostatic potential in semiempirical methods, various expressions for determining
such an electrostatic energy between QM and MM subsystems have been considered. Likewise, the van der
Waals parameters have been optimized to reproduce equilibrium geometries and interaction energies for selected
complexes computed at the B3LYP level. Comparison is made with other sets of van der Waals parameters
reported in the literature. The results reveal the extreme sensitivity of the van der Waals parameters to the
QM/MM formalism and parametrization details, which makes it necessary to verify their transferability between
different semiempirical QM/MM methods.

Introduction

In the past years, quantum mechanical/molecular mechanical
(QM/MM) methods have allowed the study of reactive processes
in very large systems containing hundreds or thousands of
atoms.1 The basic idea is to treat quantum mechanically the
reactive part of the system, which is a priori quite localized,
while keeping a classical description of the surrounding
environment.2 Accordingly, the Hamiltonian of the whole system
is expressed as noted in eq 1, where the first two terms stand
for the standard Hamiltonian of the QM and MM systems and
the last one holds for the interaction between QM and MM
regions. When the QM/MM frontier lies in a chemical bond,
an ad hoc SCF calculation is needed.3 Though implementations
using ab initio and density functional theory methods have been
reported,4 a large number of studies in the literature deals with
semiempirical methods,5 particularly the AM16 and PM37 ones.
For the classical subsystem, a variety of force fields have been
used, like AMBER,8 CHARMM,9 GROMOS,10 or MM3,11 for
instance. The reliability of the results depends on the level of
theory used for the QM system, the force field for the MM part,
and the QM/MM interaction potential.

The QM/MM Hamiltonian is generally expressed as the addition
of electrostatic and nonelectrostatic contributions. When classical
sites are described by using a set of point charges{qm}, the

electrostatic term is given by eq 2, whereVQM(Rm) is the
potential created by electrons and nuclei in the QM system (eq
3, where m represents sites in the MM subsystem located at
position Rm). The nonelectrostatic component is generally
expressed using a 6-12 Lennard-Jones term (eq 4, whereq
holds for nuclei in the QM subsystem). Energy derivatives are
obtained straightforward, so that geometry optimization or
molecular dynamics simulations may be envisaged.

One of the major challenges for QM/MM methods is the
realistic simulation of enzyme reactions. Generally, a large QM
subsystem (50-100 atoms) has to be considered, which severely
limits the possibility to perform QM/MM calculations using first
principles methods, though approximate models such as the
Empirical Valence Bond12 have proved to be valuable. There-
fore, semiempirical methods emerge as an alternative to treat
the QM system. However, their limitations do not ensure an
accurate description of the reactive process nor the interactions
between QM and MM systems, and a careful analysis is
necessary to validate the computational scheme. The suitability
of semiempirical theory to treat QM/MM interactions has been
examined in numerous studies,3a,5c,e,f,13mostly motivated by the
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lack of a precise definition of the electrostatic potential,14

VQM(R), in semiempirical methods.15

To gain further insight into the reliability of the semiempirical
QM/MM Hamiltonian, this study (i) makes a comparison of
different algorithms developed for the computation of the
electrostatic QM/MM component, and (ii) examines the need
to optimize parameters involved in the nonelectrostatic QM/
MM term to derive, in fine, an accurate combined quantum/
classical force field. The rest of the paper is as follows. First,
we briefly review some of the expressions used to compute the
electrostatic QM/MM interaction. Second, we report the details
of the calculations performed to compare the algorithms selected
to calculate the electrostatic component and to calibrate the
nonelectrostatic term. Third, the results of the comparison
between electrostatic QM/MM algorithms are presented. Finally,
we discuss the results of the van der Waals (vdW) parametriza-
tion.

Definition of the QM/MM Electrostatic Potential

According to Field et al.,3a the electronic contribution to the
interaction of the QM molecule with a point charge is
determined using an expression (eq 5) based on the NDDO
(neglect of differential atomic overlap) scheme adopted in
semiempirical methods.

wheresm is a notional s orbital on m andµ, ν are atomic orbitals
belonging to the same QM atom.

The two-center two-electron integrals in eq 5 are computed
in terms of the interaction of a finite multipole expansion of
charges about the relevant atoms (ss, sp, and pp distributions
on QM atoms are treated as monopole, dipole, and quadrupole
expansions with corresponding parametersFq

0, Fq
1, and Fq

2).
For example, for an s-orbital distribution the multipole expansion
is simply a point charge centered on the atom and the integral
takes the form noted in eq 6.

whereRqm is the distance between the centers q and m, and
(F0

q + F0
m)2 is the Ohno-Kloppman factor that accounts for

damping of classical Coulomb interactions due to overlapping
electron densities.

