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The entropic character of the bond multiplicity concept of chemistry is explored within the information theory.
The probability schemes of finding a single and two electrons on specified atoms are used to formally interpret
a molecule as the “communication” system, with the molecular or the separated atominput probabilities and
the network of conditional two-electron probabilities in atomic resolution, which determine the molecular
one-electron atomic probabilities, defining the systemoutputprobabilities. Several measures of uncertainties
in such a molecular communication system are then introduced, including theaVerage entropiesof the two-
electron joint and conditional probabilities, as well as theaVerage mutual informationbetween the input and
output probability schemes. The average entropy of the conditional probabilities between molecular input
and output probability schemes is then identified as the information theoretic measure of theglobal coValent
bond multiplicityin a molecule. Similarly, theglobal ionic bond orderis found to be well reflected by the
mutual information between molecular output and the atomic equiprobability input schemes. These
identifications are tested by comparing the entropy predictions for the two- and three-orbital models and the
π bonds in butadiene and benzene (Hu¨ckel approximation) with the corresponding results from the earlier
Wiberg-type and two-electron difference approaches. Finally, thebond entropyconcept is introduced to provide
a direct measure of the covalent bond component for each pair of atoms. It is demonstrated that this entropic
bond order is in good agreement with both the chemical intuition and earlier predictions for all illustrative
systems examined, thus providing a novel atrractive tool for chemical interpretation of calculated molecular
electronic structures.

Introduction

The concept of abonded(promoted)atom in a molecule,
only slightly modified in its valence shell relative to the
reference isolated atom/ion state due to the formation of
chemical bonds, and that of abond multiplicity, which gives
rise to thestructural formulaof the molecular system, are crucial
for providing a truly chemical interpretation of calculated
electronic structures. Obviously, because they were originally
introduced on intuitive grounds,1 these quantities are not defined
precisely. Nevertheless, a great deal of effort has been made
in quantum chemistry to define these elusive quantities
operationally,2-22 in such a way that they reproduce the chemical
intuition in standard molecules and processes, e.g., during a
concerted bond-breaking-bond-forming atom exchange reac-
tion. The bond multiplicity indices are usually defined5,10-14,16-22

as functions of elements of the familiar charge-and-bond-order
(CB0) matrix5 of the standard Hartree-Fock23 and Kohn-
Sham24 theories. These indices have been shown to follow many
aspects of the “established” chemical intuition quite well.

Clearly, all such quantum-mechanical quantities, measuring
the effective numbers of bonding electrons or electronic pairs
in a molecule relative to the relevant states of the separated
atoms or molecular fragments, are not ofenergeticalcharacter.
Indeed, as we have observed in our earlier work formulating
the two-electron difference approach,17 the bond multiplicity
and valence concepts are “entropic” in nature, i.e., they
eventually follow from a separate,entropic Variational prin-
ciple.26 Only together with the energetic variational principle
of Schrödinger and Hohengerg-Kohn24 do they provide the
complete treatment of the electronic structure phenomena. This

observation is in full analogy to the supplementary character
of the entropic and energetical descriptions in thermodynamics.25

It has recently been demonstrated26 that the information
theory27-30 can be successfully applied to define the “atoms-
in-molecules” by generating the unique (Hirshfeld)9 partitioning
of the molecular density. The resulting “stockholder” atoms
minimize the so-calledentropy deficiency(missing information)
of Kullback and Leibler28 with respect to the molecularly placed
isolated atom densities, which determine thepromoleculedensity
of the familiar density-difference diagrams. It has also been
shown that similar entropic concepts can be used to solve the
molecular similarity problems and to define the intermediate,
polarization stage of the bonded atom reconstruction with
respect to the corresponding isolated atomic states.26

However, to the best of author’s knowledge, no explicit use
of the entropy concepts of the information theory has been made
to tackle the classical problem of bond multiplicities. The main
purpose of the present work is to explore a possibility of
formulating truly entropic measures of the global and localized
“bond-orders” and their ionic and covalent components. In this
search we shall adopt the obvious requirement that the formu-
lated entropy functions follow, as closely as possible, the
established chemical intuition in selected prototype and standard
systems.

One of our guiding principles is to preserve the atomic
description, which constitutes a natural reference frame for any
chemical bonding concept. This principle implies that our efforts
will be carried out within the framework of an appropriate
network of the electron probability distributions in atomic
resolution, i.e., the probabilities of finding a single electron on
constituent bonded or isolated atoms, or the joint probabilities
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of simultaneously finding a pair of electrons on specified atoms
in a molecule. A survey of such probabilities is given in the
first section of the article.

The proper entropy functions of the molecularinput and
outputprobability schemes in such an atomic, coarse-grained
description are defined in the second section. We begin this
section by addressing the basic question for the present
development: in what sense can we treat a molecule as a
“communication” system? The average uncertainty measures of
the standard information theory29 are then used to define the
proper entropic measures of the overall bond multiplicity and
its partitioning into the covalent and ionic components. The
suggested entropies are then tested within thetwo-orbital
model12,17,18,21 of a single chemical bond, thethree-orbital
model18,20 of a symmetric transition-state complex in the
collinear atom exchange reaction, and the systems of conjugate
π bonds in the benzene ring and butadiene chain (Hu¨ckel
theory).

Finally, a direct-information theoretic approach for determin-
ing the bond multiplicity between a specified pair of atoms in
a molecule is proposed. In this development, the so-calledbond
entropyconcept is introduced, which provides a direct measure
of the bond order between any pair of atoms in a molecule. We
shall demonstrate that for all the illustrative molecular systems
mentioned above, a good agrement is obtained between the
predicted bond entropies and both intuitive expectations and
other, Wiberg10-type quantum-mechanical bond multiplicity
indicators.

Electron Probabilities in Atomic Resolution

Atomic Probabilities in a Molecule. The chemical descrip-
tion of the electronic structure of molecular systems is usually
formulated in terms ofatoms-in-molecules(AIM) and bonds
that connect them. The electron density at pointr for the ground-
stateΨ(1, 2, ...,N) of a molecule M(R) consisting ofm atoms
(at fixed positionsR ) {Ra}) andN electrons (at positions{r k})
is given by the expectation value

where{Fa(r )} groups the atomic densities obtained from the
appropriate partitioning scheme of the molecular density. It
defines the probability distribution of finding an electron at point
r , the so-calledshape function

In the one-determinant approximation, e.g., in the Hartree-
Fock or Kohn-Sham theories, the electron density can be
expressed as the sum of orbital contributions

where themolecular orbital (MO) ψR(r ) represents a spatial
part of thespin orbital(SO)R, φR(x) ≡ ψR(r ) êR(σ), with êR(σ)
(σ ) (1/2) and 0e nR e 1 standing for the SO spin function
and occupation number, respectively. The occupations satisfy
the closure condition∑R nR ) N.

