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The entropic character of the bond multiplicity concept of chemistry is explored within the information theory.
The probability schemes of finding a single and two electrons on specified atoms are used to formally interpret
a molecule as thecommunicatiohsystem, with the molecular or the separated atoput probabilities and

the network of conditional two-electron probabilities in atomic resolution, which determine the molecular
one-electron atomic probabilities, defining the systautputprobabilities. Several measures of uncertainties

in such a molecular communication system are then introduced, includirey¢hage entropiesf the two-
electron joint and conditional probabilities, as well as éherage mutual informatiobetween the input and
output probability schemes. The average entropy of the conditional probabilities between molecular input
and output probability schemes is then identified as the information theoretic measureuitthlecaalent

bond multiplicityin a molecule. Similarly, theglobal ionic bond ordeiis found to be well reflected by the
mutual information between molecular output and the atomic equiprobability input schemes. These
identifications are tested by comparing the entropy predictions for the two- and three-orbital models and the
7 bonds in butadiene and benzene’¢Kel approximation) with the corresponding results from the earlier
Wiberg-type and two-electron difference approaches. Finallyhdnel entropyconcept is introduced to provide

a direct measure of the covalent bond component for each pair of atoms. It is demonstrated that this entropic
bond order is in good agreement with both the chemical intuition and earlier predictions for all illustrative
systems examined, thus providing a novel atrractive tool for chemical interpretation of calculated molecular

electronic structures.

Introduction observation is in full analogy to the supplementary character
) of the entropic and energetical descriptions in thermodynathics.
The concept of @onded(promoted)atomin a molecule, It has recently been demonstratedhat the information

only slightly modified in its valence shell relative to the theory?’-3° can be successfully applied to define thedms-
referenceisolated atonfion state due to the formation of i moleculesby generating the unique (Hirshfefbartitioning
chemical bonds, and that ofgond multiplicity which gives  of the molecular density. The resultingtbckholdet atoms
rise to thestructural formulaof the molecular system, are crucial  pinimize the so-calledntropy deficiencymissing informatiop

for providing a truly chemical interpretation of calculated nf Ky|lback and Leiblet® with respect to the molecularly placed
electronic structures. Obviously, because they were originally jso|ated atom densities, which determine phemoleculedensity
introduced on intuitive groundsthese quantities are not defined  of the familiar density-difference diagrams. It has also been
precisely. Nevertheless, a great deal of effort has been madeshown that similar entropic concepts can be used to solve the
in quantum chemistry to define these elusive quantities molecular similarity problems and to define the intermediate,
operationally;~??in such a way that they reproduce the chemical polarization stage of the bonded atom reconstruction with
intuition in standard molecules and processes, e.g., during arespect to the corresponding isolated atomic stites.

concerted bond-breakingond-forming atom exchange reac-  However, to the best of author's knowledge, no explicit use
tion. The bond multiplicity indices are usually defifé@ 41622 ¢ the entropy concepts of the information theory has been made
as functions of elements of the familiar charge-and-bond-order tq tackle the classical problem of bond multiplicities. The main
(CBO) matris® of the standard Hartree=ock® and Kohn- purpose of the present work is to explore a possibility of
Shan#* theories. These indices have been shown to follow many formulating truly entropic measures of the global and localized
aspects of the “established” chemical intuition quite well. “bond-orders” and their ionic and covalent components. In this

Clearly, all such quantum-mechanical quantities, measuring search we shall adopt the obvious requirement that the formu-
the effective numbers of bonding electrons or electronic pairs lated entropy functions follow, as closely as possible, the
in a molecule relative to the relevant states of the separatedestablished chemical intuition in selected prototype and standard
atoms or molecular fragments, are noeokrgeticakcharacter. systems.

Indeed, as we have observed in our earlier work formulating One of our guiding principles is to preserve the atomic
the two-electron difference approaththe bond multiplicity description, which constitutes a natural reference frame for any
and valence concepts areeritropic’ in nature, i.e., they chemical bonding concept. This principle implies that our efforts
eventually follow from a separatentropic variational prin- will be carried out within the framework of an appropriate
ciple?® Only together with the energetic variational principle network of the electron probability distributions in atomic
of Schralinger and Hohengergkohr?* do they provide the resolution, i.e., the probabilities of finding a single electron on
complete treatment of the electronic structure phenomena. Thisconstituent bonded or isolated atoms, or the joint probabilities
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of simultaneously finding a pair of electrons on specified atoms  As also indicated in eq 1, the molecular electronic density
in a molecule. A survey of such probabilities is given in the p(r) can be partitioned into atomic densitigss(r)} using an
first section of the article. appropriate division criterion. For example, this may involve
The proper entropy functions of the moleculaput and the physical spaceartitioning into atomic basingQ,}, which
output probability schemes in such an atomic, coarse-grained define topological atoms of Bader et al. (8):0,8(r) = p(r)
description are defined in the second section. We begin this for r ¢Q, andp.8(r) = 0 for r outsideQ,. In thefunction space
section by addressing the basic question for the presentdivision scheméeqPopulational AnalysigPA)], which we adopt
development: in what sense can we treat a molecule as ain the present work, one uses the known association of the basis
“communicatiohsystem? The average uncertainty measures of functions{yi(r)} [orthogonalized atomic orbital®AQ), 0|y
the standard information thedfyare then used to define the = ¢;j], with the corresponding atoms:
proper entropic measures of the overall bond multiplicity and
its partitioning into the covalent and ionic components. The
suggested entropies are then tested within the-orbital p(r) = Z z xi*(r) Py () =
model?171821of a single chemical bond, ththree-orbital ro

OAO OAO

. s . atoms OAO OAO atoms

model820 of a symmetric transition-state complex in the . _ PA
collinear atom exchange reaction, and the systems of conjugate Z{ z Z 27(r) Py ()} = z pa (1) (4)
7 bonds in the benzene ring and butadiene chairickdl & e @
theory). Here

Finally, a direct-information theoretic approach for determin-
ing the bond multiplicity between a specified pair of atoms in so so
amolecule is proposed. In this development, the so-calie P={P;=) = hlvan, Wly= ) Ciuny Ci}
entropyconcept is introduced, which provides a direct measure « o

of the bond order between any pair of atoms in a molecule. We

shall demonstrate that for all the illustrative molecular systems denotes the familiar CBO matrix in the OAO representation.
mentioned above, a good agrement is obtained between theinally, in the so-called stockholdet partitioning scheme of
predicted bond entropies and both intuitive expectations and Hirshfeld®

other, Wiberd®type quantum-mechanical bond multiplicity

indicators. pa () = p(r) [p2(r — R)p(N)] (5)

