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An account of a computer simulation of the nucleation kinetics and crystal growth during the freezing of a
series of SeF6 clusters is presented. Although SeF6 has a stable monoclinic phase at the temperatures studied,
the clusters froze initially to the body-centered cubic phase and then transformed to the low-energy structure.
The temperature dependence of the nucleation rate obtained in the simulations is in approximate agreement
with that predicted by the classical nucleation theory. A theoretical model of cluster crystallization that includes
time-dependent nucleation and finite-size effects is proposed, applied, and found to accord well with the
molecular dynamics (MD) data. Three order parameter profiles, namely, density, translational order, and
molecular orientational order, were calculated for nuclei close to the critical size. The orientational order
parameter is a new one, presented here for the first time. The translational order parameter shows a weak
temperature dependence, while the orientational order parameter for the solid significantly increases with the
deepening of supercooling. It is found that the translational order parameter extends well beyond the radius
at which the density falls to the liquid value. That is, the nucleus is a reasonably dense crystalline particle
surrounded by a layer of molecules with a liquid density but possessing a translational periodicity. This result
agrees with prior conclusions of density functional treatments and molecular dynamics simulations for
monatomic systems. Order parameter profiles, then, offer several very different estimates of the sizes of
critical nuclei. The estimate based on the density and orientational order is roughly in agreement with that
predicted by the classical nucleation theory. The size based on translational order is much larger, perhaps by
6-fold, and agrees with our estimates based on fluctuations in sizes of bulklike embryos (identified by their
translational order). Turnbull’s hypothesis of negative excess interfacial entropy of the liquid in contact with
the solid, together with the implied consequences if the larger nuclear size is accepted, suggests that the
density profile offers the most realistic estimate of the size of critical nuclei.

Introduction

The crystallization of supercooled liquids has been a subject
of investigation of scientists, both experimentalists and theorists,
for many years. Despite this activity, our understanding of the
mechanism of phase transformations on the microscopic level
is still limited due to the complexity of the problem.1,2 Existing
theories require a knowledge of the thermodynamic and physical
properties of supercooled materials that is not readily available,
particularly at deep supercooling. On the other hand, molecular
dynamics (MD) simulations give an exceptional opportunity,
not only to deduce the required properties but also to monitor
the motion of individual molecules and to follow their coopera-
tive motions during the process of crystallization.3

Recently we presented the results of MD simulations of the
spontaneous phase transformations during the freezing of two
sets of clusters of selenium hexafluoride at 140 and 130 K.4

The first set contained 12 clusters with 725 molecules of SeF6,
and the second set had 10 clusters with 1722 molecules.
Although the stable phase of SeF6 at the temperatures studied
is monoclinic, clusters froze initially to the body-centered cubic
(bcc) phase and then transformed to the low-energy structure.
Such a two-stage crystallization with a formation of a metastable
phase is a common process for a wide variety of materials
ranging from metals to polymers.5 The aim of the present paper
is to analyze the kinetics of nucleation and growth during the
crystallization of SeF6 clusters.

Crystal nucleation in molecular clusters involves changes in
the average particle density, translational periodic structure, and
orientational order of molecules, each of which can be taken as
an order parameter. This is not to imply that all three order
parameters go together during the phase transformation. The
analysis of order parameter profiles for a monatomic system,
in treatments via both density functional theory6 and molecular
dynamics simulations,7 shows that the density order profile
decays faster than the structural order, i.e., that the solidlike
core is surrounded by a shell of atoms with nearly liquid density
but with strong vestiges of solidlike order. However, to the best
of our knowledge, nothing has been published about the
behavior of the orientational order parameter. The present study
is the first step in this direction.

It is known that the crystallization of supercooled liquids is
an activated process which occurs by crystal nucleation and
growth. The evolution of phase transformations, occurring by
nucleation and growth processes, is usually represented by the
Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation.8-10

The original version of JMAK theory was developed for systems
of infinite dimensions. Only recently was this theory extended
for finite systems.11-13 We have analyzed the kinetics of the
two-stage crystallization of SeF6 clusters adopting the model
proposed by Kelton et al.,13 which allows us to estimate the
growth rates for liquid-bcc phase transformation.
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Summary of Simulations

To set the stage for the present investigation, we briefly sketch
the results of the computer simulations of the freezing of
selenium hexafluoride clusters presented in detail in our previous
paper.4 Molecular dynamics simulations were performed on
clusters containing 881 and 2085 molecules of SeF6, which were
taken to be rigid octahedra. Simulations were carried out at
constant temperature using a seven-site intermolecular interac-
tion function.14 For both cluster sizes, an initial, approximately
spherical cluster was constructed to be in its low-temperature
monoclinic phase. During heating from 100 to 260 K, clusters
transformed from the monoclinic to the body-centered cubic
phase at about 150 K (881 molecules) or at 155 K (2085
molecules) and melted at 200 or 210 K, respectively.