As also indicated in eq 1, the molecular electronic density
F(r ) can be partitioned into atomic densities{Fa(r )} using an
appropriate division criterion. For example, this may involve
thephysical spacepartitioning into atomic basins{Ωa}, which
define topological atoms of Bader et al. (B):6,7 Fa

B(r ) ) F(r )
for r ∈Ωa andFa

B(r ) ) 0 for r outsideΩa. In thefunction space
division schemes2 [Populational Analysis(PA)], which we adopt
in the present work, one uses the known association of the basis
functions{øi(r )} [orthogonalized atomic orbitals(OAO), 〈øi|øj〉
) δi,j], with the corresponding atoms:

Here

denotes the familiar CBO matrix in the OAO representation.
Finally, in the so-called “stockholder” partitioning scheme of
Hirshfeld9

one locally divides the molecular density between all constituent
atoms in proportion to the isolated atom share in the density
Fo(r ) ) ∑a Fa

o(r-Ra) of thepromoleculeMo(R), consisting of
the atomic densities{Fa

o(r - Ra)} of a theseparated atoms
limit (SAL) shifted to the nuclear positionsR in the molecule.
Notice that the same reference is applied in the density
difference diagrams:∆F(r) ) F(r) - Fo(r), extracting modifica-
tions of the AIM densities due to the formation of chemical
bonds. As we have already remarked, the Hirshfeld scheme has
recently been shown26 to have a sound basis in the information
theory, because the stockholder atoms directly follow from the
minimum entropy deficiency28 (minimum missing information)
principle relative to the isolated atom densities of the promol-
ecule, subject to the constraint of the exhaustive partitioning of
the molecular density into atomic contributions at each point
in space.

The atomic discretization also defines the associated average
(fractional) electron population of the bonded atom

and hence its effective net chargeQa ) Za - Na, whereZa

denotes the atomic number of nucleusa. In thiscoarse-grained
atomic representation of thefine-grained, local distributionF(r ),
the probability vectorp ) {pa}, combining the probabilities of
finding an electron on specified AIM, is defined by the ratios

This molecular one-electron probability vector in atomic
resolution,p ) {pa: a ∈ M(R)}, and the underlying AIM
partitioninga ) {a ) 1, 2, ...,m} together define the so-called
molecular inputprobability scheme:I M ) {[a, pa]: a ∈
M(R)}. This is shown in Scheme 1, drawn for the simplest case
of a diatomica-b (m ) 2). In this diagram, the same vectorp

F(r ) ) ∑
i

OAO

∑
j

OAO

øi*( r ) Pi,j øj(r ) )

∑
a

atoms

{∑
i∈a

OAO

∑
j

OAO

øi*( r ) Pi,j øj(r )} ≡ ∑
a

atoms

Fa
PA(r ) (4)

P ≡ {Pi,j ≡ ∑
R

SO

) 〈øi|ψR〉 nR 〈ψR|øj〉 ) ∑
R

SO

CiR nR CjR
/ }

Fa
H(r ) ) F(r ) [Fa

o(r - Ra)/F
o(r )] (5)

Na ) ∫ Fa(r ) dr , a ) 1, 2, ...,m (6)

pa ) Na/N, a ) 1, 2, ...,m; ∑
a

pa ) 1 (7)

F(r ) ) 〈Ψ| ∑
k)1

N

δ(r k - r )|Ψ〉 ) N 〈Ψ|δ(r1 - r )|Ψ〉 ≡

∑
a)1

m

Fa(r ) g 0 (1)

f(r ) ) F(r )/N g 0, ∫ f(r ) dr ) 1 (2)

F(r ) ) ∑
R

SO

|ψR(r )|2 nR ψR ) ∑
i

OAO

øi CiR (3)
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also defines themolecular outputone-electron probability
scheme:O M ) {[a, pa]: a ∈ M(R)}.

As also shown in Scheme 1, the initial allocation of electrons
among atomsa may change as a result of the electron
delocalization in a molecule. This is reflected in Scheme 1 by
a network of theconditional probabilitiesP(b|a) ) {P(b|a), a,
b ) 1, 2, ...,m}, with P(b|a) denoting the probability of finding
an electron initially associated with atoma on atomb in a
molecule.

Atomic Probabilities in the SAL/Promolecule.Attributing
an electron in M to specific atoms, i.e., assigning it the AIM
label a ∈ a, is therefore characterized by uncertainty. This is
also true in the collections Mo and Mo(R); of the isolated
constituent atoms/ions in the SAL,{ao ∈ Mo}, and in the
promolecule,{ao ∈ Mo(R)}, respectively. The probabilitiesπ
) {π(ao)} of finding an electron of theN indistinguishable
electrons of the promolecule/SAL on specific reference (isolated)
atomsao ) {ao} provide the SAL/promolecule input (source)
information of Scheme 2, which preserves the molecular output
(receiVing end) of Scheme 1.

We therefore conclude that both the atomic identificationsa
in M andao in Mo can be considered discrete random variables.
The probability of finding one of theN indistinguishable
electrons of Mo on ao in Mo(R) is given by the ratios

whereNa
o ) ∫ Fa

o(r ) dr denotes the integer number of electrons
on atomao in the SAL/promolecule. These atomic electron
populations also satisfy the overall molecular closure condi-
tion: ∑ao Na

o ) N.
The SAL/promolecule inputprobability vectorπ ) {π(ao):

ao ∈ Mo(R)} and the associated isolated atom/ion partitionao

define theSAL inputprobability scheme:I SAL ) {[ao, π(ao)]:
ao ∈ Mo(R)}.

We would like to emphasize at this point that a choice of the
most appropriate SAL/promolecule reference may in some cases
create computational and conceptual difficulties. For example,
a choice between a dissociation into atoms or ions, e.g., the
ionic vs. coValent limits in the dissociation of the alkali metal
halides,31 introduces an element of arbitrariness, although only
the atomic SAL reference may be considered as representing

truly nonbonded molecular fragments at large separations.
Therefore, in an eventual definition of the entropic (information)
measures of the chemical bond multiplicity, one may prefer the
molecular inputs of Scheme 1 over the SAL/promolecule inputs
of Scheme 2.

Similar perspectives have been used in previous quantum
mechanical approaches to the bond-order problem. For example,
the Wiberg-type measure of the covalent bond,10-12 given by
the quadratic function of the corresponding CBO matrix
elements, or the fluctuational definition13 fall into the exclusively
molecular category of Scheme 1. Similarly, the difference
approach measuring themolecularlyaveraged displacents of the
molecularCBO matrix elements relative to the corresponding
SAL values combine the SAL and molecular electron config-
uration information, as shown in Scheme 2.

In the present development we shall adopt the molecular-
only approach of Scheme 1, to define the entropy for the overall
coValent entropy, and a separateequiprobabilitySAL inputI EQ

of Scheme 2, to define the globalionic entropy. We would like
to emphasize, however, that for distinguishing between the
covalency of thecoordination bond, in which the bonding
electronic pair originates from a single atom, and that of a truly
coValent bondformed by two atoms, each contributing a single
valence electron, a reference to the SAL probabilities of Scheme
2 is required.17,18,21

Conditional and Joint Two-Electron Probabilities. There
are two sources of uncertainty in making atomic allocations of
electrons in a molecular system. As we have argued above, the
first is associated with the “input message” specifying proba-
bililties of “atomic” origins of an electron, either molecular
(Scheme 1) or SAL/promolecule (Scheme 2) in character. In
other words, it is not known with certainty which constituent
“atomic” unit an electron originates from. This uncertainty is
reflected by the two input probability schemes discussed in the
preceding subsections.