Electron Probabilities in Atomic Resolution one locally divides the molecular density between all constituent
atoms in proportion to the isolated atom share in the density
0°(r) = > a pa°(r —Ra) of the promoleculeM®(R), consisting of
the atomic densitie§p2(r — Rg)} of a theseparated atoms
limit (SAL) shifted to the nuclear positio®® in the molecule.
Notice that the same reference is applied in the density
difference diagramsAp(r) = p(r) — p°(r), extracting modifica-
tions of the AIM densities due to the formation of chemical
bonds. As we have already remarked, the Hirshfeld scheme has
N recently been shovwfito have a sound basis in the information
p(r) = W| Z O(r, — 1)[WO= N W|O(r, — 1) W= theory, because the stockholder atoms directly follow from the
& minimum entropy deficiencd (minimum missing information)
m principle relative to the isolated atom densities of the promol-
Z pA(r) =0 (1) ecule, subject to the constraint of the exhaustive partitioning of
&= the molecular density into atomic contributions at each point
in space.
where{pa(r)} groups the atomic densities obtained from the  The atomic discretization also defines the associated average
appropriate partitioning scheme of the molecular density. It (fractional) electron population of the bonded atom
defines the probability distribution of finding an electron at point

r, the so-calledshape function N, = f p(r)dr, a=1,2,..m (6)

Atomic Probabilities in a Molecule. The chemical descrip-
tion of the electronic structure of molecular systems is usually
formulated in terms oftoms-in-molecule¢AIM) and bonds
that connect them. The electron density at pofior the ground-
state¥(1, 2, ...,N) of a molecule MR) consisting ofm atoms
(at fixed position®R = {R3}) andN electrons (at positions})
is given by the expectation value

f(r) = p(r)/N = 0, f f(rydr=1 2) and hence its effective net char@ = Z, — N,, whereZ,
denotes the atomic number of nucleusn this coarse-grained
In the one-determinant approximation, e.g., in the Hartree atomic representation of ttime-grained local distributionp(r),

Fock or Kohn-Sham theories, the electron density can be the probability vectop = {pa}, combining the probabilities of
expressed as the sum of orbital contributions finding an electron on specified AIM, is defined by the ratios

So OAO p.=NJN, a=1,2,..m p,=1 @)
p(r) = z |wa(r)|2 n(x 7/&1: z Xi Cia (3) ¢ : Z 2

This molecular one-electron probability vector in atomic
where themolecular orbital (MO) y4(r) represents a spatial  resolution,p = {pa: a € M(R)}, and the underlying AIM
part of thespin orbital (SO) o, ¢a(X) = Yau(r) Eu(0), With £4(0) partitioninga={a =1, 2, ...,m} together define the so-called
(0 = £1/2) and 0=< n, < 1 standing for the SO spin function molecular inputprobability scheme: 1M = {[a, pJ: a €
and occupation number, respectively. The occupations satisfyM(R)}. This is shown in Scheme 1, drawn for the simplest case
the closure conditiory Ny = N. of a diatomica—b (m = 2). In this diagram, the same vecior
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SCHEME 1 truly nonbonded molecular fragments at large separations.
Therefore, in an eventual definition of the entropic (information)
measures of the chemical bond multiplicity, one may prefer the
— P,/ 2 (P(a la)— a—p,— molecular inputs of Scheme 1 over the SAL/promolecule inputs
P(bla) of Scheme 2.
Similar perspectives have been used in previous quantum
mechanical approaches to the bond-order problem. For example,
P(alb) the Wiberg-type measure of the covalent bé%d? given by
the quadratic function of the corresponding CBO matrix
elements, or the fluctuational definitiifall into the exclusively
molecular category of Scheme 1. Similarly, the difference
SCHEME 2 approach measuring timolecularlyaveraged displacents of the
Input: SAL/Promol. Output: Molecule molecularCBO matrix elements relative to the corresponding

Input: Molecule Output: Molecule

—p,— b ZpP(bib)—> b—p,——

2(a%) a°—P(a]a®)s> a—p SAL values combine the SAL and molecular electron config-
- N a 5 uration information, as shown in Scheme 2.
P(blao) In the present development we shall adopt the molecular-
only approach of Scheme 1, to define the entropy for the overall
P(a|p®) covalent entropyand a separatequiprobabilitySAL input I _EQ
o o/ o of Scheme 2, to define the globiahic entropy We would like
(b ) b"=P(blb }> b—pb——> to emphasize, however, that for distinguishing between the

covalency of thecoordination bond in which the bonding
electronic pair originates from a single atom, and that of a truly
covalent bondformed by two atoms, each contributing a single
valence electron, a reference to the SAL probabilities of Scheme
2 is required.”-18.21

Conditional and Joint Two-Electron Probabilities. There
are two sources of uncertainty in making atomic allocations of
electrons in a molecular system. As we have argued above, the
first is associated with theiriput messadespecifying proba-
bililties of “atomic” origins of an electron, either molecular
(Scheme 1) or SAL/promolecule (Scheme 2) in character. In
other words, it is not known with certainty which constituent
“atomic” unit an electron originates from. This uncertainty is
reflected by the two input probability schemes discussed in the

also defines themolecular outputone-electron probability
scheme:OM = {[a, pa): a € M(R)}.

As also shown in Scheme 1, the initial allocation of electrons
among atomsa may change as a result of the electron
delocalization in a molecule. This is reflected in Scheme 1 by
a network of theconditional probabilitiesP(bja) = { P(b|a), a,
b=1,2,...m}, with P(bja) denoting the probability of finding
an electron initially associated with atoemon atomb in a
molecule.

Atomic Probabilities in the SAL/Promolecule. Attributing
an electron in M to specific atoms, i.e., assigning it the AIM
label a € a, is therefore characterized by uncertainty. This is
also true in the collections Mand M(R); of the isolated i -
constituent atoms/ions in the SA{a® € M, and in the preceding subsectlonsf. ) .
promolecule{a® € M°(R)}, respectively. The probabilities The second source is linked to thenditional probabilities
= {x(29} of finding an electron of theN indistinguishable ~ P(b1&) = {P(bla): a b € M(R)} (Scheme 1) and(bja’) =
electrons of the promolecule/SAL on specific reference (isolated) tP(bla°%): b e M(R), a® € M®R)} (Scheme 2), of the event
atomsa® = {a°} provide the SAL/promolecule input (source) that an electron originating from atoenor a° |s.subsequ.ently
information of Scheme 2, which preserves the molecular output found on atomb in a molecule. They respectively define the
(receiing end of Scheme 1. correspondingconditional probability schemesC(M|M) =

We therefore conclude that both the atomic identificatians ~ [(P1&), P(bla)]: (a, b) € M(R)} and C(M|SAL) = {[(bl&"),

in M anda® in M° can be considered discrete random variables. P(0l2%)]: b € M(R), & € M(R)}, characterizing the electron
The probability of finding one of theN indistinguishable transmission channélbetween AIM (Scheme 1) and between

isolated and bonded atoms (Scheme 2), respectively.