The final configuration at 230 K was additionally equilibrated
to generate 12 saved configurations for an 881-molecule cluster
and 10 saved configurations for a 2085-molecule cluster to serve
as independent starting configurations for cooling runs. During
the heating and equilibration at 230 K, some of the molecules
evaporated from the clusters and final configurations contained
different numbers of liquid molecules. Therefore, to make the
members of the set equivalent, approximately spherical con-
figurations were constructed by trimming down clusters to a
size of 725 molecules (smaller cluster) or 1722 molecules (larger
cluster). Production runs for crystallization were carried out at
140 and 130 K for both sets of clusters and additionally at 100
K for the 725-molecule clusters.

During the nanosecond runs of the simulations, all of these
clusters froze initially to the bcc structure characterized (as in
the bulk crystals) by a large disorder in molecular orientations.15

At the higher temperature, all but one of the larger clusters
underwent a transition to the low-energy, ordered monoclinic
structure whereas all but one of the smaller clusters remained
bcc. At the lower temperature all of the smaller clusters
ultimately transformed, usually quite abruptly, to the monoclinic
structure. In the case of the larger clusters, a transition to the
monoclinic phase was observed at 140 K whereas, at 130 K,
besides the monoclinic structure, an orthorhombic phase, or a
mixture of orthorhombic and monoclinic phases, was obtained
in a few clusters. In both cases, the solid-state transition to the
low-energy phase usually occurred when the number of bcc
molecules had reached its maximum. Many of the larger frozen
clusters were polycrystalline while the smaller ones were single
crystals. A striking result of our simulations was that nucleation
almost always occurred at or near the clusters’ surfaces despite
the fact that surfaces of clusters tend to be more disordered and
melt at significantly lower temperatures than their cores. Phase
transitions were recognized from the evolution of configurational
energy and from the structure analyses described in the next
section.

Structure Analyses

Identification of Phases. Several criteria can be used to
identify the crystalline structure in molecular dynamics simula-
tions. The most widely used technique to distinguish between
molecules in liquid and in solid environments (used also in our
previous study) is the very sensitive analysis of Voronoi
polyhedra.16 A Voronoi polyhedron for a given molecule is
defined as a set of all points in space that are closer to that
molecule than to any of the others. Since the surface molecules
have an open space and may not be encompassed by complete
polyhedra, they are neglected in such analyses. In the present
study, we preferred the bond-order parameter method17-19 to
analyze molecular environments because it allows us to take

surface molecules into consideration as well. Furthermore, this
technique is suitable for discriminating not only between liquid
and solid molecules but also between molecules in bcc and in
monoclinic phases. Voronoi polyhedra fail to do that.

Translational Order. To recognize translational order or the
degree of crystallinity in the case of liquid-solid transitions,
we define “bonds” in terms of unit vectorsr ij joining the center
of mass of moleculei with the center of mass of the neighbor
moleculesj that are within a given radiusrcut of i. Such “bonds,”
of course, do not correspond to those of conventional chemical
usage. The orientation of the bondr ij with respect to some
reference coordinate system is specified by the spherical
harmonicsYlm(r ij) ) Ylm(θij ;æij), whereθij andæij are the polar
and azimuthal angles of vectorr ij in this reference frame. Only
even-l spherical harmonics, which are invariant under inversion,
are considered. The local order around the moleculei is
calculated by averaging over all bonds with its neighbors
Nnb(i):19

To avoid the dependence of the local order parameter on the
choice of reference system, second-order invariants can be
constructed:

The global order parameterQl
tr can be obtained by averaging

qlm
tr (i) over all N molecules in a cluster:

where

In an isotropic liquid state, the global bond-order parameter goes
to zero in the thermodynamic limit for all values ofl > 0. In a
crystal, the bond orientations are correlated throughout the solid
and the (nonvanishing) value of the order parameterQl

tr

depends on the crystalline structure. For symmetry reasons, the
first nonzero averages (other than the constant value forl ) 0)
occur atl ) 4 in crystals with cubic symmetry and atl ) 6 in
aggregates with icosahedral symmetry. Therefore, we restrict
ourselves tol ) 6, an index which enables us to distinguish
various solid structures from each other and from the liquid.

To identify a molecule as being in a solid or liquid state, we
use a normalized (2× 6 + 1)-dimensional vectorq̃6

tr(i), with
components19
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and a dot product of the vectorsq̃6
tr of neighboring moleculesi

and j, defined as

By construction,q̃6
tr(i) q̃6

tr(i) ) 1. The moleculesi and j are
called “coherent” if the dot productq̃6

tr(i) q̃6
tr(j) exceeds 0.5.