The second source is linked to theconditional probabilities,
P(b|a) ) {P(b|a): a, b ∈ M(R)} (Scheme 1) andP(b|ao) )
{P(b|ao): b ∈ M(R), ao ∈ Mo(R)} (Scheme 2), of the event
that an electron originating from atoma or ao is subsequently
found on atomb in a molecule. They respectively define the
correspondingconditional probability schemes: C(M|M) )
{[(b|a), P(b|a)]: (a, b) ∈ M(R)} and C(M|SAL) ) {[(b|ao),
P(b|ao)]: b ∈ M(R), ao ∈ Mo(R)}, characterizing the electron
“ transmission channels” between AIM (Scheme 1) and between
isolated and bonded atoms (Scheme 2), respectively.

The conditional probabilitiesP(b|a) are linked to the corre-
spondingjoint probabilities, P(ba) ) {P(ba), a, b ∈ M(R)},
of simultaneously finding one electron ona and another onb,
or P (bao) ) {P (bao), b ∈ M(R), ao ∈ Mo(R)}

The joint probabilitiesP(ba) can be obtained from the relevant
molecular spinless two-electron density (pair function) in the
OAO representation:

SCHEME 1

SCHEME 2

π(ao) ) Na
o/N, ao ) 1, 2, ...,m; ∑

ao

π(ao) ) 1 (8)

P(b|a) ) P (ba)/pa, P(b|ao) ) P (bao)/π(ao) (9)

F2(r , r ′) ) 〈Ψ|∑
k)1

N

∑
l*k

δ(r k - r ) δ(r l - r ′)|Ψ〉

) N(N - 1) 〈Ψ|δ(r1 - r ) δ(r2 - r ′)|Ψ〉

) ∑
i,j

OAO

∑
k,l

OAO

øi
/(r ) øj

/(r ′) Γh(i,j;k,l) øk(r ) øl(r ′) (10)
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The pair-diagonal elements,Γ(i,j) ≡ Γh(i,j;i,j), satisfying
McWeeny’s normalization

which multiply in eq 10 the orbital probability distributions
|øi(r )|2 and|øj(r ′)|2 of an electron “1” atr and another electron
“2” at r ′, respectively, determine the joint probability that
electron “1” is on theith OAO while electron “2” simultaneously
occupies thejth OAO:

In the function-space AIM discretization of the populational
analysis, the two-electron simultaneous probabilities are then
obtained by the summation of these orbital probabilities over
OAO centered on the specified pair of atoms:

The joint partitionba ) {ba, (b, a) ∈ M(R)} [or bao ) {bao,
b ∈ M(R), ao ∈ Mo(R)}] and the associated vector of thejoint
probabilities P (ba) [or P (bao)] together define the corre-
spondingjoint probability scheme:J (OMI M) ) {[ba, P(ba)]:
(b, a) ∈ M(R)} [or J (OMI SAL) ) {[bao, P(bao)]: b ∈ M(R),

ao ∈ Mo(R)}.
Let us recall that the conditional probabilities must satisfy

the following normalization over all output atomic events:

It also follows from eq 9 and this normalization condition that
the summation of the joint probabilities over all atomic outputs
gives the input (molecular or SAL) one-electron probability:

Finally, the summation of the joint probabilities over all atomic
inputs must also give the corresponding one-electron AIM
probability:

Entropy Functions

Molecule as a “Communication” System.One can regard
a molecule M(R) as a “communication” system, in which the
signalsare being transmitted in terms of a finite set ofmpossible
atomic allocations ofN electrons in M. We call such a unit
signal themessage. When a signal conveying a message is
received, it is known that one of the given set of possible
messages has been sent. As in the real communication channel,
the molecular system is characterized by disturbances of a
random character (noise), which perturb the transmitted signal.
This molecular uncertainty in ascribing electrons to atoms
originates from the quantum-mechanical noise in the “transmis-
sion channels” of Schemes 1 and 2, linking theinputandoutput
atomic “events”.

More specifically, as we have argued above, it is not known
with certainty on which atom an electron will be found in the
“output” of such a molecular communication system, even when
its atomic origin in theinput of Scheme 1 (2), i.e., in the
molecule (SAL/promolecule), is known. This is a result of
forming chemical bonds, i.e., of the electron delocalization.
Similarly, it is not known with certainty from which constituent
atom/ion in the molecular (SAL/promolecular)inputan electron
originates, i.e., which signal in the probability network of
Scheme 1 (2) was transmitted, even when the received message
in the ouput, i.e., finding an electron on a specific atom in a
molecule, is known.

The set ofatomic identification signals(atomic labels) is the
same in the SAL/promolecule and in the molecule itself. The
molecular system under consideration can thus be considered
as the communication system. This system influences prob-
abilities of such signals being sent (or received), thus introducing
effects of a molecularcommunication noise, modifying the input
one-electron probability distribution,{pa (or πa)}, of the input
probability schemeinto the conditional molecular probability
of b given the inputa (or ao), {P(b|a [or ao])}. The input
probability scheme defines the relevantconditional probability
scheme, which gives rise to the molecular output probability
scheme. Notice that the stationary character of the electron
distribution requires that the output probability vector in Scheme
1 be identical to the input probability vector of eqs 7 and 16.
This transformation of the input atomic probabilities into the
output probabilities via the conditional probability network is
the essence of the illustrative molecular communication systems
shown in Schemes 1 and 2.

The formation of chemical bonds affects mainly the valence-
shell electrons of constituent atoms in a molecule, with the inner,
core electron distributions of isolated atoms (or ions) remaining
practically unchanged. Therefore, in qualitative and semiquan-
titative bond-order considerations, one usually limits a discussion
by explicitly taking into account only the valence electrons. We
follow this valence-only approach in all illustrative examples
reported in this work. In the butadiene and benzene cases, we
similarly discuss theπ bond-orders, separating the 2pπ valence
electrons of carbon atoms from the remaining electrons of the
molecularσ core.

Average Uncertainties of the Molecular Probability
Schemes.Let us define the entropy of the molecular one-
electron probabilities in the atomic resolution

which corresponds to both the molecular input and output
probability distributions of Scheme 1. It measures the average
uncertainty for both these probability schemes. Following the
usual convention of the information theory, we have taken the
logarithm in the entropy definition to the base 2, in which the
unit of information is thebit.

The corresponding entropy for the joint two-electron prob-
ability schemeJ (O MI M) of the probabilities of simultaneous
events in the molecular input and output is as follows:

This entropy similarly measures the average uncertainty in the
distribution of the two electron joint probabilities in atomic
resolution.