The conditional probabilitie®(b|a) are linked to the corre-
spondingjoint probabilities P(ba) = {P(ba), a, b € M(R)},
of simultaneously finding one electron @nand another ofb,
or P (ba®) = {P (b&°), b € M(R), a° € M(R)}

electrons of M on a® in M°(R) is given by the ratios

@) =NSIN, a®=1,2,..m Z @) =1 (8)

whereNg® = [ p°(r) dr denotes the integer number of electrons
on atoma® in the SAL/promolecule. These atomic electron P(bla) = P (ba)/p,, P(bla’) = P (ba’)/z(a)  (9)
populations also satisfy the overall molecular closure condi-
tion: Yz Na® = N. The joint probabilitied? (ba) can be obtained from the relevant
The SAlpromolecule inpuprobability vectorr = {z(a°: molecular spinless two-electron density (pair function) in the
a® € M°(R)} and the associated isolated atom/ion partiéén OAO representation:
define theSAL inputprobability scheme:l SAL = {[a°, z(a%)]:
a° € M°(R)}. N
We would like to emphasize at this point that a choice of the p,(r, r') = [W| Z Z O(r—r) o(r, — r") WO
most appropriate SAL/promolecule reference may in some cases =1 Z
create computational and conceptual difficulties. For example,

a choice between a dissociation into atoms or ions, e.g., the = NN = 1) Qo(r, =) ofr, = WD

ionic vs. covalentlimits in the dissociation of the alkali metal OAO OAO ~
halides3! introduces an element of arbitrariness, although only => Z %(00) () DGR 2dr) () (10)
the atomic SAL reference may be considered as representing T K
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The pair-diagonal elementd(i,j) = I'(i,j:ij), satisfying More specifically, as we have argued above, it is not known
McWeeny’s normalization with certainty on which atom an electron will be found in the
00 ‘.‘output’ qf suqh.a molicglar con;rgu?]icationls¥§;em, even vr\]/hen

- = its atomic origin in theinput of Scheme , i.e,, in the
z [@j)=TrI'=N(N—1) (11) molecule (SAL/promolecule), is known. This is a result of
& forming chemical bonds, i.e., of the electron delocalization.

which multiply in eq 10 the orbital probability distributions ~ Similarly, itis not known with certainty from which constituent

lxi(r)|2 and|x;(r")|2 of an electron “1” ar and another electron atom/ion in the molecular (SAL/promoleculanputan electron

“2" at r', respectively, determine the joint probability that originates, i.e., which signal in the probability network of
electron “1” is on théth OAO while electron “2” simultaneously ~ Scheme 1 (2) was transmitted, even when the received message

occupies thgth OAO: in the ouput i.e., finding an electron on a specific atom in a
molecule, is known.
0AO The set ofatomic identification signalgatomic labels) is the

P (i,j)) = T(,))/[N(N — 1)], z P@)=1 (12 same in the SAL/promolecule and in the molecule itself. The
h molecular system under consideration can thus be considered
as the communication system. This system influences prob-
abilities of such signals being sent (or received), thus introducing
effects of a moleculatommunication noisenodifying the input
one-electron probability distributiofp, (or 772)}, of theinput
probability schemento the conditional molecular probability
OAO OAO AIM of b given the inputa (or a°), {P(bja [or a°])}. The input
P (ab) = P (ba) = z PG, Z P@@ab)=1 (13) probability scheme defines the relevannditional probability
a schemewhich gives rise to the molecular output probability
. . scheme. Notice that the stationary character of the electron
The joint partitionba = {ba, (b, &) € M(R)} [or ba® = {be", distribution requires that the output probability vector in Scheme
b e M(R), & € M%(R)}] and the associated vector of tnt 1 be identical to the input probability vector of eqs 7 and 16.
probabilities P (ba) [or P (ba®)] together define the corre- s transformation of the input atomic probabilities into the

In the function-space AIM discretization of the populational
analysis, the two-electron simultaneous probabilities are then
obtained by the summation of these orbital probabilities over
OAO centered on the specified pair of atoms:

ica |e

spondingoint probablllt%scgﬁmeﬂ (O"1 ™) = {[ba, P(ba)]: output probabilities via the conditional probability network is
gb’ 2 f M(R)} [or J (O"1 >%) = {[bar, P(ba)]: b € M(R), the essence of the illustrative molecular communication systems
a® € MO(R)}. N N __ shown in Schemes 1 and 2.
Let us recall that the conditional probabilities must satisfy  the formation of chemical bonds affects mainly the valence-
the following normalization over all output atomic events: shell electrons of constituent atoms in a molecule, with the inner,
outputs outputs core electron distributions of isolated atoms (or ions) remaining

Z P(blay=1 or Z P(bja®) = 1 (14) pra(_:tically unchanged. _There_fore, in qualitativ_e and se_miquz?m-
titative bond-order considerations, one usually limits a discussion
by explicitly taking into account only the valence electrons. We
It also follows from eq 9 and this normalization condition that follow this valence-only approach in all illustrative examples
the summation of the joint probabilities over all atomic outputs reported in this work. In the butadiene and benzene cases, we
gives the input (molecular or SAL) one-electron probability:  similarly discuss ther bond-orders, separating the,Amlence
electrons of carbon atoms from the remaining electrons of the
_ o _ /.0 molecularo core.
Z P (bg) =p, or Z P (ba) = (@) (15) Average Uncertainties of the Molecular Probability
Schemes.Let us define the entropy of the molecular one-
Finally, the summation of the joint probabilities over all atomic electron probabilities in the atomic resolution
inputs must also give the corresponding one-electron AIM

outputs outputs

B m
probability: HE) ==Y plog,p=H(I ") =HO") (17)
inputs inputs 1=
Z P (ba) = Z P (bd) = p, (16) which corresponds to both the molecular input and output
@ & probability distributions of Scheme 1. It measures the average
Entropy Functions uncertainty for both these probability schemes. Following the

. o usual convention of the information theory, we have taken the
Molecule as a “Communication” System.One can regard  |ogarithm in the entropy definition to the base 2, in which the
a molecule MR) as a ‘tommunicatiohsystem, in which the it of information is thebit.
signalsare being transmitted in terms of a finite sehmpossible The corresponding entropy for the joint two-electron prob-
atomic allocations oN electrons in M. We call such a unit  gpjlity schemed (O M1 M) of the probabilities of simultaneous

signal themessageWhen a signal conveying a message is eyents in the molecular input and output is as follows:
received, it is known that one of the given set of possible

messages has been sent. As in the real communication channel, Mo m - -
the molecular system is characterized by disturbances of a H(d)=H(O "1 ") = _Z Z P (ij) log, P (ij) = H(P )
I=1 =

m

random charactenpisg, which perturb the transmitted signal. (18)