The nuclear contribution follows the expression adopted for
core-core interactions, as noted in eqs 7-9, whereR, K, L,
andM depend on atom type andZq is the core charge of the q
atom. The exponential terms inf(q,m) (eq 8) were introduced
in MNDO16 to correct the lack of penetration effects in the
electronic component (the negative sign for the exponential
terms holds for negative chargesqm so that such terms always
represent a repulsive contribution). The functiong(q,m) is an
additional term in AM1 and PM3 introduced to correct
deficiencies of the MNDO method in hydrogen-bonded interac-
tions.

where the sum runs over all the q atoms in the QM system.

Field et al.3a left unchanged the semiempirical parameters on
QM atoms and optimized those on MM sites. In the final
expression,F0

m adopted a value of zero, the terms corresponding
to MM atoms in the functiong(q,m) were omitted, and only
one parameter per MM atom type,Rm, was used and set to 5.0
(au-1) in order to get the best fit to ab initio data.

Most of the alternative algorithms formulated to compute
VQM(R) are related at some extent to the preceding equations.
Thompson5c uses a similar approach to that reported by Field
et al.,3a the main difference being the exclusion of the Gaussian
expansion terms in the functiong(q,m) for both QM an MM
atoms. Bakowies and Thiel also assumeF0

q ) 0 and neglect
the functiong(q,m).5e However, following the semiempirical
scheme previously introduced by Ford and Wang,13a they
introduce in the exponential functionf(q,m) different adjustable
parameters which are optimized to reproduce the HF/6-31G(d)
electrostatic potential and field. The difference between the
procedures adopted by Bakowies and Thiel5e and Ford and
Wang13amostly concern the parametrization of such adjustable
parameters. In the approach employed by Vasilyev et al.,5f a
scaling parameter (0.095 for MNDO and AM1, 0.097 for PM3)
is introduced to correct the magnitude of the Ohno-Kloppman
factor (F0

q + F0
m)2, and the extra terms in the core-core energies

are omitted.
Other authors13b,c,17 have used expressions where bothFl

q

(l ) 0, 1, 2) andF0
m are set to zero. Indeed, there are some

differences in the treatment of the additional correction terms.
Thus, Cummins and Gready13b,cneglect bothf(q,m) andg(q,m)
functions and the core-charge interaction follows a simple
Coulombic expression. A similar formalism has been adopted
by Luque et al.17aand Chudinov et al.17b to compute the solute-
solvent electrostatic interaction in the framework of semiem-
pirical self-consistent reaction field methods.

Finally, Théry et al.13d adopted a procedure to computeVQM-
(R) that presents some notable differences compared to the
preceding ones. In this procedure the electronic contribution
follows the usual semiempirical expression (eq 5) without
making any simplification, and the standard parameters of the
semiempirical method are used for both QM and MM atoms.
However, the core-charge interaction energy is split in two
terms as noted in eq 10, which represents the interaction of the
QM core with the core of a classical pseudo-atom bearing an
“implicit electronic population” given byPm ) Zm - qm. Then,
the first term in eq 10 corresponds to the semiempirical core-
core repulsion for two atoms of core chargeZq and Zm, and the
second one represents the interaction of the quantum coreZq

with the electron population of the classical atom,Pm.

On the basis of the preceding review, in this work we have
analyzed three formalisms to computeVQM(R), which were
chosen to encompass the algorithms mentioned above (see Table
1). The method I18 neglects all the parameters assigned to both
QM and MM atoms in eqs 6-9. Therefore, electron-charge
integrals are expressed in terms of the interactions of monopole,
dipole, and quadrupole expansions of the electron distribution

VQM
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with the point charge, whereas the core-charge interaction is
simply given by a Coulomb term. The method II18 follows
closely the treatment adopted in AM1 and PM3 methods for
the electron-core and core-core expressions, but omitting all
those terms concerning the MM site, i.e., the factorFm in the
two-center two-electron integrals (see eq 6), the exponential
factor exp(-RmRqm) in f(q,m) (eq 8), and the Gaussian functions
Km,j exp(-Lm,j(Rqm - Mm,j)2) in g(q,m) (eq 9). Finally, the
method III follows exactly the definition made by The´ry et al.,13d

and the classical particle is treated as a core and an electron
distribution having an s-type distribution (see above).