∑
i,j

OAO

Γ(i,j) ) Tr Γh ) N(N - 1) (11)

P (i,j) ≡ Γ(i,j)/[N(N - 1)], ∑
i,j

OAO

P (i,j) ) 1 (12)

P (ab) ) P (ba) ) ∑
i∈a

OAO

∑
j∈b

OAO

P (i,j), ∑
a,b

AIM

P(ab) ) 1 (13)

∑
b

outputs

P(b|a) ) 1 or ∑
b

outputs

P(b|ao) ) 1 (14)

∑
b

outputs

P (ba) ) pa or ∑
b

outputs

P (bao) ) π(ao) (15)

∑
a

inputs

P (ba) ) ∑
ao

inputs

P (bao) ) pb (16)

H(p) ) -∑
i)1

m

pi log2 pi ≡ H(I M) ≡ H(O M) (17)

H(J ) ≡ H(O MI M) ) -∑
i)1

m

∑
j)1

m

P (ij ) log2 P (ij ) ≡ H(P )

(18)
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Next we introduce the entropy difference29

where we have used the sum rule of eq 16. It measures the
average entropy of the output probability distribution, given the
input probability scheme. If an input event occurs, it may or
may not change the uncertainty about the output events. The
entropy of eq 19 represents the residual average uncertainty
about the output events when one has knowledge of the
occurrence of the input events. Because conditioning, i.e., giving
the information about the input probability scheme, cannot
increase the average uncertainty about the output probability
scheme, the following inequality holds:29

with equality if and only if the schemesO M and I M are
independent.

The related molecular entropy function of potential impor-
tance for characterizing the electron configuration is the
nonnegativeaVerage mutual informationbetween the input and
output schemes:29

where we have used the inequality of eq 20. It follows from eq
21 that the mutual information vanishes when the input and
output probability schemes are independent, because then
H(O MI M) ) H(I M) + H(O M). This entropy function gives
the average information about the output provided by the
occurrence of events at the input.

A Search for the Entropic Measures of the Global Bond
Multiplicity

Two-Orbital Model of a Single Bond. Probabilities. Con-
sider the simplest case of a two-orbital model12,17,18,21of the
A-B bond, consisting of a single bonding molecular orbital
(MO) ψ given as a combination of the two OAOs,øA ≡ a and
øB ≡ b, centered on nuclei of atoms A and B, respectively

and occupied bynψ ) 2 electrons with opposite spins (singlet
state). In this case the four elements of the CBO matrix of eq
4 can be expressed as functions of a single element, e.g., the
electron population on atom A,qa ≡ Pa,a ≡ q:

These CBO functions of the independent variableq determine
the corresponding expressions for the elements of the pair-
diagonal, two-particle density matrix in the OAO representation

(eqs 10-12):

By the quantum-mechanical superposition principle, the one-
electron probabilities{pi ) ) |〈i|ψ〉|2} of the events that an
electron in stateψ occupies theith OAO, {i ) a, b}, are:

In this single MO model, the spatial part of the singlet two-
electron function is given by the product of the common MO
part of the two occupied spin orbitals:

where the spatial coordinates of electrons are abbreviated as
{r k ≡ k, k ) 1, 2}. Hence, the joint two-electron probabilities
P (i,j) ) |〈i(1)j(2)|Ψ〉|2 ) Γ(i,j)/2 of the events that for the two
electrons in stateΨ, electron “1” is on i ) a, b and
simultaneously electron “2” is onj ) a, b, are:

These joint probabilities satisfy the normalization conditions
of eqs 15 and 16

and determine the corresponding conditional two-electron
probabilitiesP(b|a) of eq 9:

satisfying the sum rule of eq 14:

These probabilities determine the probability network of the
binary nonsymmetric channelshown in Scheme 3(see also
Scheme 1):

In the related Schemes 4 and 5, representing Scheme 2 for
the two-orbital model and alternative SAL choices, one replaces
the molecular one-electron input probabilitiesp with the
corresponding SAL probabilitiesπ: π(io) ) Ni

o/2, i ) a, b. In
this model, the integer atomic occupations sum up to two

H(O MI M) - H(I M) ) - ∑
i)1

inputs

∑
j)1

outputs

P (ij ) log2 [P (ij )/pi]

) - ∑
i)1

inputs

∑
j)1

outputs

P (ij ) log2 P (j|i) ≡ H(O M|I M) (19)

H(O M|I M) e H(O M) (20)

H(O M:I M) ) ∑
i

inputs

∑
j

outputs

P (ij ) log2

P (ij )

pi pj

) H(I M) + H(O M) - H(O MI M)

) H(I M) - H(I M|O M) )
H(O M) - H(O M|I M) g 0 (21)

ψ(r ) ) R a(r ) + â b(r ), 〈i|j〉 ) δij, i, j ∈ {a, b} (22)

qb(q) ≡ Pb,b(q) ) 2 - q, Pa,b(q) ) Pb,a(q) ) [q(2 - q)]1/2

(23)

SCHEME 3

Γ(a,a) ) q2/2; Γ(b,b) ) (2 - q)2/2;
Γ(a,b) ) Γ(b,a) ) q(2 - q)/2 (24)

pa ) |R|2 ) q/2 ≡ P; pb ) |â|2 ) (2 - q)/2 ≡ Q;
P + Q ) 1 (25)

Ψ(1,2)) ψ(1)ψ(2) ) R2a(1)a(2) +
Râ[a(1)b(2) + b(1)a(2)] + â2b(1)b(2) (26)

P (aa) ) P (a,a) ) pa
2 ) q2/4 ) P2;

P (bb) ) P (b,b) ) pb
2 ) (2 - q)2/4 ) Q2;

P (ab) ) P (a,b) ) P (ba) ) P (b,a) ) papb )
q(2 - q)/4 ) PQ (27)

∑i P (i,j) ) ∑i P (j,i) ) pj ∑i ∑j P (j,i) ) ∑i pi ) 1

(28)

P(a|a) ) P (aa)/pa ) P; P(b|a) ) P (ba)/pa ) Q;

P(a|b) ) P (ab)/pb ) P; P(b|b) ) P (bb)/pb ) Q (29)

P(a|a) + P(b|a) ) P(a|b) + P(b|b) ) 1 (30)
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electrons: Na
o + Nb

o ) 2. For example, in thecoValent
dissociationcase of Scheme 4, (Av) + (VB) (SAL1), when both
separated atoms contribute a single electron with opposite spins,
π(ao) ) π(bo) ) 1/2.

Setting the identical input probabilities equal to 1/N (as in
SAL1) so that either input atomic allocation is equally likely
defines theequiprobability (EP) SAL input scheme,I EP )
{(ao, 1/N): ao ∈ Mo(R)}. For this input, the entropy function
reaches the maximum value

This SAL input can be used to probe the ways in which the
entropies of the actual molecular probabilities deviate from the
reference entropyH(I EP). Such deviations from the perfectly
equalized probabilities should contribute to thebond ionicity.
In the two-orbital model,I EP ) I SAL1 and

Similarly, in the ionic dissociationlimit (Scheme 5), when
the valence electron pair is, say, on A, (AvV)- + B+ (SAL2),
π(ao) ) 1, andπ(bo) ) 0. In this caseP (a|ao) ) P, P (b|ao)
) Q, andP (a|bo) ) P(b|bo) ) 0:

Entropy Functions for the CoValent and Ionic Bond Com-
ponents.From eqs 27 and 29 (see also Scheme 3), one obtains
the conditional entropy function (eq 19) for the two-orbital
model given by thebinary entropy function29

shown in Figure 1. As is also shown in the figure, this function
runs very close to thequadratic Valence index(QVI) of the
previous Wiberg-type10,12and two-electron difference approaches:
17,18,20-22

Indeed, this function exhibits correct limiting value,H(1) )
H(0) ) 0, for q ) 2, 0, i.e., for the configuration of the lone,
nonbonding electronic pair ona andb, respectively. Moreover,
the maximum for the exact electron-sharing configurationq )

1, H(1/2) ) 1, signifies a single covalent bond in the model
under consideration.