Then, the molecule is identified as being solidlike if it is coherent
with more than 70% of its neighbors. Thus, core molecules
which have 14 neighbors should be coherent with at least 10 of
their neighbors to be classified as solid. We also define as
“bulklike” solid molecules as those solid molecules which are
surrounded by at least 12 solid neighbors. These bulklike
embryos that materialize and vanish as embryos are envisaged
in the classical nucleation theory (CNT). Before nucleation
occurs, however, there may be many contiguous molecules in
thin sheets and filaments satisfying the solid but not the bulklike
criterion for crystallinity, many more, in fact, than are believed
to be in a critical nucleus. The concerted growth of nuclei
signaling onset of nucleation always begins, however, with the
appearance of bulklike aggregates.4

Orientational Order. Local orientational order parameters
qlm

or(i) of the octahedral molecules are based on thechemical
bondsr in

ch joining the Se atom in the center ofith octahedra
with thenth F atom in its vertex. We define this order parameter
to be

a quantity the same for all molecules independently of whether
they are in the liquid or solid state. We adopt a dot product
q̃6

or(i) q̃6
or(j) to characterize the molecular orientational order in

clusters and require it to be at least 0.5 for theij pair to be
“coherent.” In the plastically crystalline bcc phase, the orienta-
tion of moleculei tends to be incoherent with the orientations
of its neighborsj, and the dot productq̃6

or(i) q̃6
or(j) is small.

Therefore, if the orientation of a given molecule is coherent
with the orientations of at least 50% of its neighbors, such a
molecule is identified as being in the monoclinic phase (which
is not plastically crystalline).

Cluster-Size-Dependent Crystallization Kinetics.The vol-
ume fraction of a parent phase, transformed isothermally into a
new phase at a given timet, can be presented by the Johnson-
Mehl-Avrami-Kolmogorov equation:

where the extended volume fraction transformedXe(t) is given
by

The extended volumeν(t) in eq 9 depends on the growth model
considered. The standard version of JMAK theory was devel-
oped for an infinite system with the assumption that the size of
the transformed regions is small compared with the sample size.
Several attempts have been made to include finite-size effects
in the analysis of the phase transformation kinetics.11-13 In the
present analysis we will follow the assumptions proposed by
Kelton et al.13 that are the most suitable for our case.

Let us consider the growth of a spherical nucleus with a radius
r and a center at some random positions within a spherical

cluster of radiusR (Figure 1). The transformed volume at time
t is given by

where

with

For a system composed of a large number of spherical clusters
of radiusR, the average volume transformedν(t) can be obtained
by multiplying eq 10 by a weighting factors2 and integrating
over the all possible locations of the growing nuclei in the cluster
s ) [0, ..., R]. The result obtained is13

where r ) Gt/R and G is the growth rate. Transformation is
completed whenr ) 2. Although the weighting factor adopted
does not include the preferential site dependence for nucleation
found in our simulations, this neglect does not seem to greatly
alter the integrated form of the growth kinetics.

Several approximations have been proposed in order to
include into the JMAK theory the time dependence of the
nucleation rate and the growth rate due to non-steady-state
effects.20-22 The simplest possible approximation is the form
of a step function23

whereJ0 is the steady-state nucleation rate andτ is the transient
time. By inserting eqs 12 and 13 into eq 9, we obtained an
expression that can be used as a first approximation to describe
transient crystallization kinetics in supercooled clusters.

The crystallization of selenium hexafluoride clusters to the
low-energy monoclinic phase can be considered a two-stage
process: the liquid-solid transition to the metastable bcc phase
with the nucleation rateJbcc, transient timeτbcc, and growth rate
Gbcc and the solid-state transition to the stable monoclinic phase

q̃6
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6
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t
J(t′)[∫t′

t
V(τ - t′) dτ] dt′ (9)

Figure 1. Representation of coordinates used in a model of crystal
growth with the nucleation site located near the cluster’s surface.
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with the kinetic parametersJmono, τmono, andGmono. Such a two-
stage process is in accord with Ostwald’s “step rule”, which
posits for supercooled phase transitions that the first phase
encountered is not the most stable phase but that with the closest
free energy to the initial phase.24 Only recently was the first
attempt made to extend the JMAK theory to a two-stage
crystallization process.5 In the case of a cluster’s two-stage
crystallization, the volume fraction transformed to the stable
phase is described by eq 14 with an explicit dependence on the
radius of the metastable bcc crystalliteR(t).

Using reaction rate theory to calculate the net rate at which
atoms are added to a nucleus of a given size, Kelton and Greer
deduced that the average size-dependent growth rate is25

whereD is the coefficient of diffusion in the supercooled liquid,
Vm is the volume per molecule in the bcc phase,∆Gv is the
free-energy decrease per unit volume,∆r is the molecular jump
distance taken to beVm

1/3, andσsl is the interfacial energy per
unit area.