Computational Details

This section presents the computational strategy followed to
calibrate the semiempirical QM/MM Hamiltonian. To this end,
calculations were performed for a series of bimolecular hydrogen-
bonded complexes involving a water molecule. Following other
QM/MM parametrization studies,1b,3a,4d,5a,f,19the structural and
energetic properties of the QM/MM interaction were adjusted
to reproduce the reference values computed at a given QM level
of theory. The series of QM molecules include prototypical
neutral polar groups (H2O, NH3, HCOOH), a cation (H3O+),
and an anion (HCOO-). The TIP3P20 water model was used

for the MM water molecule. Finally, the level of theory used
for comparison was the B3LYP density functional method21 with
the 6-31G(d)22 basis, which gives a reliable description of
electrostatic properties23 and of structural and energetic features
of hydrogen-bonded complexes.24

The reference energy profiles were obtained as follows. First,
the geometry of each monomer was optimized at the AM1 and
PM3 levels of theory, and was subsequently kept frozen.
Complexes with a TIP3P water molecule were built up in
selected orientations (see Figure 1). A partial AM1 or PM3
geometry optimization of the complexes was carried out with
all degrees of freedom fixed except the intermolecular distance.
Afterwards, the QM monomer-TIP3P water molecule distance
was scanned (keeping the relative intermolecular orientation)
and single-point calculations were carried out at the B3LYP
level to obtain the interaction energy, which was corrected for
the basis set superposition error using the counterpoise method.25

The electrostatic AM1/TIP3P and PM3/TIP3P energy was then
computed at each point along the profile using the same
geometries. For comparison, B3LYP/TIP3P electrostatic ener-
gies were also calculated. The residual energy was then
determined as the difference between the full B3LYP interaction
energy and the electrostatic AM1/TIP3P or PM3/TIP3P energy.
Finally, the vdW parameters of the QM atoms were optimized
fitting the residual energy profiles (see below).

Results and Discussion

Electrostatic Energy Profiles. As noted before, the electro-
static interaction energy in QM/MM methods can be determined
using a variety of expressions, which follow more or less closely
the treatment adopted in NDDO-based methods, where a series
of empirical terms are considered to properly deal with
electrostatic interactions between atoms. The termsFl (l ) 0,
1, 2) were included to ensure the proper behavior of semiem-
pirical repulsion integrals in the limitsRAB f ∞ and RAB f
0.26 The exponential term in the functionf(q,m) was included
to account for the increase in the net electrostatic repulsion
between neutral atoms with decreasing interatomic distance.26

Finally, the Gaussian functions ing(q,m) were added to the AM1

Figure 1. Schematic representation of the complexes between the QM monomer (H2O, NH3, HCOOH, H3O+, HCOO-) and a TIP3P water molecule.

TABLE 1: Methods Considered in This Study To Compute
the Electrostatic QM/MM Interaction Energy

method electronic part nuclear part

I F0
m ) 0 (sqsq|smsm) ) 1/Rqm

F0
q ) F1

q ) F2
q ) 0 f(q,m) ) 1

g(q,m) ) 0
i.e.
EQM/MM

core) Zqqm/Rqm

II F0
m ) 0 f(q,m) ) 1 ( e-RqRqma

g(q,m) ) ∑iKq,ie
-Lq,i(Rqm-Mq,i)2

III standard parameters for
Fi

q andF0
m

eq 10

a Following the MNDO formulation, whenq ) (N,O) andm ) H,
f(q,m) ) 1 ( Rqme-RqRqm. The negative sign holds for negativeqm

charges so that the exponential term always represents a repulsive
contribution.
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and PM3 Hamiltonians to correct excessive interatomic repul-
sions at large separations found in MNDO.16 Whether or not
those empirical terms are necessary to describe the interaction
between QM and MM systems at intermolecular distances
typical of molecular aggregates is, nevertheless, unclear.

In order to calibrate the performance of the three electrostatic
formalisms (see Table 1), we determined the QM/MM electro-
static energy profiles for the complexes shown in Figure 1. The
semiempirical AM1/TIP3P and PM3/TIP3P profiles were then
compared with those obtained treating the QM monomer at the

B3LYP level. Though calculations were carried out for all the
complexes in Figure 1, the global trends are discussed on the
basis of some representative results for selected complexes.

The AM1/TIP3P and PM3/TIP3P electrostatic profiles for
the water dimer (complexes A and B) and formic acid-water
pair (complexes A and C) are shown in Figure 2. The profiles
determined using the method I exhibit the expected shape for
the Coulombic interaction energy and, in fact, they roughly
follow the shape of the reference B3LYP/TIP3P electrostatic
energy profile. Thus, the semiempirical profile slightly under-

Figure 2. Electrostatic energy profiles (kcal/mol) for the interaction between water or formic acid with a TIP3P water molecule computed at the
reference B3LYP (O) and semiempirical (AM1 and PM3) levels using formalisms I (0), II (]), and III (×) to compute the electrostatic energy. The
origin of distances (Å) in thex-axis is the equilibrium intermolecular separation determined at the semiempirical level (H2O complex A: 3.10
(AM1) and 2.77 (PM3); H2O complex B: 2.61 (AM1) and 3.05 (PM3); HCOOH complex A: 3.06 (AM1) and 2.75 (PM3); HCOOH complex C:
3.09 (AM1) and 2.77 (PM3)).
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estimates or overestimates the B3LYP/TIP3P one in some cases,
but there is general agreement between AM1(PM3)/TIP3P and
B3LYP/TIP3P profiles when the formalism I is used. The
regression equations obtained when the B3LYP/TIP3P values
are compared with the AM1/TIP3P and PM3/TIP3P ones using
the data determined for all the complexes areEB3LYP )
1.050EAM1 (r ) 0.98) andEB3LYP ) 1.022EAM1 (r ) 0.98),
respectively.