We are therefore adopting the entropy function of eq 31 as
a measure of thecoValent bondmultiplicity:

By the same argument, the entropy function

which combines the reference entropyH(I EP) ) H(I SAL1) )
1 of Scheme 4 with the current entropiesH(I M) ) H(P) and
H(O MI M) ) 2H(P) of Scheme 3, exhibits a qualitatively correct
behavior expected of theionic bondmultiplicity. Namely, it
reaches the maximum valueNion(0) ) Nion(1) ) 1 for the lone-
pair configurations, corresponding to the single ionic pair, A+B-

(P ) 0) or A-B+ (P ) 1), and the minimum valueNion(1/2) )
0 for the covalent, electron-sharing configuration. Notice that
for the equal distribution of valence electrons among the AIM,
I M ) I EP, e.g., in the case ofπ electrons in butadiene or
benzene in the Hu¨ckel theory,Nion ) H(O M:I M) (see eq 21).

The two components therefore complement each other,
preserving the total single bond order

in the whole range of argument P∈ 〈0, 1〉. The covalent bond-
order measure

roughly reflects the number of shared electronic pairs between
atoms, or, equivalently, as explicitly shown in Figure 1 and eq
36, the product of the valence electron populations of AIM.

SCHEME 4

SCHEME 5

H(I EP) ) -N (1N) log2 (1N) ) log2 N (31)

H(I EP) ) H(I SAL1) ) log2 2 ) 1 (32)

H(O M|I M) ) H(P) ) -P log2 P - Q log2 Q )
H(1 - P) ) H(Q) (31)

V cov(P) ) [Pa,b(P)]2 ) qa(P) qb(P) ) 4P(1- P) )
q(P) [2 - q(P)] (32)

Figure 1. The bond entropy,N (P) ) N (1 - P) ≡ N (Q), and binary
entropy,H(P) ) H(1 - P)≡ H(Q), functions for the two-orbital model
compared with the corresponding quadratic valence index:
Vcov(P) ) [Pa,b(P)]2 ) 4P(1- P) ) 4Q(1 - Q) ≡ Vcov(Q).

N cov(P)≡ H(O M|I M) ) H(P) (33)

Nion(P) ) H(I EP) - H(O M|I M) ) H(I EP) + H(I M) -

H(O MI M) ) 1 - H(P) (34)

N (P) ) Ncov(P) + Nion(P) ) log22 ) 1 (35)

Ncov(P) = V(P) ) qa(P) qb(P) ) 4P(1- P) ) 4PQ (36)
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Similarly, a reference to Figure 1 and eq 36 shows that in the
neutral molecule,Q A + Q B ) 0, the complementary ionic
bond-order generally resembles the negative product of the net
atomic chargesQ i ) 1 - V i, i ) A1B,

The question that naturally arises is how to distinguish
between the trulycoValent (electron-sharing) and thecoordina-
tion (donor-acceptor) bond orders in a molecule. The same
molecular electron configuration may correspond to either of
these types of chemical bond, since only the SAL reference,
i.e., a “history” of the bond formation, differs in both these cases.
More specifically, the former “compares” the molecular output
electron probabilities with those for theI SAL1 ) I M(1/2) input,
whereas the latter combines the molecular probabilities with
the reference SAL2-input ones. Indeed, the model electron
configuration for P) 1/2 represents both the single covalent
bond with respect to the atomicI SAL1, and a single coordination
bond with respect to the ionicI SAL2 references. Similarly, for
the P ) 1 (SAL2 configuration), one identifies a vanishing
coordination component with respect toI SAL2 and a single ionic
bond with respect toI SAL1.

Therefore, the AfB coordination bondis thecoValent bond
component (eqs 19, 31, and 33) with respect to the ionic
(A- + B+) SAL2 input reference:

This entropy function roughly measures the amountNCT )

NB - NB
o ) NA

o - NA of the A- 98
CT

B+ charge transfer(CT).

Finally, we observe that, because of the independent character
of the molecular output and alternative input probability schemes
in the two-orbital model, the mutual information between the
input and output distributions exactly vanishes (see eq 21):

Application to a Model Transition State. Next we consider
the three-OAO model of the symmetric transition state
[A1- - -B- - -A2] (see Appendix), with atoms Al, B, and A2

contributing thea(v), b(V), and c(v) OAOs, respectively, each
occupied by a single electron in the SAL with the indicated
spins.

Two independent variables control the model electron con-
figuration. For example, one can select the electron population
of the middle atom B,q ) qvb + qVb, and its spin polarization,
σ ) qvb - qVb. In the Appendix we have listed the relevant
expressions (eq A5) for the two-electron joint probabilities in
the atomic (OAO) resolution,{P (ij ) ) P (i,j) ) P (i,j ; q,σ)},
which determine the joint distribution entropyH(O MI M) )
H(O MI M; q,σ) of the model.

The UHF minimum basis set values of the controlling
parameters in the collinear transition-state complex
[H- - -H- - -H] (RAB ) RBC ) 0.93 Å) areq ) 0.972 au andσ
) -0.203 au.20 From the joint probabilities of eq A5, one then

obtainsH(O MI M) ) 3.07 andH(I M) ) 1.58. HenceN cov )
1.49 andN ion ) 0.10, giving rise to the total bond order

The nonvanishing mutual information in the collinear H3,
H(O M:I M) ) 0.10 (practically equal to the ionic conponent
becauseI M ≈ I EP), reflects the exchange correlation between
the two spin-up electrons.

Let us now consider a few selected extreme configurations
of the model. To simplify the problem, we fix an equal
distribution of electrons among the three atoms,q ) 1, for which

and examine how the changing spin polarizationσ affects the
proposed overall information-theoretic bond orders. We are
particularly interested in the partitioning of the total bond order
into the covalent and ionic components when the electronic
structure changes as a function of this remaining degree of
freedom forq ) 1. The predictions are summarized in Table 1
and Figure 2.

We emphasize again that for such an equal distribution of
electrons between atomsI M ) I EP the ionic bond multiplicity
must be exactly equal to the mutual information between the
molecular output and input probability schemes:

The predicted bond orders of Table 1 show that the delocal-
ization of electronic spins in such a triatomic model may

Nion(P) = 1 - V cov(P) ) (Q A + Q B) - Q AQ B )
- Q AQ B (37)

N coord(P; SAL2)) H(O M|I SAL2) ) H(O AI SAL2) -

H(I SAL2) ) H(O MI SAL2) ) H(P) (38)

H(O M:I M) ) H(P) + H(P) - 2H(P) ) 0, Scheme 3;

H(O M:I SAL1) ) 1 + H(P) - [1 + H(P)] ) 0, Scheme 4;

H(O M:I SAL2) ) 0 + H(P) - H(P) ) 0, Scheme 5. (39)

Figure 2. Electron configurations in the three-orbital model of a
symmetric transition state (see Table 1) for the extreme spin polariza-
tions of the middle atom,σ ) 1, 0, and equal distribution of electrons
among atoms,q ) 1, and their resolutions into ensembles of the integer
spin-population diagrams. This analysis shows that the overall covalent
and ionic entropic bond multiplicities reflect the ensemble averages of
the diagram elementary “bonds”: covalent (spin paired electrons on
neighboring atoms, solid lines) and ionic (ion pairs, broken lines).