Results

Characteristics of Phases. As mentioned in the foregoing,
the bcc phase of selenium hexafluoride is plastically crystalline
by virtue of a large disorder in molecular orientations. This
disorder is a consequence of “orientational frustration” arising
from the reluctance of the Se-F bonds with their negatively
charged fluorines of neighboring molecules to point directly
toward each other as they would in a “perfect” bcc crystal. The
more ordered monoclinic phase differs from its bcc counterpart
by a 60° rotation of one-third of the molecules which leads to
a more efficient packing of fluorines.15,26 Figure 2 shows the

distributions of the local order parameterq6
tr(i) together with

the Pawley projections27 (illustrating the projections of Se-F
bond directions on a hemisphere over a cluster) corresponding
to an 881-molecule cluster of SeF6 as function of temperature
during the heating process. In the low-temperature monoclinic
phase, molecules have two different values ofq6

tr(i) and two
sets of three-spot patches that correspond to the two nonequiva-
lent orientations of molecules in a unit cell. Surface molecules,
defined as molecules that have less than 12 neighbors, display
a broader distribution of the local order parameter due to their
more irregular local structure (dashed curves in Figure 2). As
the temperature warms to the monoclinic-bcc phase transition,
the orientations of molecules become more disordered and the
number of molecules with the lower value ofq6

tr(i) decreases.
In the bcc phase all molecules have the same translational order
parameter and only exhibit one set of diffuse three-spot patches
in the Pawley projection. The isotropic liquid structure is
characterized by a wide distribution ofq6

tr(i) as well as by
completely disordered orientations of molecules.

Figure 3 presents the time evolution of the number of
contiguous bulklike solid bcc and monoclinic molecules in a
typical 725-molecule cluster during freezing at 130 and 100 K.
At 130 K, transitions to the monoclinic phase usually began
when the number of bcc molecules had reached its maximum.
Because crystallization requires a major molecular translational
reorganization, it is comparatively slow, usually taking 200-
300 ps to complete. On the other hand, the solid-state transition
from the bcc to the monoclinic phase involves only molecular
reorientations and therefore takes only about 30 ps. At 100 K
the transition to the low-energy phase began well before the
freezing to bcc was complete. After the onset of formation of
the monoclinic phase, the two phase transformations progressed
simultaneously.

Critical Nuclei and Order Parameters. We have analyzed
a number of configurations generated as discussed above to
investigate the structure of critical nuclei during the liquid-
solid transformation. Visual inspection shows that nuclei usually
are formed near the surface of clusters. Although it is not
straightforward to identify a critical nucleus, we subjectively

Figure 2. Distributions of the local order parameterq6(i) together with
Pawley projections of molecular bonds in the 881-molecule cluster at
different temperatures during heating stages. Solid curves ofq6(i)
correspond to bulk molecules and dashed lines correspond to surface
molecules.

G(R) ) 16D

∆r2(3Vm

4π )1/3

sinh[ Vm

2kBT(∆Gv -
2σsl

R )] (15)

Figure 3. Typical time evolutions of a number of bulklike solid
molecules (solid lines) and monoclinic molecules (dashed lines) for
the 725-molecule clusters during the freezing at 130 K and 100 K.
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estimated the critical size from an examination of the fluctua-
tions of embyros leading to the onset of crystal growth. It
appeared that critical nuclei contain perhaps 25-30 molecules
at 100 K, 45-50 molecules at 130 K, and 55-60 molecules at
140 K. Three order parameter profiles were calculated for critical
nuclei: density, translational order, and molecular orientational
order. While the first two order parameters have been studied
theoretically as well as in MD simulations for monatomic
systems, the orientational order parameter is a new one and, of
course, one applicable only to molecular systems.

The density profiles were obtained by using the calculated
volumes of Voronoi polyhedra. Because Voronoi polyhedra
cannot be constructed around the surface molecules, they were
excluded from the density profile calculations. For the trans-
lational and orientational order parameter profiles, a reference
bond-orientation vectorq̃6

od(ref) was calculated (od means tr or
or) as a sum of vectorsq̃6

od(i) over all moleculesi in the critical
nucleus. The value of the order parameter at a distancer from
the center of the nucleus was calculated as a sum over the
moleculesj belonging to the corresponding shell.

Order parameter profiles for nuclei considered to be critical at
different temperatures are presented in Figures 4 and 5 for 725-
and 1722-molecule clusters, respectively.

Analyses of Nucleation Rate.The nucleation rateJ is derived
from the fraction of unfrozen clustersNn/N0 at timetn that obeys
the model first-order rate law

whereN0 is the number of clusters,Vc is the volume of the
cluster, andt0 is the time lag (a time when the first nucleation
event has taken place, here assumed to be constant at a given
temperature). Since the timetn is that at which thenth nucleation

event has occurred,Nn is taken to be28

From the slope of the plot ln(Nn/N0) vs the timetn, the quantity
JVc is obtained, and from the intercept, the time lagt0 is
obtained. Nucleation timestn for freezing as well as for the solid-
state bcc-monoclinic transitions can be readily recognized from
the plots such as illustrated in Figure 3, but it is not clear what
the time origin is for the solid-state nucleation time. Therefore,
nucleation rates were estimated directly from MD simulations
only for the liquid-solid phase transitions. Nucleation times
for the crystallization of SeF6 clusters together with the volumes
per moleculeVc and the diffusion coefficients, used in the
analysis of the nucleation rates, are listed in Tables 1 and 2.