The results determined using method II are very similar to
those computed with method I at large intermolecular distances.
Nevertheless, the electrostatic energies are clearly less stabilizing
as the intermolecular distance decreases, and in some cases (see
complex A of H2O and complex C of HCOOH in Figure 2) the
electrostatic energy curve reaches a minimum and then tends
to decrease (in absolute value) as the intermolecular distance is
shortened. This behavior occurs in complexes of the type
O‚‚‚Hw-Ow or N‚‚‚Hw-Ow (complex B of NH3 in Figure 1;
data not shown), but it is not found in interactions of the type
O-H‚‚‚Ow or N-H‚‚‚Ow. Test calculations showed that the
Gaussian functions ing(q,m) make a negligible contribution and
that the screening of electrostatic potential is due to the Ohno-
Klopman factors and to the exponential term in the core-charge
expression, whose contribution increase with larger penetration

of the interacting atoms. This also explains why this effect is
more relevant in the PM3 profiles, where such a behavior occurs
even at the equilibrium intermolecular distances, than in the
AM1 ones, since the fomer method tends to give equilibrium
distances shorter (around 0.2 Å; see below and Table 3) than
the latter.

Finally, the method III appears to be rather poor for the
present TIP3P water complexes. Clearly, the repulsive term is
largely overestimated and the electrostatic energy is clearly
destabilizing even at geometries close to the equilibrium
intermolecular distances. For instance, the PM3/TIP3P energy
predicted by the method III at the equilibrium geometry is+7
kcal/mol for complex A of H2O, whereas the corresponding
value in the reference B3LYP/TIP3P electrostatic energy profile
is -7 kcal/mol (Figure 2). Such a large difference has no
physical justification and must be attributed to an inappropriate
balance of the two terms in the right-hand side of eq 10. Thus,
even though the underlying assumption of method III (i.e.,
treating the classical particle as a core plus an implicit electron
population) is appealing, a careful calibration is required to
balance the attractive and repulsive terms in eq 10.

Parametrization of the Nonelectrostatic Term.There is not
a priori a rigorous physical justification to discriminate between
methods I and II to compute the semiempirical QM/MM
electrostatic energy. In the framework of method II, the
contribution of theg(q,m) function to the electrostatic energy
is negligible (see above) and this term can be eliminated.
However, both the Ohno-Klopman factor and the exponential
term have an important contribution to the interaction energy
and their screening effect cannot be omitted. Compared to the
computationally simpler method I, which includes only the pure
Coulombic contribution, method II adds short-range repulsions
between the QM core and the classical charge, which otherwise
should be handled by the vdW component of the QM/MM
Hamiltonian. According to Cummins and Gready,13c the Ohno-
Klopman factor may be essential for a realistic choice of van
der Waals parameters and for a proper description of solute-
solvent H-bonding in the case of ionic solutes. The damping
parameter factor is likely to be more important for describing
interactions involving ionic species than for neutral species due

TABLE 2: Optimized van der Waals Parametersa for the
Combined AM1/TIP3P and PM3/TIP3P Potential Using
Method I for the Electrostatic Energy and B3LYP
Equilibrium Energies and Distances as Reference Data

AM1 PM3

monomer atom ε r ε r

H2O O 0.50 1.70 0.35 1.70
H 0.34 0.40 0.20 0.40

NH3 N 2.30 1.75 4.70 1.55
HCOOH C 0.70 1.85 0.70 1.80

O 1.15 1.80 1.15 1.80
O(H) 1.00 1.50 0.90 1.55
H(O) 0.80 0.15 0.90 0.01

H3O+ O 40.0 1.00 45.0 0.95
H 0.1 0.10 0.05 0.05

HCOO- C 0.70 1.80 0.75 1.85
O 0.65 1.70 0.65 1.75

a ε, kcal/mol; r, Å.