This molecular uncertainty in ascribing electrons to atoms

originates from the quantum-mechanical noise in tin@ismis- This entropy similarly measures the average uncertainty in the
sion channelsof Schemes 1 and 2, linking thieputandoutput distribution of the two electron joint probabilities in atomic

atomic “events”. resolution.
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Next we introduce the entropy differert€e
inputs outputs

HO ™1™ —HOY) = - Z Z P (ij) log, [P (ij)/p]
=1 j=

inputs outputs

:_Z Z P (ij) log, P (jli) = HO M1 ™) (19)
=1 =

where we have used the sum rule of eq 16. It measures the

average entropy of the output probability distribution, given the
input probability scheme. If an input event occurs, it may or
may not change the uncertainty about the output events. Th

entropy of eq 19 represents the residual average uncertaint
about the output events when one has knowledge of the
occurrence of the input events. Because conditioning, i.e., giving

the information about the input probability scheme, cannot

increase the average uncertainty about the output probability

scheme, the following inequality hold®:

HOM1™ <HO (20)

with equality if and only if the scheme®M™ and I M are
independent.

The related molecular entropy function of potential impor-
tance for characterizing the electron configuration is the
nonnegativeawerage mutual informatiobetween the input and
output scheme¥

inputs outputs

P (ij)
HOM™1™M =% % P(i)log,
i ]

np
=HA™ +HOM -HOMI™
=HI™) -HaMo™ =
HOM —HOY 1™ =0 (21)

where we have used the inequality of eq 20. It follows from eq

21 that the mutual information vanishes when the input and
output probability schemes are independent, because then

H(OMI M) = H(I M) + H(OM). This entropy function gives
the average information about the output provided by the
occurrence of events at the input.

A Search for the Entropic Measures of the Global Bond
Multiplicity

Two-Orbital Model of a Single Bond. Probabilities Con-
sider the simplest case of a two-orbital mddél-1821of the
A—B bond, consisting of a single bonding molecular orbital
(MO) v given as a combination of the two OAQg, = a and
xs = b, centered on nuclei of atoms A and B, respectively

y(r) = oca(r) + f b(r), hje{ab (22

and occupied by, = 2 electrons with opposite spins (singlet

jt= 9,

j’

state). In this case the four elements of the CBO matrix of eq
4 can be expressed as functions of a single element, e.g., the

electron population on atom A}, = Paa = Q:

G(@) = Ppp(@) =20, P,(a) = Py ,(0) = [a(2 — 9)]**
(23)

These CBO functions of the independent variapetermine

the corresponding expressions for the elements of the pair-

diagonal, two-particle density matrix in the OAQO representation

JF(ad) =72, T(bb) = (2 a)r2;

Nalewajski
SCHEME 3
Input Output
—P— a P a—->~FP—>
/ i
——Q— b —Q b—=Q

(egs 16-12):

I'(ab) = I'(ba) = (2 — q)/2 (24)

By the quantum-mechanical superposition principle, the one-
electron probabilitiefp; = = |0]yF} of the events that an
electron in statey occupies theth OAO, {i = a, b}, are:

p.=lal’=¢2=P; p,=I"=@2~q2=Q;
P+Q=1 (25)

In this single MO model, the spatial part of the singlet two-
electron function is given by the product of the common MO
part of the two occupied spin orbitals:

W(1,2)= y(L)y(2) = a’a(l)a(2) +
oBla(1)b(2) + b(1)a(2)] + f*(1)b(2) (26)

where the spatial coordinates of electrons are abbreviated as
{rk=k k=1, 2. Hence, the joint two-electron probabilities

P (i,j) = |0(1)j (2)|¥OP = I'(i,j)/2 of the events that for the two
electrons in stateW, electron “1” is oni a, b and
simultaneously electron “2” is op= a, b, are:

P (aa) = P (a,a) = p,° = q/4 = P
P (bb) =P (bb) =p,’ = (2 974 =Q’;
(ab) =P (ab) =P (ba) = P (b,a) = p,p, =
q(2 — )4 =PQ (27)

These joint probabilities satisfy the normalization conditions
of eqs 15 and 16

SPE)=S Pi)=p 3 3 PG)=Yp=1
(28)

and determine the corresponding conditional two-electron
probabilitiesP(b|a) of eq 9:

P(aja) = P (aa)/p,= P; P(bla) =P (ba)/p,= Q;

P

P(alb) = P (ab)/p, = P; P(blb) = P (bb)/p,=Q (29)
satisfying the sum rule of eq 14:
P(aja) + P(bla) = P(alb) + P(blb) = 1 (30)

These probabilities determine the probability network of the
binary nonsymmetric channelhown in Scheme 3(see also
Scheme 1):

In the related Schemes 4 and 5, representing Scheme 2 for
the two-orbital model and alternative SAL choices, one replaces
the molecular one-electron input probabilitigs with the
corresponding SAL probabilities: 7(i°) = N%2,i = a, b. In
this model, the integer atomic occupations sum up to two



Entropic Measures of Bond Multiplicity J. Phys. Chem. A, Vol. 104, No. 51, 20001945

dissociationcase of Scheme 4, (A+ (VB) (SAL1), when both
; : / . . 0.2 0.4 0.6 0.8 q

separated atoms contribute a single electron with opposite spins, ] 1 } } } .
n(a%) = m(b) = 1/2. O o1 02 03 04 05 P

Setting the identical input probabilities equal tdN1fas in Figure 1. The bond entropyl (P)= N (1 — P) = N (Q), and binary
SAL1) so that either input atomic allocation is equally likely entropy,H(P)= H(1 — P) = H(Q), functions for the two-orbital model
defines theequiprobability (EP) SAL input scheme,l EP = compared with the corresponding quadratic valence index:
{(a°, 1N): a° € M°(R)}. For this input, the entropy function ~ VeodP) = [Pas(P)F = 4P(1— P) = 4Q(1 — Q) = Vool Q)-
reaches the maximum value

SCHEME 4 A
Input Output ;

- 1/2sa —P—5a_P l
0.9 :
< |
P 0.8 ]
—1/2—> b 4@ b—Q a"l) 0.7 |

g
SCHEME 5 5 0.6 I

Input Output

2 o5 |

—1—> a P. a P—> Q
o I
\ 0.4 I
; |

0.3

/O V(P |
—0—> b —0 b Q 0.2 |
electrons: NR° + Np° = 2. For example, in thecovalent 0.1 ' ‘
i 1