In the theory of homogeneous nucleation, the nucleation rate
is expressed as

Figure 4. The density order, translational order, and molecular
orientational order parameter profiles of the critical nucleus for the 725-
molecule cluster at different temperatures, averaged over 12 independent
cluster configurations.

od(r) ) ∑
j

q̃od(ref) ‚ q̃od(j) (16)

Nn/N0 ) e-JVc(tn-t0) (17)

Figure 5. Same as in Figure 3 but for the 1722-molecule cluster. These
data are averaged over 10 independent cluster configurations.

TABLE 1: Nucleation Times for Freezing, Volumes Per
Molecule, and Translation Diffusion Coefficients for the
725-Molecule Clusters

run no. 100 K 130 K 140 K

t, ps
1 240 140 265
2 347 165 620
3 115 210 260
4 450 215 230
5 220 120 150
6 215 225 250
7 315 200 210
8 150 60 80
9 120 175 280

10 285 155 415
11 125 140 490
12 120 190 300

volume per molecule (Å3)
104.0 108.6 109.8

transl. diff.D (10-9 m 2s-1)
0.16 0.48 0.70

Nn ) N0 - n + 1 (18)

J ) A exp(-∆G*/kBT) (19)
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whereA is a prefactor and∆G* is the free energy of formation
of a critical nucleus of the crystalline phase. The expressions
for the nucleation and growth rates originate from the same set
of coupled differential equations and usually contain the same
set of kinetic parameters. A variant of the prefactor given by

and based on viscous flow in the liquid to model the molecular
jump across the solid-liquid interface29 was adopted. Two
different formulations for the free energy barrier∆G* were
applied to analyze the temperature dependence of the nucleation
rate. One is the classical (capillary) nucleation theory developed
by Turnbull and colleagues.30,31Within the CNT, the expression
for ∆G* that takes into account the effect of Laplace pressure
can be written as32

wherew′ arises from the change in free energy accompanying
a change in the surface area of the freezing cluster, radiusR,
during nucleation, and given by

with PL representing the Laplace pressure 2σl/R inside the cluster
and theF’s representing densities. The unknown quantity in eqs
20 and 21, and therefore the quantity derived from the nucleation
rate, is the kinetic parameterσsl supposed to represent the
interfacial free energy per unit area for the liquid-solid
boundary. Another approach for the free energy of formation
of a critical nucleus requiring the same input information is
Gránásy’s diffuse interface theory (DIT),33 which explicitly take
into account a thickness parameter for the interface between
the two phases. The DIT expression for∆G*, including the
correction for the effect of Laplace pressure, is given by33,28

with

where

The unknown parameter in eq 22 isδ , considered to express
the distance between the dividing surfaces for enthalpy and for
entropy in the interface between the liquid and solid phases.

In Figure 6 we present the nucleation rate for different sizes
of SeF6 clusters as a function of temperature in comparison with
the results of the CNT and DIT theoretical expressions.
Following Gránásy, we took the CNT interfacial free energy
σsl and the DIT distanceδ to be independent of temperature
for the purposes of the figure. These two parameters were
estimated by adjusting them, via eqs 21 and 22, to reproduce
the nucleation rate obtained from MD simulations at 140 K.
Values so determined wereσsl ) 0.013 J/m2 andδ ) 1.56 Å.

Kinetics of Crystal Growth. Records of the crystal growth
for SeF6 clusters obtained from MD simulations are presented
in Figures 7 and 8 where they are compared with the results of
theoretical calculations. MD curves (solid lines) are averaged
over 12 independent configurations for the 725-molecule cluster
and over 10 configurations for the 1722-molecule case. The
temperature dependence of the growth rate obtained (see Table
3) agrees well with the results of the Kelton-Greer theory (eq
15). We present the growth rate vs nucleation rate for the bcc-
monoclinic transition that correctly reproduces solid-state
transformation kinetics in Figure 9.

Discussion

Temperature Dependence of Nucleation Rate.In general,
the agreement between the CNT and MD data observed for the
nucleation rates is quite good while that for the DIT is apparently
not. The latter discrepancy, however, hinges about a single MD
point obtained at such a deep supercooling that the solid-state
transition started almost immediately after the onset of freezing,
a behavior not characteristic of events represented by the other
points. If this single point were discarded, the DIT would appear
to account for the data more faithfully than the CNT. It is our
subjective feeling that the DIT is at least as realistic as the CNT.