TABLE 3: Equilibrium Distances ( d, Å) and Interaction Energies (E, kcal/mol) Computed at the AM1 and PM3 QM/MM
Levela for the Different Complexes

B3LYP AM1 AM1/TIP3P PM3 PM3/TIP3P

monomer complex E d E d E d E d E d

H2O A -4.7 2.92 -2.7 3.10 -5.2 2.85 -2.7 2.77 -5.2 2.87
B -3.1 2.91 -5.0 2.61 -3.9 3.01 -2.1 3.05 -3.9 2.95
C -5.4 2.89 -3.3 3.03 -5.3 2.83 -3.5 2.78 -5.7 2.79
D -4.7 2.91 -2.7 3.09 -4.3 3.03 -2.7 2.77 -4.1 2.93
E -5.4 2.88 -3.2 2.61 -4.5 2.97 -3.5 2.77 -4.0 2.91

NH3 A -2.4 3.19 -1.0 3.17 -2.5 3.23 -0.3 2.86 -2.0 3.16
B -7.1 2.94 -0.9 3.50 -6.7 2.98 -2.9 2.78 -6.7 2.86

HCOOH A -8.3 2.74 -3.4 3.06 -7.7 2.73 -3.8 2.75 -6.9 2.70
B -4.3 2.90 -3.6 3.05 -5.5 2.98 -3.4 2.78 -5.7 2.93
C -4.0 2.97 -3.0 3.09 -5.1 3.12 -3.2 2.77 -5.3 2.97
D -9.6 3.08 -5.5 3.40 -7.0 3.52 -4.1 3.06 -7.3 3.46

H3O+ A -33.9 2.47 -17.4 2.82 -33.8 2.53 -21.9 2.65 -34.4 2.44
B -34.4 2.47 -17.5 2.80 -33.5 2.49 -22.3 2.64 -32.9 2.43

HCOO- A -16.3 2.72 -10.9 2.92 -15.6 2.78 -14.8 2.69 -17.3 2.77
B -14.0 3.04 -11.2 3.01 -14.9 2.97 -10.2 2.76 -15.0 3.02
C -14.1 2.71 -8.6 3.00 -14.6 2.77 -10.9 2.72 -14.5 2.77
D -17.1 3.12 -15.9 3.19 -20.5 3.22 -16.2 2.98 -20.3 3.27

msdb +4.3 +0.15 -0.1 +0.07 +3.5 -0.08 -0.1 +0.02
rmsc 6.6 0.26 1.2 0.13 4.9 0.16 1.3 0.11
cd 1.62 0.99 1.41 0.98
re 0.92 0.99 0.96 0.99

a Values computed using the formalism I for the electrostatic term and the optimized parameters given in Table 2 for the van der Waals component.
b Mean signed deviation.c Root-mean-square deviation.d Coefficient of the linear regressionE(B3LYP) ) cE(other method).e Correlation coefficient.
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to larger diatomic overlap in the former. Because of the need
to keep a proper balance between electrostatic and nonelectro-
static terms in the QM/MM Hamiltonian (eqs 2-4), the
preceding discussion strongly argues against the transferability
of vdW parameters when different electrostatic formalisms are
used in semiempirical QM/MM calculations.

This is well illustrated in Figure 3, which shows the
interaction energy profile for complex A of H2O at the B3LYP
and AM1 QM/MM levels. The AM1 QM/MM values were
determined by adding the electrostatic energy calculated with
either method I or II to the vdW energy computed using the
vdW parameters reported by Gao.1b When method II is used in
conjunction with vdW parameters optimized for closely related
formalisms,18 the energy profile (see Figure 3) shows a
minimum at an intermolecular distance around 0.2 Å shorter
than the B3LYP value (2.92 Å) and the well depth is close to
the B3LYP interaction energy (-4.7 kcal/mol). In contrast, when
method I is used, no minimum appears in the energy profile
for the range of distances examined. Clearly, in this latter case
the balance between electrostatic and vdW components of the
QM/MM Hamiltonian is not maintained.

In order to examine the suitability of the vdW parameters
for a given electrostatic formalism and Hamiltonian, the vdW
parameters of the QM monomer were optimized to reproduce
the difference between the total B3LYP interaction energy and
the electrostatic energy calculated using the “pure” Coulombic
approach (method I) for all the complexes in a given dimer.27

To this end, an AMBER-like 6-12 expression was chosen for
the nonelectrostatic QM/MM component (eq 11), since this work
fits into a project to combine QM calculations with the MM
AMBER program.28 The initial set of vdW parameters of the
QM solutes was selected from the AMBER force field.8 The
final parameters are given in Table 2 and the computed
interaction distances and energies are given in Table 3.

whereε is the atomic hardness,r* is the atomic van der Waals
radius, andR is the interatomic distance.