1, H(1/2) = 1, signifies a single covalent bond in the model
£ 1 1 under consideration.
H(1 ) =-N (N) log, (N) =log, N (31) We are therefore adopting the entropy function of eq 31 as
a measure of theovalent bondmultiplicity:
This SAL input can be used to probe the ways in which the

entropies of the actual molecular probabilities deviate from the N .(P)= H(O M IV') = H(P) (33)
reference entrop¥ (1 EP). Such deviations from the perfectly
equalized probabilities should contribute to tivend ionicity. By the same argument, the entropy function

In the two-orbital model]l EP = 1 SALl gnd . T c "
Nion(P)=H(1 &) = HO ™1 ™) = H(1 &) + HO ™) -

HOY1™) =1-H(P) (34)
Similarly, in theionic dissociationlimit (Scheme 5), when  \yhich combines the reference entradyl EP) = H(1 SALY) =

H( B =H ") =log,2=1 (32)

the valence electron pair is, say, on AN + B* (SAL2), 1 of Scheme 4 with the current entropid¢l M) = H(P) and
n(a’) = 1, andno(b") =0. '0” this caseP (aja°) = P, P (b|&°) H(O M1 M) = 2H(P) of Scheme 3, exhibits a qualitatively correct
= Q, andP (ab°) = P(b|b°) = 0O: behavior expected of thimnic bond multiplicity. Namely, it

Entropy Functions for the Galent and lonic Bond Com- _ reaches the maximum valdéon(0) = Nion(1) = 1 for the lone-
ponentsFrom egs 27 and 29 (see also Scheme 3), one obtainsyir configurations, corresponding to the single ionic paiiBA
the conQ|t|onaI entropy function (eq 19) for the two-orbital (P=0) or A"B* (P = 1), and the minimum valulion(1/2) =
model given by thevinary entropy functiof? 0 for the covalent, electron-sharing configuration. Notice that
Mie M for the equal distribution of valence electrons among the AIM,
H(O ™1 ) =H(P)= —Plog, P—Qlog, Q= IM = 1EP eg., in the case of electrons in butadiene or
H(1— P)=H(Q) (31) benzene in the Hikel theory,Nion = H(O M:1 M) (see eq 21).

o ) ) . . . The two components therefore complement each other,
shown in Figure 1. As is also shown in the figure, this function preserving the total single bond order

runs very close to thguadratic valence indexQVI) of the
previous Wiberg-typ€12and two-electron difference approaches: N (P) = Ngoo(P) + Nio(P) = log,2 = 1 (35)
17,18,20-22

) in the whole range of argumentd[0, 1] The covalent bond-
V ol P) = [Pop(P)I” = 0,(P) qy(P) = 4P(1— P) = order measure

q(P) [2—a(P)] (32)

Indeed, this function exhibits correct limiting valud(1) =

H(0) = 0, forq = 2, 0, i.e., for the configuration of the lone, roughly reflects the number of shared electronic pairs between
nonbonding electronic pair amandb, respectively. Moreover, atoms, or, equivalently, as explicitly shown in Figure 1 and eq
the maximum for the exact electron-sharing configuraticn 36, the product of the valence electron populations of AIM.

Ngol(P) = V(P) = qy(P) qy(P) = 4P(1— P)=4PQ  (36)
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Similarly, a reference to Figure 1 and eq 36 shows that in the
neutral moleculeQ o + Qg = 0, the complementary ionic

bond-order generally resembles the negative product of the net

atomic charge® i =1 -V, i = AB,

Nion(P)El_vcov(P)z(QA+QB) - QAQB=
—QAQs (37)

The question that naturally arises is how to distinguish
between the trulgovalent(electron-sharing) and theoordina-
tion (donor-acceptor) bond orders in a molecule. The same
molecular electron configuration may correspond to either of
these types of chemical bond, since only the SAL reference,
i.e., a “history” of the bond formation, differs in both these cases.
More specifically, the former “compares” the molecular output
electron probabilities with those for tHeSALL = 1 M(1/2) input,
whereas the latter combines the molecular probabilities with

Nalewajski
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Figure 2. Electron configurations in the three-orbital model of a
symmetric transition state (see Table 1) for the extreme spin polariza-
tions of the middle atomy = 1, 0, and equal distribution of electrons
among atomgy = 1, and their resolutions into ensembles of the integer
spin-population diagrams. This analysis shows that the overall covalent
and ionic entropic bond multiplicities reflect the ensemble averages of

the reference SAL2-input ones. Indeed, the model electron the diagram elementary “bonds™ covalent (spin paired electrons on

configuration for P= 1/2 represents both the single covalent
bond with respect to the atomicSAtL, and a single coordination
bond with respect to the ionikt SAL? references. Similarly, for
the P= 1 (SAL2 configuration), one identifies a vanishing
coordination component with respectlté*-2 and a single ionic
bond with respect td SALL,

Therefore, the A-B coordination bonds thecovalent bond
component (eqs 19, 31, and 33) with respect to the ionic
(A~ + B') SAL2 input reference:

N coora (P; SAL2)= H(O M| | SALZ) = H(O Al SAL2) .
H(1 SA2) = HO M1 %% = H(P) (38)

This entropy function roughly measures the amobigt =
CT
Ng — Ng°® = Na°® — N, of the A~ — B* charge transfe(CT).

Finally, we observe that, because of the independent character
of the molecular output and alternative input probability schemes

in the two-orbital model, the mutual information between the
input and output distributions exactly vanishes (see eq 21):

HOM:1 ™) =H(P) + H(P) — 2H(P) =0, Scheme 3;
HOM:1 3 =1+ H(P) — [1 + H(P)] =0, Scheme 4;
HO™:1 %) =0+ H(P) — H(P) =0, Scheme5. (39)

Application to a Model Transition State. Next we consider
the three-OAO model of the symmetric transition state
[A1---B- - -Aj] (see Appendix), with atoms |AB, and A
contributing thea(!), b(l), and cf) OAOs, respectively, each
occupied by a single electron in the SAL with the indicated
spins.

Two independent variables control the model electron con-

neighboring atoms, solid lines) and ionic (ion pairs, broken lines).

TABLE 1: Information —Theoretic Predictions of the
Overall Bond Multiplicities in the Three-Orbital Model
a--b--c of the Symmetric Transition State [A;- -B- -A;] for
the Fixed Populationsg, = g, = g. = 1 (au)

electronic configuration bond orders

CIL qt} qTa = qI: qg = Qi N cov N ion
1 0 0.5 0.5 1.04 0.55
+0.5 0.75 0.25 0.625 0.375 1.54 0.05
0 0.5 0.5 0.75 0.25 1.53 0.06
-0.5 0.25 0.75 0.875 0.125 1.18 0.41
-1 0 1 1 0 1 0.59

obtainsH(O M1 M) = 3.07 andH(I M) = 1.58 HenceN o, =
1.49 andN j,n = 0.10, giving rise to the total bond order

N =N, + N;,=159 (40a)
The nonvanishing mutual information in the collineas, H
H(O M:1 M) = 0.10 (practically equal to the ionic conponent
becausd M ~ I BP), reflects the exchange correlation between
the two spin-up electrons.