TABLE 1: Information -Theoretic Predictions of the
Overall Bond Multiplicities in the Three-Orbital Model
a--b--c of the Symmetric Transition State [A1- -B- -A2] for
the Fixed Populationsqa ) qb ) qc ) 1 (au)

electronic configuration bond orders

σ qb
v qb

V qa
v ) qc

v qa
V ) qc

V N cov N ion

+1 1 0 0.5 0.5 1.04 0.55
+0.5 0.75 0.25 0.625 0.375 1.54 0.05

0 0.5 0.5 0.75 0.25 1.53 0.06
-0.5 0.25 0.75 0.875 0.125 1.18 0.41
-1 0 1 1 0 1 0.59

N ) N cov + N ion ) 1.59 (40a)

H(I M) ) H(I EP) ) log23 ) N )
N cov + N ion ) 1.59 (40b)

H(O M:I M; q ) 1, σ) ) 2 H(I EP) -
H(O MI M; q ) 1, σ) ) N ion(q ) 1, σ)
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increase the overall bond-order measure in the transition-state
complex in comparison to the (diatom+ atom) bond order
N ) 1 of the two-orbital model. This effect has indeed been
independently confirmed by our earlier prediction of the
increased bond order in H3, from the two-electron difference
approach.20

In an attempt to rationalize these results, we have resolved
in Figure 2 the effective (fractional) spin populations reported
in Table 1, for the two illustrative [q ) 1; σ ) 1, 0] electron
configurations. The effective spin populations are broken down
into the corresponding ensembles of the integer spin-population
diagrams, which reproduce the average atomic populations of
the spin-up and spin-down electrons, reported in Table 1 and
Figure 2. To conform to the spin assumption of the model, each
diagram represents a possible distribution of the two spin-up
electrons and a single spin-down electron (see the Appendix),
with the diagram ensemble probability chosen in such a way
that the requiredσ andq values, and thus the spin populations
of Table 1, are exactly reproduced. In these diagrams we have
used a solid line to connect the paired spins of electrons on the
neighboring atoms, signifying elementary covalent bonds. The
broken lines in the figure similarly connect ionic pairs, thus
identifying elementary “ionic” interactions.

A reference to Figure 2 and Table 1 shows that the overall
covalent and ionic bond ordersNcov and Nion of Table 1 do
indeed reflect the ensemble averages of such elementary spin-
paired electrons and ionic interactions, respectively. This
demonstration explains the increased ionicity of the first (q )
1, σ ) 1) configuration (A), caused by the two ionic diagrams
required to reproduce the average spin distribution in a molecule.
Such ionic diagrams are missing in the second (q ) 1, σ )
0)- configuration (B); this explains the relatively high value
of the covalent bond order obtained in this case. The (B)
configuration results roughly correspond to the H3 transition
state, which we discussed at the begining of this section. The
entropic measures thus predict an increase in the global bond
multiplicity relative to the (H2 + H) value of N (H2) ) 1 by
about a half-bond.

One should realize that the “covalent” and “ionic” diagrams
of Figure 2 are related to the corresponding valence structures
of the classicalValence-bond(VB) theory. Indeed, as is
explicitly shown in Figure 2, the present entropic approach based
on the simultaneous two-electron probabilities in the atomic
resolution measures a degree of an effective spin-pairing in a
molecule. This is also the guiding principle of the VB aproach,
where the paired spins are associated with chemical bonds.

The last (q ) 1, σ ) -1) example of Table 1 calls for an
additional comment. This example generates the same average
spin distribution as in SAL:a(v) + b(V) + c(v). This does not
imply, however, that this electron configuration has no extra
electron delocalization in the system, because in the transition-
state complex the two spin-up electrons are perfectly delocalized
between peripheral orbitalsa andc. The predicted covalent bond

measureNcov ) 1 reflects this very delocalization effect in the
a-b-c molecular system.

At first sight the values of the ionic bond component reported
in Table 1 are surprising in view of the assumed equal
distribution of electrons among the three orbitals (atoms). One
should realize, however, that there are differences in the separate
distributions of the spin-up and spin-down electrons, as is indeed
reflected by variations in the spin populations of the three
orbitals in Table 1 and Figure 2. In fact, one could define
separate, spin-resolved measures of the covalent and ionic
entropy differences for the two spin orientations:

Let us consider the last configuration in Table 1 as an illustrative
example. In this case the separate probability networks for the
two spin orientations are as shown in Scheme 6. These
probabilities give the following entropies:H(O v

M I v
M) ) 2;

H(I v
M) ) 1; H(O V

M I V
M) ) H(I V

M) ) 0; H(I v
EP) ) H(I V

EP) )
-3(1/3) log2(1/3) ) log2 3 ) 1.59, henceNh cov

v ) 1 (delocal-
ization of the spin-up electrons);Nh cov

V ) 0 (zero delocalization
of â electron); Nh ion

v ) 0.59 (smaller asymmetry in the
distribution of the spin-up electrons);Nh ion

V ) 1.59 (maximum
asymmetry in the distribution of the spin-down electron), and
hence Nh σ ) Nh ion

σ + Nh cov
σ ) 1. 59, σ ) (1/2. Indeed,

weighting these spin-resolved bond orders in accordance with
the probabilities of the spin-up and spin-down electrons in the
system,Pv ) 2/3 and PV ) 1/3, reproduces the overall bond
order reported in the last row of Table 1:

π Bonds in Benzene and Butadiene.Let us examine the
overall π bond order in benzene, originating from pairing the
six 2pπ electrons contributed by the carbon atoms{Ci, i ) 1, 2,
..., 6} ordered consecutively in the ring. In the present qualitative
analysis we use the three occupiedπ orbitals from the simple
Hückel MO theory, which generate the following CBO matrix
elements ofπ electrons:

SCHEME 6

Nh cov
σ ) H(O σ

MI σ
M) - H(I σ

M),

Nh ion
σ ≡ H(I σ

EP) - N cov
σ ) H(I σ

EP) + H(I σ
M) -

H(O σ
MI σ

M), σ ) v, V (41)

N ) Pv Nh v + PV Nh V ) 1.59

) Pv (Nh cov
v + Nh ion

v ) + PV (Nh cov
V + Nh ion

V ) ≡
N v + N V ) 1.06+ 0.53

) (Pv Nh cov
v + PV Nh cov

V ) + (Pv Nh ion
v + PV Nh ion

V ) ≡
Nh cov + Nh ion ) 0.67+ 0.92

qi ) Pi,i ) 1; Pi,i+1 ) 2/3; Pi,i+2 ) 0; Pi,i+3 ) -1/3

(42)
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These give rise to the following RHFΓ-matrix elements,
{Γ(i,j) ) qiqj - Pi,j

2 /2}

and the corresponding two-electron joint probabilities{P (ij )
) Γ(i,j)/30}:

The relevant entropies of the atomic probabilities are

They generate the following predictions of the overallπ-bond
multiplicities in the benzene carbon ring:

The entropic measure of theπ bond order thus predicts, on
average, 2.59/6) 0.43 bond multiplicity per each of the six
bonds between nearest neighbors in the carbon ring. This value
should be compared with the intuitive chemical value of a half
π bond in the benzene ring, the Wiberg10 resultPi,i+1

2 ) 0.44,
and the prediction of the finite difference approachV i,i+1 )
0.45.21

The nonvanishing, residual ionic component for the equal
distributions of electrons between atoms should not come as a
surprise (see also Table 1 and Figure 2), because it also includes
a contribution due to spin pairings of two electrons located on
the same atom.