Throughout the parametrization process, we attempted to
assign vdW parameters only to heavy atoms and, in order to
limit the numerical solutions, we tried to maintain the vdW radii
close to the AMBER values. In this process, the energy profiles
for ammonia were satisfactorily reproduced, assigning vdW
parameters only to the nitrogen atom. Nevertheless, vdW
parameters for hydrogen atoms were necessary to improve the
fitting for water. In fact, this finding was not unexpected on
the basis of previous studies that revealed the need to include
vdW parameters in both oxygen and hydrogen atoms to obtain
radial distribution functions close to the experimental one.29

Attempts to retain a single set of parameters for the OH group
were unsuccessful, and different parameters were considered
for water, formic acid, and particularly protonated water.
Different parameters were also required for the sp2 and sp3

oxygen atoms in formic acid. Indeed, the parameters for the
sp2 oxygen in formic acid had to be reoptimized to improve
the fitting to the reference energy profiles for the formate anion.

Overall, the ability of the vdW parameters to reproduce the
B3LYP energy profiles can be assessed in Figure 4, which
shows the B3LYP and AM1/TIP3P profiles for selected
complexes (PM3/TIP3P plots are available upon request). The
shapes of the B3LYP and AM1/TIP3P profiles show in general
close agreement. Considering all the points lying 3 kcal/mol
above the energy minimum, the average deviation from the
B3LYP values is 0.5 (0.6) and 0.8 (0.5) kcal/mol for neutral
and ionic compounds at the AM1/TIP3P (PM3/TIP3P) level.
Particularly, the marked deviation in the energy profile observed
when vdW parameters adapted to the electrostatic formalism II
are used (see above and Figure 3) is satisfactorily corrected.

Table 3 reports the interaction energies and distances for the
equilibrium structures of the complexes computed at the B3LYP,
AM1, PM3, AM1/TIP3P, and PM3/TIP3P levels. The QM/MM
interaction energies reproduce closely the reference B3LYP
values, as noted in the average deviation and root mean square
error, which are close to 0.1 and 1.2 kcal/mol, respectively. It
is worth noting that such statistical parameters for the pure AM1
and PM3 methods are at least 3.5 and 4.9 kcal/mol. The
agreement in the interaction energies is also noted in the
regression equationsE(B3LYP) ) cE(other method), since the
scaling coefficientc is close to unity for both AM1/TIP3P and
PM3/TIP3P methods, whereas deviations larger than 40% are
found for the pure QM methods. The QM/MM methods also
improves the description of intermolecular distances compared
to the AM1 and PM3 methods. This improvement is not as
relevant as for the interaction energies owing to the less uniform
deviation of AM1 and PM3 equilibrium distances compared to
the B3LYP values. Overall, these results point out that the QM/
MM method not only reproduces satisfactorily the reference
interaction energies but also corrects energetic and geometrical
deviations in QM AM1 or PM3 calculations.

An interesting aspect is the equivalence between QM and
MM monomers for the same compound; that is, the geometrical
and energetic features should be the same irrespective of whether
monomer is treated quantum mechanically or classically. This
can be checked for the dimer of water comparing the results
for complexes A-D and C-E (see Figure 1). Clearly, the results
are identical for each couple of complexes when B3LYP, AM1,
or PM3 methods are used (the slight differences obey to the
use of the TIP3P geometry for the QM monomer when reversing
QM and MM monomers). However, the QM monomer acting
as hydrogen-bond acceptor leads to shorter distances and larger
(in absolute values) interaction energies than when it acts as
hydrogen-bond donor. This difference can be attributed to the

Figure 3. Total (electrostatic+ van der Waals) interaction energy
(kcal/mol) corresponding to complex A of water computed at the
reference B3LYP level (O) or at the semiempirical AM1 QM/MM level.
In this latter case, values were determined by adding the electrostatic
energy calculated with either method I (unfilled symbols) or II (filled
symbols) to the van der Waals energy computed using parameters taken
from data compiled by Gao (0; ref 1b). The origin of distances (Å) in
the x-axis is the equilibrium intermolecular separation determined at
the AM1 level (3.10 Å).

EvdW ) εqm[( rqm

Rqm
)12

- 2( rqm

Rqm
)6] (11)

εqm ) (εqεm)1/2

rqm ) rq
/ + rm
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lack of Lennard-Jones parameters for the hydrogen atoms in
the TIP3P water, which permits a closer contact between QM
(acceptor) and MM (donor) water molecules than in the QM
(donor) and MM (acceptor) pair. This finding, which has been
found in other QM/MM parametrizations,4d reveals the difficulty
to properly balance hydrogen-bond donor and acceptor proper-
ties in the QM monomer in QM/MM simulations in aqueous
solutions.