To examine the dependence of the nucleation rate on the size
of clusters, we included the nucleation rates from our earlier
study of 138-molecule clusters28 in Figure 6 (solid diamonds).
Uncertainties in the nucleation rates due to statistical uncertain-
ties when the number of events is small prevent an accurate
determination of the size effect, but one can perceive a tendency
of the nucleation rate to increase as cluster sizes decrease.
Several factors can lead to such a correlation. The most obvious

TABLE 2: Nucleation Times for Freezing, Volumes Per
Molecule, and Translation Diffusion Coefficients for the
1722-Molecule Clusters

run no. 130 K 140 K

t, ps
1 130 155
2 105 125
3 180 80
4 140 175
5 140 155
6 235 175
7 180 130
8 120 85
9 200 290

10 126 165

volume per molecule (Å3)
108.6 110.0

transl. diff.D (10-9 m 2s-1)
0.4 0.55

A ) 16(3π
4 )1/3( σsl

kBT)1/2 D

Vm
2/3∆r2

(20)

∆G* ) 16πσsl
3/[3(∆Gv + w′)2] (21)

w′ ) PL(Fl - Fs)/Fl

∆G* ) -4πδ3∆Gvψ/3 (22)

ψ + [2(1 + q)h-2 - (3 + 2q)h-1 + 1]/η

Figure 6. Temperature dependence of nucleation rate for the crystal-
lization of SeF6 clusters: solid triangles, 1722 molecule cluster; open
squares, 725 molecule cluster; solid diamonds, 138 molecule cluster;
solid line, classical nucleation theory (CNT); dashed line, diffuse
interface theory (DIT).

ú ) w/∆Gv η ) ∆Gfus/∆Hfus

h ) η(1 + ú) q ) (1 - h)1/2
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is the effect of Laplace pressure that increases as the reciprocal
of the cluster radius. Another factor which may affect the
nucleation rate is the diffusion constantD, which is higher in
the smaller cluster due to the relatively larger number of surface
molecules of higher mobility. Finally, and perhaps most
important, a visual analysis of crystallization shows that nuclei
preferentially form at or near the cluster surface and not in the
interior. Since smaller clusters have a higher surface/volume
ratio, they have a higher number of preferred nucleation sites
per unit volume.

Nucleation and Growth Rates. The phase transformation
kinetics are governed by two material parameters: the nucleation
rate J and the growth rateG. Within the theoretical model
described above, we can reproduce the MD transformation
curves by using a set of values ofJ andG. Therefore, there is
some arbitrariness in the selection of these constants because
we have to fix one of them. In the analysis of cluster

crystallization kinetics, the nucleation rates were chosen to be
the same as those of the MD results, except for the smaller
cluster at 140 K. The reason is that we could not obtain the
correct transformation kinetics within the proposed model using
the MD nucleation rate. It seems that this nucleation rate is too
small due to statistical uncertainties. Furthermore, it is smaller
than the nucleation rate for the larger cluster at the same
temperature that contradicts the observed size effects on
nucleation rates.

An excellent agreement between the MD simulations and the
theoretical description of crystallization kinetics (eq 14) is
obtained for the smaller cluster while, for the larger cluster,
some discrepancies are observed at the final stage of crystal
growth (Figures 7 and 8). Two sources may account for such a
disagreement. (1) As reported previously,4 the crystallization
of 1722-molecule clusters is a polynuclear process where several
nuclei grow simultaneously while crystallization for the smaller
cluster is mononuclear. As a result, the final structure for the
larger cluster is polycrystalline. The present method of identify-
ing solidlike molecules does not consider molecules to belong
to crystalline aggregates if they reside in somewhat disordered
regions such as those occurring in the grain boundaries. (2) The
theoretical model, itself, may not be correct in the case of
polycrystalline growth.

In Table 3 we list the kinetic parameters obtained from the
fitting of the solid-liquid growth curves of the MD simulations
by the theoretical model. The temperature dependence of the
growth rate is in good agreement with the results of Kelton-
Greer theory (eq 15), which takes into account the size of a

Figure 7. Volume fraction transformed as function of time for the
725-molecule cluster from MD simulations averaged over 12 indepen-
dent clusters (solid lines) in comparison with the proposed model
(dashed curves) at different temperatures.

Figure 8. Same as in Figure 7 but for the 1722-molecule cluster. MD
data are averaged over 10 independent cluster configurations.

TABLE 3: Nucleation and Growth Rates for the SeF6
Clusters

nucleation rate
(1035m-3s-1)

growth rate
(m s-1)

temp (K) MD modela model Kelton

725 molecules
140 0.64 1.7 12.5 11.6
130 2.2 2.2 10. 10.3
100 0.92 0.92 8. 8.1

1722 molecules
140 0.70 0.7 12.5 10.0
130 0.96 0.97 10. 9.3

a Selected to be compatible with MD nucleation rate. Once this rate
is adopted, the model growth rate is fixed. Why the data for the 725-
molecule cluster at 140 K is out of line with the other results is unclear.