Let us now consider a few selected extreme configurations
of the model. To simplify the problem, we fix an equal
distribution of electrons among the three atoms; 1, for which

HA ™) =H1 ) =1log,3=N =

N_,+N,,=1.59 (40b)

cov ion
and examine how the changing spin polarizatioaffects the

proposed overall information-theoretic bond orders. We are
particularly interested in the partitioning of the total bond order
into the covalent and ionic components when the electronic
structure changes as a function of this remaining degree of

freedom forq = 1. The predictions are summarized in Table 1

figuration. For example, one can select the electron population and Figure 2.

of the middle atom Bg = qf, + g}, and its spin polarization,
o = df, — gl.. In the Appendix we have listed the relevant
expressions (eq A5) for the two-electron joint probabilities in
the atomic (OAO) resolutio,P (ij) = P (i,j) = P (i,j; q,0)},
which determine the joint distribution entropy(O M1 M) =
H(O M1 M: q,0) of the model.

The UHF minimum basis set values of the controlling
parameters in the collinear transition-state complex
[H- - -H- - -H] (Rag = Rec = 0.93 A) areq = 0.972 au andr
= —0.203 al’® From the joint probabilities of eq A5, one then

We emphasize again that for such an equal distribution of
electrons between atonls = 1 EPthe ionic bond multiplicity
must be exactly equal to the mutual information between the
molecular output and input probability schemes:

HOM 1M g=1,0)=2H1 ) -
HOMI™ qg=1,0)=N(@=1,0)

The predicted bond orders of Table 1 show that the delocal-
ization of electronic spins in such a triatomic model may
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SCHEME 6
spin-up spin-down
Input Output Input Output
—1/2— a —1/2— a—1/2—
1/2
—2!—— b —1—>b —1—
1/2
—1/2— ¢ —1/2—> c—1/2—

increase the overall bond-order measure in the transition-statemeasureN¢,, = 1 reflects this very delocalization effect in the
complex in comparison to the (diatom atom) bond order a—b—c molecular system.
N = 1 of the two-orbital model. This effect has indeed been At first sight the values of the ionic bond component reported
independently confirmed by our earlier prediction of the in Table 1 are surprising in view of the assumed equal
increased bond order ingHfrom the two-electron difference  distribution of electrons among the three orbitals (atoms). One
approach? should realize, however, that there are differences in the separate
In an attempt to rationalize these results, we have resolveddistributions of the spin-up and spin-down electrons, as is indeed
in Figure 2 the effective (fractional) spin populations reported reflected by variations in the spin populations of the three
in Table 1, for the two illustratived = 1; o = 1, 0] electron orbitals in Table 1 and Figure 2. In fact, one could define
configurations. The effective spin populations are broken down separate, spin-resolved measures of the covalent and ionic
into the corresponding ensembles of the integer spin-populationentropy differences for the two spin orientations:
diagrams, which reproduce the average atomic populations of
the spin-up and spin-down electrons, reported in Table 1 and N ¢
Figure 2. To conform to the spin assumption of the model, each "
diagram represents a possible distribution of the two spin-up N ¢ = H(l OEP) —NZ,=H( UEP) + H(® O'V') —
electrons and a single spin-down electron (see the Appendix), M M
with the diagram ensemble probability chosen in such a way HO 1,7, o=11 (41)
that the require@ andq values, and thus the spin populations
of Table 1, are exactly reproduced. In these diagrams we havelLet us consider the last configuration in Table 1 as an illustrative
used a solid line to connect the paired spins of electrons on theexample. In this case the separate probability networks for the
neighboring atoms, signifying elementary covalent bonds. The two spin orientations are as shown in Scheme 6. These
broken lines in the figure similarly connect ionic pairs, thus probabilities give the following entropiesH(O ' 1)) = 2;
identifying elementary “ionic” interactions. HOM =1, HOM 1!y =HaO M =0,HI ) =HU =
A reference to Figure 2 and Table 1 shows that the overall —3(1/3) log(1/3) = log, 3 = 1.59, henceN |, = 1 (delocal-
covalent and ionic bond ordefScoy and Nion of Table 1 do  jzation of the spin-up electronsi}t ., = 0 (zero delocalization
indeed reflect the ensemble averages of such elementary spingt g electron); N!,, = 0.59 (smaller asymmetry in the
paired electrons and ionic interactions, respectively. This yistribution of the spin-up electrons)t j,,, = 1.59 (maximum

demonstration explains the increased ionicity of the fies=( 45y mmetry in the distribution of the spin-down electron), and
1, 0 = 1) configuration p), caused by the two ionic diagrams henceN° = N% + N° = 1. 59 ¢ = +1/2. Indeed

i f iotri 1 H ion cov
reqwrgd t.o reproduce the average spin distribution in a mOIeCUIe'weighting these spin-resolved bond orders in accordance with
Such ionic diagrams are missing in the secoqd=(1, o =

) . > . ) ; the probabilities of the spin-up and spin-down electrons in the
0)— configuration B); this explains the relatively high value system,Pt = 2/3 and P = 1/3, reproduces the overall bond
of the covalent bond order obtained in this case. TBg ( i '

configuration results roughly correspond to the tiransition order reported in the last row of Table 1:
state, which we discussed at the begining of this section. The | _ ;N 1+ PIN | = 1.59

entropic measures thus predict an increase in the global bond

multiplicity relative to the (H + H) value ofN (Hz) = 1 by =Pt(N L, +N)+P (NL,+N i) =

about a halt-bond. S N1+ N =106+ 0.53
One should realize that the “covalent” and “ionic” diagrams

of Figure 2 are related to the corresponding valence structures = (PtN! +PIN! Y+ (PIN! +PIN! )=
of the classicalvalence-bond(VB) theory. Indeed, as is N_ +N. =067+0.92
explicitly shown in Figure 2, the present entropic approach based
on the simultaneous two-electron probabilities in the atomic
resolution measures a degree of an effective spin-pairing in a
molecule. This is also the guiding principle of the VB aproach,
where the paired spins are associated with chemical bonds.
The last § = 1, 0 = —1) example of Table 1 calls for an
additional comment. This example generates the same averag
spin distribution as in SAL:a(t) + b(l) + c¢(!). This does not
imply, however, that this electron configuration has no extra
electron delocalization in the system, because in the transition- _ . _ . . _
state complex the two spin-up e%ectrons are perfectly delocalized G=Py=1 P =23 Pp,=00 Pj=-1/3
between peripheral orbitatsandc. The predicted covalent bond (42)