As a final illustrative example, we examine the fourπ
electrons in butadiene, occupying the two lowest Hu¨ckel
molecular orbitals obtained from the four carbon 2pπ orbitals,
again numbered consecutively in the chain. This simple LCAO
MO theory predicts the following CBO matrix elements

and hence the following probabilities in atomic resolution:

They give rise to the overallπ bond orderN ) log24 ) 2,
which includes the dominating covalent component,Ncov ) 3.94,
and a small ionic contribution,Nion ) 0.06. The above global
π bond multiplicity index reproduces both the intuitive chemical
expectation and the overall bond order obtained from the
summation of the diatomic Wiberg indices:

Bond Entropies

Direct Bond Measure.To obtain a specific diatomic bond
multiplicity, NAB, from the overall entropic bond orderN of
the preceding sections, one would have to introduce some extra
assumptions about how to partition the atomic contributions

among diatomic multiplicities. This weakness of the above
overall approach in comparison with, e.g., the Coulson (C)5 and
Wiberg (W)10 approaches, which associate the (A-B) bond
multiplicity with the coresponding sums over the OAO of the
two atoms

respectively, can be remedied only by linking the entropic orbital
contributionNi,j of the overall diatomic index

directly to the entropy contribution from the corresponding
matrix elementΓ(i,j) or the related orbital joint probability
P (i,j): Ni,j ) Ni,j[Γ(i,j)].

When designing such a direct, information-theoretic measure
of the bond multiplicity, one would also aim at improving the
predicted bond orders for some configurations in the three-orbital
model. Consider for example the configuration (A) ) (q ) 1,
σ ) 1) in Figure 2, in which the terminal atoms have the
perfectly paired spin-up and spin-down electron populations,
while the localized spin-up electron of the middle atom does
not participate in any delocalization, i.e., covalency. This
observation suggests that a realistic multiplicity index of the
localized covalent bond should indicate in this case a single
a-c bond and the zero (a-b) and (b-c) bonds. Similarly, for
the last configuration (q ) 1, σ ) -1) of Table 1, we have
detected that the resulting spin distribution is identical to that
of the SAL. Thus, to have the bond indices, which reflect
changes in distribution of electrons relative to the SAL, one
would intuitively expect in this case no bonds for all pairs of
orbitals.

Bond Entropy Function in the Two-Orbital Model. In our
search for an appropriate candidate for the bond entropy
function, we first consider the simplest case of the interactions
between two OAOs. Clearly, the new entropy function should
retain the general features of theH(P) andV (P) plots of Figure
1, which qualitatively agree with chemical expectations.

Consider the followingbond entropy function

of the model off-diagonal element of theΓ matrix in the atomic
resolution:

As shown in Figure 1, the bond entropy functionN(P) retains
the correct qualitative features of theH(P) and V(P) plots,
predicting zero covalent bonds for the lone-pair configurations
q ) (0, 2), for whichPa,b ) 0, and a single covalent bond for
q ) 1, whenPa,b ) 1. This function deviates more substantially
from the Wiberg quadratic estimateV(P) than does the binary
entropy functionH(P), predicting much faster growth of the
entropic covalent bond order with increasing delocalization of
the lone-pair electrons toward the orbital of the bonding partner.

Performance of the Bond Entropy in the Three-Orbital
Model. As we have argued above, this model, exhibiting the
spin polarization degree of freedom, provides a crucial test of
the applicability of the bond-entropy function. Using the explicit

Γ(i,i) ) 1/2; Γ(i,i+1) ) 7/9; Γ(i,i+2) ) 1;
Γ(i,i+3) ) 17/18 (43)

P (ii ) ) 1/60; P [i(i+1)] ) 7/270; P [i(i+2)] ) 1/30;
P [i(i+3)] ) 17/540 (44)

N ) N cov + N ion ) H(I M) ) H(I EP) ) log26 ) 2.59,

H(O MI M) ) 5.14 (45a)

N cov ) 5.14- 2.59) 2.55;N ion ) 2.59- 2.55) 0.04

(45b)

qi ) Pi,i ) 1, P1,2 ) P3,4 ) 0.89,P2,3 ) 0.45) -P1,4,
P1,3 ) P2,4 ) 0

pi ) 1/4,P (ii ) ) 1/24, i ) 1, 2, 3, 4;

P (12) ) 1/20) P (34), P (23) ) 3/40) P (14),
P (13) ) 1/12) P (24)

N ) N w ≡ ∑∑
i<j

Pi,j
2 ) 2 (46)

N A,B
C ) ∑

i∈A

OAO

∑
j∈B

OAO

Pi,j, N w ) ∑
i∈A

OAO

∑
j∈B

OAO

Pi,j
2 (47)

N A,B ) ∑
i∈A

OAO

∑
j∈B

OAO

N i,j (48)

N a,b[Γ(a,b)] ) -Γ(a,b) log2 Γ(a,b) - Γ(b,a) log2 Γ(b,a)

) -2 Γ(a,b) log2 Γ(a,b) ≡ N (P) (49)

Γ(a,b) ) Γ(b,a) ) q(2 - q)/2 ) 2P(1- P)≡ Γa,b(P) (50)
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expressions for the off-diagonal elements of theΓ matrix (eq
A4 in Appendix) gives the following expressions for theq ) 1
constrained electronic configurations:

In Table 2 we report the corresponding bond entropies

These results clearly show that the bond entropy measure
has indeed remedied the previously identified problems with
the global entropy measure for the first and last configurations,
while generally reproducing theNcov values for the remaining
configurations. With the purely molecular bond-entropy concept,
we have thus achieved a full conformity with the intuitive
chemical expectations. Moreover, from the bond-entropy func-
tion we have a direct multiplicity measure associated with each
bond, without an arbitrary partitioning of the global bond order
into effective diatomic contributions.

We conclude this section with the bond multiplicities for the
earlier-reported ab initio electronic structure parameters of H3.
Using eqs A4 and 52 gives

These bond orders amount toN ) 2Na,b + Na,c ) 1.41, a value
close to the previous resultNcov ) 1.52.

This increase in bond multiplicity of the transition-state
complex relative to the (H2 + H) limit, N(H2) ) 1, has also
been predicted by our earlier multiconfigurational SCF calcula-
tions, using a basis set that includes the polarization functions
MC + POL.20 The corresponding QVI values for the two SAL
reference states, identified by the two spin orientations of
electrons ona, b, andc orbitals, respectively, are as follows:20

Therefore, the above information-theoretic predictions for
the model of the H3 collinear transition state provide additional
validation of the bond-entropy concept as an adequate measure
of the covalent bond order in the bond-forming-bond-breaking
process.