Another point of concern is the transferability of vdW
parameters between AM1 and PM3 QM/MM calculations, since
the AM1 equilibrium distances may differ 0.2-0.3 Å from the
PM3 ones for the series of complexes. The parameters optimized
for AM1 and PM3 (Table 2) are generally quite similar,
suggesting that they can be mostly transferable. This is
confirmed in Table 4, which shows the equilibrium distances
and energies obtained by computing the AM1/TIP3P values

Figure 4. Representation of the total interaction energies (kcal/mol) computed for selected complexes at the B3LYP level (filled symbols) and
from AM1/TIP3P calculations (unfilled symbols) performed using the approximation I for the electrostatic QM/MM term and the optimized parameters
given in Table 2 for the van der Waals QM/MM term. The origin of distances (Å) in thex-axis is the equilibrium intermolecular separation
determined at the AM1 level.
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using the vdW parameters optimized for PM3/TIP3P and vice
versa. The values in Table 4 closely agree with those reported
in Table 3, and the statistical analyses indicate that they
reproduce the B3LYP energies and distances with deviations
slightly larger than those given in Table 3. These results suggests
that a single set of vdW parameters can be parametrized for
both AM1/TIP3P and PM3/TIP3P calculations.

A final aspect of this analysis is the comparison with the
results obtained in other semiempirical QM/MM parametriza-
tions. Compared with the vdW parameters reported by Gao in
his AM1/TIP3P parametrization (ε in kcal/mol;r* in Å) [(O(H):
ε ) 0.15, r* ) 1.18; O(dC): ε ) 0.20, r* ) 1.66; N: ε )

0.15,r* ) 1.57; C,ε ) 0.08,r* ) 1.96; H(O,N): ε ) 0.10,r*
) 1.12], σ was transformed tor* using the relationshipr* )
21/6σ/2),1b the results in Table 2 mainly differ in the “hardness”
values, which are sensibly larger than those reported by Gao.
Clearly, this stems from the steepest variation (see Figure 2) in
the electrostatic energy determined with the pure Coulombic
approach (method I) relative to the profile obtained with method
II (comparable to Gao’s formalism), which already incorporates
short-range repulsions between the QM core and the classical
charge (see above). Accordingly, one cannot expect the vdW
parameters to be directly transferable between methods based
on different treatment of the electrostatic QM/MM Hamiltonian,
as exemplified in Figure 3.

Cummins and Gready have recently reported an alternative
set of vdW parameters optimized for semiempirical QM/TIP3P
methods,13b,cwhich were also derived using the pure Coulombic
formalism (method I) for electrostatic interactions. Indeed, the
initial set of vdW parameters were taken from the AMBER force
field. The optimized vdW parameters are (ε in kcal/mol; r* in
Å) O(H): ε ) 0.15,r* ) 1.65; O(dC): ε ) 0.20,r* ) 1.60;
N: ε ) 0.16,r* ) 1.75(AM1)/1.70(PM3); C:ε ) 0.12,r* )
1.85; H(O,N): ε ) 0.02,r* ) 1.00 Å. Compared to the values

in Table 2, the vdW radii are rather similar, but surprisingly
the hardness parameters are again sensibly lower than those
given in Table 2. In fact, when these parameters are used to
compute AM1/TIP3P and PM3/TIP3P energy profiles for the
series of complexes,30 the equilibrium distances are shorter by
0.1-0.2 Å and the interaction energies are larger (in absolute
values) by around 1.0 kcal/mol (root mean square deviations
of 3-4 kcal/mol) than the corresponding B3LYP values, as can
be stated from inspection of Table 5.

There are relevant differences in the parametrization process
adopted by Cummins and Gready and that followed in this
study: (i) the vdW parameters were optimized by fitting the
electrostatic component of the solvation free energy, which was
determined by subtracting the nonelectrostatic component
(computed from a linear relationship with the solvent-accessible
surface) to the experimental free energy of solvation (for ionic
compounds, the Born solvation correction term was also
considered); (ii) a 10-12 pair potential function was considered
for hydrogen-bond interactions; (iii) hydrogen atoms in the
TIP3P water molecule were assigned nonzero van der Waals
parameters (ε ) 0.02 kcal/mol;r* ) 1 Å), and (iv) a nonzero
scaling parameter that multiplies the Ohno-Kloppman factor
was used for ionic compounds. Clearly, this evidences the
marked dependence of the vdW parameters on the choice of
the parametrization model, in line with the conclusion of recent
studies,31 which have revealed marked differences in the
coupling between QM and MM systems depending on the nature
of the vdW parameters.