Figure 9. Sets of kinetic parameters (growth rateG vs nucleation rate
J) that correctly reproduce the kinetics of bcc-monoclinic phase
transformations; solid triangles, 1722 molecule cluster atT ) 140 K;
solid circles, the same cluster atT ) 130 K; open diamonds, 725
molecule cluster atT ) 130 K.
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cluster. On the other hand, we were unable to derive the
nucleation rate for the bcc-monoclinic transformation from the
MD simulations or to calculate the growth rate due to the lack
of required information about the physical properties of SeF6

at the solid-solid transition temperature. We present in Figure
9 a comparison of the growth rates that would account for the
MD results of the bcc-monoclinic transition if the nucleaiton
rates were known. The growth rate for the 725-molecule cluster
exceeds, by several-fold, the growth rate for the larger cluster.
This difference may be due to the fact that the liquid-bcc
transition for the smaller cluster occurs from a single nucleus
and attains an almost perfect bcc configuration before the bcc-
monoclinic transition begins. In the case of the larger cluster,
the liquid-solid transition is a polynuclear process and the final
bcc configuration is polycrystalline with many defects in the
grain boundaries. These irregularities, associated with the
different spatial orientations of the crystallites, may retard the
bcc-monoclinic growth.

Order Parameters and Sizes of Critical Nuclei.At all
temperatures studied, the density and the orientational order
parameters decay much more rapidly than the translational order
parameter. This observation of structural order extending beyond
the solid density is in good agreement with the results of density
functional theory6 and prior computer simulations of crystal-
lization in monatomic systems.7 The translational order param-
eter at the center of the critical nucleus has almost the same
value at all temperatures. By contrast, at small radii the
orientational order parameter significantly increases as the
supercooling deepens. This result reflects the fact that the solid-
state transition to the orientationally well-ordered low-energy
phase at 100 K started immediately after the onset of crystal-
lization.

The difference between the profiles for the density and
translational order parameters leads, therefore, to ambiguities
in the estimation of the sizes of critical nuclei. Following prior
convention, if we define the radius of a critical nucleus to be at
the positionr1/2, where the density profile is halfway between
its solid and liquid values, the radius would be 5 Å at 100 K
and 6 Å at 140 K,corresponding to 5 and 9 molecules,
respectively. A similar size for the critical nucleus was also
obtained from both the classical nucleation theory and Gra´násy’s
diffuse interface theory. Both of these theories invoke a free
energy of freezing per unit volume based on the bulk value, an
assignment which, as will be discussed later, cannot be relied
upon quantitatively for an aggregate of only a half-dozen
molecules. On the other hand, if we choose the radius of a
critical nucleus to correspond to the equimolar radiusre of the
density (or orientational order) profile (where the deficit of
solidlike molecules inside the dividing surface is balanced by
the number of like molecules on the outside), then the critical
radius is shifted to 8-8.5 Å and the nucleus contains 20-25
molecules. To compound the uncertainty, if the translational
order parameter is chosen to estimate the size of the critical
nucleus, our MD results placer1/2 at 10 Å and 11 Å, a radius
encompassing 40-55 molecules. This result is in rather good
agreement with our visual estimates based on fluctuations in
the sizes of bulklike aggregates. This is not surprising because
we based our original definition of solidlike molecules on the
degree of translational order. On the other hand, had the dividing
line for the translational order parameter been placed atre, it
would have encompassed 70-85 molecules. The larger critical
nucleus based on the translational order parameter, then, has a
core with crystalline density and crystalline molecular orienta-

tions surrounded by a less dense layer with translational but
not rotational order.

One way to account for the above ambiguity in sizes of
critical nuclei and to interpret the profiles of order parameters
for freezing is to avail ourselves of Turnbull’s hypothesis34

advanced long before any MD or density functional treatments
were carried out. Turnbull pointed out that since nature abhors
a vacuum, a naturally disordered liquid in contact with an
ordered solid particle will tend to order itself to conform with
the surface of the sold. That is the rationale for Turnbull’s
postulate of a negative excess entropy for the liquid-solid
interface. Such a negative interfacial entropy would explain
Turnbull’s experimental results for mercury, which indicated
an increase in interfacial free energy as the temperature is
increased. Applied to the present situation, this interpretation
would identify the ordered region beyond the volume possessing
crystalline density with Turnbull’s orderedliquid at the interface,
not with the solid. Therefore, if this interpretation is correct, it
is the density profile, not the translational order profile, that
best characterizes the solid and identifiesn*, the number of
molecules in the critical nucleus.