=H©O M M —Ha M,

cov ion
& Bonds in Benzene and Butadienelet us examine the
overallx bond order in benzene, originating from pairing the
Six 2p, electrons contributed by the carbon atof@s, i = 1, 2,
..., 6 ordered consecutively in the ring. In the present qualitative
analysis we use the three occupiedrbitals from the simple
Hiickel MO theory, which generate the following CBO matrix
elements ofr electrons:
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These give rise to the following RHEF-matrix elements,

{T(j) = aq — P52

rG,i)=12; r@,i+1)=7/9; I'(,+2)=1;
I'(i,i+3)=17/18 (43)

and the corresponding two-electron joint probabilitf& (ij)
= TI'(i,j)/30}:

P (i) = 1/60; P [i(i+1)] = 7/270; P [i(i+2)] = 1/30;
P [i(i+3)] = 17/540 (44)

The relevant entropies of the atomic probabilities are

N =N o+ N, =HA M) =H ) =log,6 = 2.59,

HOM1™M =5.14 (45a)
They generate the following predictions of the overalhond
multiplicities in the benzene carbon ring:

N oy =5.14— 2.59=2.55;N = 2.59— 2.55= 0.04
(45b)

The entropic measure of the bond order thus predicts, on
average, 2.59/6= 0.43 bond multiplicity per each of the six

Nalewajski

among diatomic multiplicities. This weakness of the above
overall approach in comparison with, e.g., the Coulsof é@jl
Wiberg (W) approaches, which associate the-®) bond
multiplicity with the coresponding sums over the OAO of the
two atoms

OAO OAO OAO OAO

N ags = Z Z P, N"= Z Z P (47)
ieA je ieA e

respectively, can be remedied only by linking the entropic orbital
contributionN;; of the overall diatomic index

OAO OAO

Nag= Z Z Nj
Z G

directly to the entropy contribution from the corresponding
matrix elementl’(i,j) or the related orbital joint probability
P (i,): Nij = Ny[T(i,)]-

When designing such a direct, informatietiheoretic measure
of the bond multiplicity, one would also aim at improving the
predicted bond orders for some configurations in the three-orbital
model. Consider for example the configuratidy) & (q = 1,
o = 1) in Figure 2, in which the terminal atoms have the
perfectly paired spin-up and spin-down electron populations,

(48)

should be compared with the intuitive chemical value of a half
o bond in the benzene ring, the Wibé‘?gesultPﬁHl = 0.44,
and the prediction of the finite difference approa¢h,,, =
0.45%1

The nonvanishing, residual ionic component for the equal

not participate in any delocalization, i.e., covalency. This
observation suggests that a realistic multiplicity index of the
localized covalent bond should indicate in this case a single
a—c bond and the zeraa-b) and p—c) bonds. Similarly, for
the last configurationq = 1, 0 = —1) of Table 1, we have

distributions of electrons between atoms should not come as adetected that the resulting spin distribution is identical to that
surprise (see also Table 1 and Figure 2), because it also includegf the SAL. Thus, to have the bond indices, which reflect

a contribution due to spin pairings of two electrons located on
the same atom.

As a final illustrative example, we examine the four
electrons in butadiene, occupying the two lowestckal
molecular orbitals obtained from the four carbon, 2pbitals,
again numbered consecutively in the chain. This simple LCAO
MO theory predicts the following CBO matrix elements

g ="P;=1,P ,=P;,=0.89,P,;=0.45= —P,,
P 3=P,,=0

and hence the following probabilities in atomic resolution:
p=1/4,P (i) =1/24, i=1,2,3,4;

P (12)=1/20= P (34), P (23)=3/40=P (14),
P (13)= 1/12= P (24)

They give rise to the overalt bond orderN = logx4 = 2,
which includes the dominating covalent compondht, = 3.94,

and a small ionic contributior\j,, = 0.06. The above global

ot bond multiplicity index reproduces both the intuitive chemical
expectation and the overall bond order obtained from the
summation of the diatomic Wiberg indices:

N =NWEZZJP§.

=2 (46)
Bond Entropies

Direct Bond Measure. To obtain a specific diatomic bond
multiplicity, Nag, from the overall entropic bond ordét of

changes in distribution of electrons relative to the SAL, one
would intuitively expect in this case no bonds for all pairs of
orbitals.

Bond Entropy Function in the Two-Orbital Model. In our
search for an appropriate candidate for the bond entropy
function, we first consider the simplest case of the interactions
between two OAOs. Clearly, the new entropy function should
retain the general features of tH¢P) andV (P) plots of Figure
1, which qualitatively agree with chemical expectations.

Consider the followingbond entropy function

N . I'(a,b)] = —I'(a,b) log, I'(a,b) — I'(b,a) log, I'(b,a)
—2TI'(ab) log, I'(a,b) =N (P) (49)

of the model off-diagonal element of tliematrix in the atomic
resolution:
I'(ab) =T'(b,a) =q(2— g))2=2P(1—-P)=T,,(P) (50)
As shown in Figure 1, the bond entropy functiNifP) retains
the correct qualitative features of th&(P) and V(P) plots,
predicting zero covalent bonds for the lone-pair configurations
g = (0, 2), for whichP,p = 0, and a single covalent bond for
g=1, whenP,, = 1. This function deviates more substantially
from the Wiberg quadratic estimat4P) than does the binary
entropy functionH(P), predicting much faster growth of the
entropic covalent bond order with increasing delocalization of
the lone-pair electrons toward the orbital of the bonding partner.
Performance of the Bond Entropy in the Three-Orbital
Model. As we have argued above, this model, exhibiting the

the preceding sections, one would have to introduce some extraspin polarization degree of freedom, provides a crucial test of

assumptions about how to partition the atomic contributions

the applicability of the bond-entropy function. Using the explicit
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TABLE 2: Bond-Multiplicity Predictions from the Bond
Entropies in the [a--b--c] Model for the Electronic
Configurations of Table 1

o Iap Tac Nap Nac N =2Nap+Nac Neo/?
+1 1 0.5 0 1 1 1.03
+0.5 081 0.72 0.49 0.68 1.66 1.54

0 0.75 0.87 0.62 0.34 1.58 1.52
-0.5 081 097 049 0.09 1.06 1.18
-1 1 1 0 0 0 1

@ Qverall covalent bond multiplicities from Table 1 (for comparison).

expressions for the off-diagonal elements of Thenatrix (eq
A4 in Appendix) gives the following expressions for the= 1
constrained electronic configurations:

Til,0)=@+0)4; T (1,0)=[7—o0(c+2)8
(51)
In Table 2 we report the corresponding bond entropies

=(a,h), (b, 0)
(52)

N;(1,0)=—2I(1,0)log, T;(1,0), (,])

J. Phys. Chem. A, Vol. 104, No. 51, 20001949

This result agrees well with the chemical value of a half-
bond between the neighboring carbons in the ring. It also
correctly predicts a much lower order between two carbons in
the mutual para positions, and a vanishingond between two
carbons in the mutual meta positions. This finding is in full
conformity with the Wiberdf results (see eq 42)

P2 =4/9=0.44; P, =0, P;,;=1/9=0.11 (55)
and with our earlier predictions from the two-electron difference
approach (QVIR!