Conclusions

An accurate description of chemical processes by mixed QM/
MM methods cannot be achieved without a proper balance
between the electrostatic and nonelectrostatic energy terms in
the QM/MM Hamiltonian. This is generally accomplished by

TABLE 4: Equilibrium Distances ( d, Å) and Interaction
Energies (E, kcal/mol) Computed at the AM1/TIP3P
(PM3/TIP3P) Level Using the van der Waals Parameters
Optimized for PM3/TIP3P (AM1/TIP3P) Calculations for
the Different Complexesa

B3LYP AM1/TIP3P PM3/TIP3P

monomer complex E d E d E d

H2O A -4.7 2.92 -5.4 2.80 -5.1 2.87
B -3.1 2.91 -4.0 3.09 -3.8 2.99
C -5.4 2.89 -5.6 2.76 -5.5 2.82
D -4.7 2.91 -4.3 2.95 -4.1 3.01
E -5.4 2.88 -4.5 2.94 -4.0 2.96

NH3 A -2.4 3.19 -3.1 3.07 -1.5 2.31
B -7.1 2.94 -8.4 2.80 -5.1 2.98

HCOOH A -8.3 2.74 -7.4 2.76 -7.1 2.79
B -4.3 2.90 -5.6 2.93 -5.6 3.01
C -4.0 2.97 -5.2 3.02 -5.3 3.05
D -9.6 3.08 -7.0 3.54 -7.4 3.46

H3O+ A -33.9 2.47 -35.2 2.48 -32.4 2.47
B -34.4 2.47 -35.6 2.40 -31.0 2.48

HCOO- A -16.3 2.72 -15.1 2.82 -18.0 2.69
B -14.0 3.04 -14.5 3.01 -15.4 3.02
C -14.1 2.71 -14.0 2.80 -15.1 2.72
D -17.1 3.12 -19.6 3.29 -21.2 3.26

msdb -0.3 +0.04 +0.1 +0.06
rmsc 1.2 0.15 1.8 0.12
cd 0.97 1.01
re 0.99 0.98

a Values computed using the formalism I for the electrostatic term
and the optimized parameters given in Table 2 for the van der Waals
component.b Mean signed deviation.c Root-mean-square deviation.
d Coefficient of the linear regressionE(B3LYP) ) cE(other method).
e Correlation coefficient.

TABLE 5: Equilibrium Distances ( d, Å) and Interaction
Energies (E, kcal/mol) Computed at the AM1 and PM3
QM/MM Level for the Different Complexes Using the van
der Waals Parameters Reported in by Cummins and
Greadya

B3LYP AM1/TIP3P PM3/TIP3P

monomer complex E d E d E d

H2O A -4.7 2.92 -6.0 2.74 -6.9 2.57
B -3.1 2.91 -4.5 2.81 -4.3 2.75
C -5.4 2.89 -6.2 2.73 -7.5 2.53
D -4.7 2.91 -5.2 2.70 -4.9 2.71
E -5.4 2.88 -5.4 2.72 -5.1 2.66

NH3 A -2.4 3.19 -2.8 2.91 -1.5 2.96
B -7.1 2.94 -7.7 2.85 -8.7 -2.58

HCOOH A -8.3 2.74 -7.7 2.62 -7.0 2.65
B -4.3 2.90 -6.5 2.84 -6.4 2.88
C -4.0 2.97 -6.0 2.89 -6.1 2.87
D -9.6 3.08 -8.9 3.24 -9.0 3.21

H3O+ A -33.9 2.47 -29.4 2.51 -28.1 2.46
B -34.4 2.47 -29.3 2.48 -26.8 2.44

HCOO- A -16.3 2.72 -18.1 2.57 -22.6 2.39
B -14.0 3.04 -16.5 2.70 -17.1 2.76
C -14.1 2.71 -18.4 2.45 -19.2 2.42
D -17.1 3.12 -25.0 2.99 -26.5 2.98

msdb -0.9 -0.13 -1.1 -0.18
rmsc 3.0 0.17 4.1 0.23
cd 0.97 0.94
re 0.95 0.91

a Values computed using the formalism I for the electrostatic term
and the nonelectrostatic treatment reported in refs 13b,c (see text and
ref 30). b Mean signed deviation.c Root-mean-square deviation.d Co-
efficient of the linear regressionE(B3LYP) ) cE(other method).
e Correlation coefficient.
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fitting geometrical and energetic properties of selected com-
plexes determined in the gas phase at a suitable level of theory.
In semiempirical QM/MM methods, nevertheless, an additional
difficulty arises from the lack of a precise definition of the
electrostatic potential. The results presented in this study reveal
that the electrostatic interaction energy is very sensitive to the
formalism used for the electrostatic potential, which should in
turn affect the suitability of the van der Waals parameters.
Particularly, the adoption of an electrostatic formalism that
retains some essential features of the NDDO scheme includes
short-range repulsions between the QM core and the MM
charge, which otherwise should be handled by the vdW
component of the QM/MM Hamiltonian if a pure Coulombic
treatment is used. The results also reveal that, for a given
electrostatic formalism, both equilibrium distances and interac-
tion energies computed at a suitable reference level of theory
can be satisfactorily reproduced in the parametrization of the
6-12 van der Waals term. However, the magnitude of the
parameters turns out to be very sensitive to the specific details
of the parametrization model. Therefore, these results warn
against the direct transferability of van der Waals parameters,
which might lead to an incorrect coupling between QM and
MM molecules.
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