π Bonds in Benzene and Butadiene.Next we calculate the
diatomicπ bond orders in the benzene ring, using the Hu¨ckel
Γ matrix elements of eq 43. They predict the following bond
entropies:

This result agrees well with the chemical value of a half-
bond between the neighboring carbons in the ring. It also
correctly predicts a much lower order between two carbons in
the mutual para positions, and a vanishingπ bond between two
carbons in the mutual meta positions. This finding is in full
conformity with the Wiberg10 results (see eq 42)

and with our earlier predictions from the two-electron difference
approach (QVI):21

As we have observed previously,21 this result can be physi-
cally justified within the VB theory. Namely, the meta-meta
bond can be achieved only through the diradical valence
structure, in which theπ electrons of the two carbons are
localized, as in the Wheland intermediate. No such localization
is required for the para-para bond. The diradical configuration
is thus expected to participate much less in the ground-state
wave function.

The bond entropies obtained for theπ bond system in
butadiene (Hu¨ckel theory) are as follows:

They should be compared with the corresponding Wiberg
indices:

Thus, in both approaches the peripheralπ bonds are predicted
to be much stronger than the central bond of the carbon chain,
in accordance with the familiar chemical interpretation.

Conclusion

In interpreting the electronic structure of molecular systems
in chemical terms, the intuitive concepts of bothatoms in
moleculesand chemical bonds,which connect AIM in a
generalized structural formula of the system under consideration,
are essential. In the present and previous26 studies, we have
demonstrated that both these concepts can be established within
the information theoryusing appropriate entropy functions of
both the molecular (or isolated atom) electron densities and the
associated probabilities in the atomic discretization. These
concepts are not defined uniquely, as is the case with many
chemical ideas. Nevertheless, in this work we have achieved,
particularly in the case of the bond-entropy function, a high
degree of agreement between the information-theoretic bond
orders, the chemical intuitive values, and the previous quantum
mechanical measures for all models considered in this study.

Clearly, a more extensive numerical testing of these novel
entropic concepts is required, for both typical molecules and
“controversial” systems for which no apparent chemical intuition
is available. However, a degree of success in a semiquantitative
reproduction of the “established” chemical bond multiplicities,
which we have already achieved in the present exploratory
analysis, strongly suggests the relevance and importance of the
proposed information-theoretic bond orders as new tools for a
supplementary analysis in the familiar chemical terms of
numerical results from the standard quantum-chemical computa-
tions.

The present analysis can be extended in several directions.
For example, in the future one could examine the role of the

TABLE 2: Bond-Multiplicity Predictions from the Bond
Entropies in the [a--b--c] Model for the Electronic
Configurations of Table 1

σ Γa,b Γa,c N a,b N a,c N ) 2N a,b + N a,c N cov
a

+1 1 0.5 0 1 1 1.03
+0.5 0.81 0.72 0.49 0.68 1.66 1.54

0 0.75 0.87 0.62 0.34 1.58 1.52
-0.5 0.81 0.97 0.49 0.09 1.06 1.18
-1 1 1 0 0 0 1

a Overall covalent bond multiplicities from Table 1 (for comparison).

Γa,b(1, σ) ) (3 + σ2)/4; Γa,c(1, σ) ) [7 - σ(σ + 2)]/8

(51)

N i,j(1, σ) ) -2Γi,j(1, σ) log2 Γi,j(1, σ), (i, j) ) (a, b), (b, c)

(52)

Γa,b(0.972,-0.203)) 0.75; Γa,c(0.972,-0.203)) 0.95;

N a,b(0.972,-0.203)) 0.63; N a,c(0.972,-0.203)) 0.14

(53)

V ) 1.21; SAL: up+ down+ up;
V ) 1.31; SAL: up+ up + up

N i,i+1 ) 0.56; N i,i+2 ) 0; N i,i+3 ) 0.16 (54)

Pi,i+1
2 ) 4/9 ) 0.44; Pi,i+1

2 ) 0; Pi,i+3
2 ) 1/9 ) 0.11 (55)

V i,i+1 ) 0.45; V i,i+2 ) 0.00; V i,i+3 ) 0.12 (56)

N 1,2 ) 0.88; N 1,3 ) 0; N 2,3 ) N 1,4 ) 0.27 (57)

P1,2
2 ) 0.80; P1,3

2 ) 0; P2,3
2 ) P1,4

2 ) 0.20 (58)
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exchange-only contribution to the joint two-electron prob-
abilities, in an attempt to relate the present entropic bond orders
more directly to the Lewis classical picture of bonding and to
the pair-population analysis involving the domain-averaged
Fermi holes.33 Also, the multicenter bonding indices16,18b,33could
be tackled within the information theory. More specifically, the
three-center bonds would require the joint three-electron prob-
abilities and the related conditional probabilities, e.g., the AIM-
resolved joint two-electron probabilities, given the atomic
location of a third electron. The average entropies for such three-
atom events are also directly available within the information
theory.29

The present analysis supports our earlier conjecture,17 that
the bond multiplicity and valence concepts are “entropic” in
character, i.e., they are defined in the perspective complementary
to the familiar energetical description of the Schro¨dinger
equation. The latter follows from the energy variational principle
for constant entropy defined by the fixed, say single occupations
of the molecular SO:nR ) 1, R ) 1, 2, ...,N. Obviously, this
uniform SO occupation pattern of the Pauli principle, and the
associated value of electron occupational entropy, follows
directly from the maximum SO occupational entropy principle
in the selected set of the occupied orbitals.

Therefore, in the electronic structure theory we indeed
encounter an interplay between the supplementary entropic and
energetical descriptions. This is particularly true in the density
functional theory,24 where, e.g., the Levy constrained search
construction34 of the universal part of the density functional for
energy24 can be classified as entropic because the search is
carried out for the fixed electron densityF, i.e., the constant
energy. We believe that we have explicitly demonstrated, in
the present development, that the chemical concept of the bond
multiplicity does belong to the entropic “world” of the informa-
tion theory.
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Appendix: Summary of the Three-Orbital Model

Consider the modela- - -b- - -c, consisting of the three (real)
OAOs, øA1 ) a, øB ) b, and øA2 ) c, of a symmetrical
(collinear) transition state (TS) of the bond-breaking-bond-
forming atom exchange reaction:

The three UHF MOs, which are occupied in the symmetrical
TS complex, are:

These molecular orbitals define the corresponding UHF Slater

determinantΨ(1, 2, 3)) |ψ+1
v ψh 1

V ψ+2
v |

Expressing the MO coefficients in terms of the two inde-
pendent parameters controlling the electron configuration in this
system, the middle atom electron populationq and its spin
polarizationσ

gives the following expressions for the elements of the UHF
Γ-matrix in McWeeny’s normalization

Γ(i,j) ) Pi,iPj,j - (Pi,j
v )2 - (Pi,j

V )2 ) Γi,j(q,σ):

Multiplying these expressions by the renormalization factor [3(3
- 1) ) 6]-1 finally gives the corresponding expressions for
the four independent elements of the symmetric matrix grouping
the simultaneous two-electron probabilitiesP(i,j) in the atomic
resolution (eq 12):
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