V i41=045 V ,,,=000; V ;,;=0.12 (56)

As we have observed previouslythis result can be physi-
cally justified within the VB theory. Namely, the metaneta
bond can be achieved only through the diradical valence
structure, in which ther electrons of the two carbons are
localized, as in the Wheland intermediate. No such localization
is required for the parapara bond. The diradical configuration
is thus expected to participate much less in the ground-state
wave function.

The bond entropies obtained for the bond system in

These results clearly show that the bond entropy measurebutadiene (Hakel theory) are as follows:

has indeed remedied the previously identified problems with
the global entropy measure for the first and last configurations,
while generally reproducing thico, values for the remaining
configurations. With the purely molecular bond-entropy concept, They should be compared with the corresponding Wiberg
we have thus achieved a full conformity with the intuitive indices:
chemical expectations. Moreover, from the bond-entropy func- ) ) ) )

tion we have a direct multiplicity measure associated with each P, =080; P,57=0; P,57=P,,,=0.20 (58)

bond, without an arbitrary partitioning of the global bond order ] . .
into effective diatomic contributions. Thus, in both approaches the peripherddonds are predicted

We conclude this section with the bond multiplicities for the t0 be much stronger than the central bond of the carbon chain,

N,,=0.88 N,;=0; N,;=N,,=027 (57)

earlier-reported ab initio electronic structure parameterszof H
Using egs A4 and 52 gives

I,(0.972,~0.203)=0.75; T, (0.972,—0.203)= 0.95;

N ,4(0.972,—0.203)= 0.63; N, (0.972,—0.203)= 0.14
(53)

These bond orders amountMo= 2N, , + Na = 1.41, a value
close to the previous resuiz,, = 1.52.
This increase in bond multiplicity of the transition-state

complex relative to the (H+ H) limit, N(H2) = 1, has also

been predicted by our earlier multiconfigurational SCF calcula-
tions, using a basis set that includes the polarization functions

MC + POL 2% The corresponding QVI values for the two SAL
reference states,
electrons ora, b, andc orbitals, respectively, are as follows:

V =1.21; SAL: up+ down+ up;
V =1.31; SAL: up+ up-+ up

Therefore, the above informatiettheoretic predictions for
the model of the Kcollinear transition state provide additional

identified by the two spin orientations of

in accordance with the familiar chemical interpretation.

Conclusion

In interpreting the electronic structure of molecular systems
in chemicalterms, the intuitive concepts of bottoms in
moleculesand chemical bondswhich connect AIM in a
generalized structural formula of the system under consideration,
are essential. In the present and previbssudies, we have
demonstrated that both these concepts can be established within
the information theoryusing appropriate entropy functions of
both the molecular (or isolated atom) electron densities and the
associated probabilities in the atomic discretization. These
concepts are not defined uniquely, as is the case with many
chemical ideas. Nevertheless, in this work we have achieved,
particularly in the case of the bond-entropy function, a high
degree of agreement between the informatithreoretic bond
orders, the chemical intuitive values, and the previous quantum
mechanical measures for all models considered in this study.

Clearly, a more extensive numerical testing of these novel
entropic concepts is required, for both typical molecules and
“controversial” systems for which no apparent chemical intuition
is available. However, a degree of success in a semiquantitative

validation of the bond-entropy concept as an adequate measureeproduction of the “established” chemical bond multiplicities,

of the covalent bond order in the bond-formirigond-breaking
process.

7z Bonds in Benzene and Butadiend\ext we calculate the
diatomicsr bond orders in the benzene ring, using théeckal
T matrix elements of eq 43. They predict the following bond
entropies:

||+1_056 N||+2 0; N||+3_016 (54)

which we have already achieved in the present exploratory
analysis, strongly suggests the relevance and importance of the
proposed informatiortheoretic bond orders as new tools for a
supplementary analysis in the familiar chemical terms of
numerical results from the standard quantum-chemical computa-
tions.

The present analysis can be extended in several directions.
For example, in the future one could examine the role of the
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exchange-only contribution to the joint two-electron prob- gives the following expressions for the elements of the UHF
abilities, in an attempt to relate the present entropic bond ordersI'-matrix in McWeeny’s normalization

more directly to the Lewis classical picture of bonding and to  I'(i,j) = P;;P;; — (Pif’j)2 - (Pi‘J.)2 = Tij(9,0):

the pair-population analysis involving the domain-averaged

Fermi holes® Also, the multicenter bonding indic€$833could =T(q— —4)— — =

be tackled within the information theory. More specifically, the Fad@0) =(a = 2= 4) = olo — 2)/8 =T dq0).
three-center bonds would require the joint three-electron prob- I, .(q,0) = (¢f — 6)/2;

abilities and the related conditional probabilities, e.g., the AIM- '

2 2 .
resolved joint two-electron probabilities, given the atomic Foy(@0) =aq— (@ — 0)/4=T,dq0);
location of a third electron. The average entropies for such three-- @0) =[(8 — )2 — q) — o(c + 2))/8 (A4)
atom events are also directly available within the information ~ # "

theory?°

Multiplying these expressions by the renormalization factor [3(3

The present analysis supports our earlier conjecfuteat i . . .
P ySIS Supp y ! ) « — 1) = 6] finally gives the corresponding expressions for

the bond multiplicity and valence concepts are “entropic” in

character, i.e., they are defined in the perspective complementar)} . AR :

to the familiar energetical description of the Safirmer the smultaneous Mo-electron probabilitle§,j) in the atomic

equation. The latter follows from the energy variational principle resolution (eq 12):

for constant entropy defined by the fixed, say single occupations

of the molecular SOn, = 1, a = 1, 2, ...,N. Obviously, this P (aa) =[(d—2)@—4) — o(oc — 2))/48;

uniform SO occupation pattern of the Pauli principle, and the P (ab) =[q(4 — q) + 0°)/24;

associated value of electron occupational entropy, follows )

directly from the maximum SO occugational entropi)/yprinciple P (ac)=[(a-8)a—-2) —olo + 2)J/48;

in the selected set of the occupied orbitals. P (b,b) = (q2 - 02)/12 (A5)
Therefore, in the electronic structure theory we indeed
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