There is a test of the plausibility of this interpretation. Let
us extend the CNT to remedy its most serious failings. We
express∆G(r), the free energy to form a nucleus of solid in the
liquid (for simplicity, ignoring the effect of Laplace pressure
and assuming the nucleus to be spherical), as

following the form of the CNT but departing from it in two
ways. First we differentiate between the radius of the surface
of tension,rs, and the equimolar radiusre. Following Tolman,
we allow for the possible difference between these radii, defining
an interfacial thickness

a thickness not to be confused with the DITδ. Second, we do
not require∆Gv, the free energy of freezing per unit volume,
to be the same for the formation of the nucleus as that for the
freezing of the bulk material. Instead, we suppose that∆Gv for
a small aggregate is smaller than that for bulk matter, and we
consider it to be a continuous function of the radius of the
aggregate increasing from zero atr ) 0 to its asymptotic value
for larger. A variety of one-parameter functions were proposed
for ∆Gv (see below), and all gave nominally the same results.
We then determine bothσsl and ∆Gv(r*) from the nucleation
rate combined with our independent estimate ofn* from MD
analyses. First, let us neglect the TolmanδΤ, about which very
little is known for solid nuclei. From the nucleation rate we get
the free energy barrier,∆G*, and taking the nucleus to be
spherical so thatn* is 4π(r*) 3/3Vm, we adjust the value of both
σsl and the single parameter,a, in ∆Gv(a, r) to make the
maximum of∆G of eq 24 occur at∆G* and r*. This establishes
the two quantities we seek,σsl and∆Gv(r*).

The six one-parameter functional forms investigated to
represent the quantityf(a,r) ≡ ∆Gv(a,r)/∆Gv(r∞) were

with m ) 1 or 2 and

with x ) 1, m ) 1 or 2, andm ) 1, x ) (r/a) or exp(r/a).

∆G ) 4πrs
2σsl + 4

3
πre

3∆Gv (23)

δT ) re - rs (24)

f(a,r) ) [r/(a + r)]m (25)

f(a,r) ) 1 - {exp[-(r/a)m]}x (26)
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It turns out the critical nuclei identified by our translational
order parameter criterion have roughly 6 times as many
molecules as that predicted by the standard CNT. It is possible
in our simulation that we selected a nucleus that was slightly
postcritical and, hence, somewhat too large, but it is highly
unlikely that we overestimated by a factor of 6. Taking the ratio
n*/n*(CNT) to be 6 so thatr* is 61/3 times larger than the CNT
value, by applying eqs 25 and 26 we find that the “corrected”
values of∆Gv andσsl are, respectively, 0.07-0.09 and 0.18-
0.21 times the CNT values. Such a large correction for∆Gv

seems excessive in view of the close similarities between the
core and bulk properties of the SeF6 clusters found in prior MD
simulations.39 Likewise appearing to be far too large is the
correction to the interfacial free energy. The value of 0.014 J/m2

from the CNT analysis is in fair agreement with the value
expected from Turnbull’s empirical relation,40 which has held
up well in our studies of transitions in clusters in supersonic
flow. For the value to be only 20% of the empirically expected
value is dubious. Of course, the empirical relation itself came
from an application of the CNT but at such a shallow
supercooling (yielding large critical nuclei) that the CNT could
be expected to be a more accurate approximation. If we had
included the TolmanδΤ correction of eq 24, the discrepancies
between the calculated (CNT) and observed (MD translational
order) results would have been reduced ifδΤ happened to be
positive, or worsened ifδΤ were to prove negative. Since, to
our knowledge, there is no evidence thatδΤ is appreciable for
solid-liquid interfaces, we ignore its effect in the following.

For the above reasons, the conclusion that our criterion for
determining the sizes of critical nuclei from the translational
structural order parameter is too inclusive now seems almost
inescapable. It recognizes too many molecules as being in the
crystalline solid. It identifies the Turnbull-ordered liquid layer
of molecules surrounding the nucleus with the solid nucleus
itself. Next, we address the problem of where to draw the
dividing radius in the density/orientational order parameter
profile. Here there is a difference of a factor of perhaps 2 or 3.
If we apply the same test based on eqs 25 and 26, we find
somewhat more moderate discrepancies between ther1/2 andre

conventions than when we compared results for the density vs
the translational order parameters. Therefore, no really clear-
cut decision between the two radii can be made from our results
on this basis. Despite previous usage, the rational parameter
for the density profile isre, not r1/2. The trouble with this order
parameter is its poor sensitivity because of the small difference
in density between the liquid and solid phases. For the other
order parameters, which in some sense depend on arbitrary
criteria, there is less physical reason to discriminate betweenre

and r1/2. Nevertheless, it is likely that the dividing radius is
somewhat larger thanr1/2. Hence, it is probable that the value
of ∆Gv for the critical nucleus is appreciably smaller atr* than
the bulk value assumed to be valid in the CNT and that theσsl

is also somewhat smaller than that derived by applying the CNT.
It is clear, however, that the size of critical nuclei inferred from
the translational order parameter and from the fluctuations in
the number of bulklike solid molecules is much too large.
Accordingly, it appears that the results of the MD simulations

do not disagree with the classical nucleation theory nearly as
severely as we had originally concluded.29 Moreover, the MD
results go a long way toward corroborating Turnbull’s negative
entropy hypothesis, a hypothesis which has received less
attention by current theorists than it would seem to merit.
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