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The chaotic evolution in the combustion of CO in a well-stirred flow reactor is controlled experimentally
using a modified form of the simple proportional feedback (SPF) algorithm. An unstable period-1 oscillation
is stabilized through the imposition of small, appropriate perturbations which are calculated from the observed
experimental response of the system and do not require any information concerning the reaction mechanism.
It is observed that the algorithm is significantly more efficient if these perturbations are applied for only a
fraction of the oscillatory period. A similar observation is made from a numerical study of a model for the
H2 + O2 reaction, and it is shown that this arises because the perturbations shift the system significantly from
the attractor of the unperturbed system. The duration of the perturbation in each cycle then becomes a second
control parameter and effects a higher-dimensional control algorithm in a simple manner appropriate to
experimental implementation for such demanding systems. The control strategy is seen to be sufficiently
robust to operate even though the system shows a marked drift over the course of the experiment. Some
comments concerning strategies for the optimal implementation of SPF methods are then made.

1. Introduction

The spontaneous oxidation reaction of CO provides one of
the simplest combustion systems and has great technical
importance, representing the final stage of oxidation of all
hydrocarbon fuels to CO2 with the associated heat release.
Traditional studies involving closed reaction vessels have
established the existence of a pressure-temperature (p-Ta)
ignition limit peninsula at subatmospheric pressures similar to
that for the H2 + O2 reaction system.1 The CO+ O2 reaction
is also able to support oscillatory behavior (oscillatory glow or
the “lighthouse effect”) in closed systems,2,3 although this
response is extremely sensitive to the presence of hydrogen-
containing impurities (such as H2O or CH4) and to the state of
the reactor surface.4,5 In an extended series of papers, the Leeds
group has established that this reaction can be studied in a well-
stirred flow reactor (CSTR) and there also exhibits an ignition
limit.6 For ambient temperatures above this ignition limit, the
reaction typically exhibits an oscillatory ignition mode. This is
highly reproducible provided careful attention is paid to
repeatable experimental technique. The sensitivity of the reaction
to impurities can be tamed by introducing a known concentration
of H2 into the CO feed at some level above any impurity
concentration. Johnson and Scott7 have shown that complex
oscillations arise in this system over a range of operating
conditions and have characterized these as arising through a
classic period-doubling cascade, leading to deterministic chaos.8

The chaotic behavior supports a classic, single-humped next-
maximum map.

There has been much recent interest in controlling systems
that exhibit deterministic chaos, i.e., in stabilizing different
periodic responses under conditions for which the uncontrolled
system exhibits a chaotic response through the imposition of
appropriate small-amplitude perturbations to the operating

conditions without exiting the region of the chaotic response.
The initial theoretical suggestion of Ott, Grebogi, and Yorke9

was rapidly cast in a form particularly suited to experimental
implementation by Peng, Petrov, and Showalter10 in terms of a
simple proportional feedback (SPF) algorithm. This approach
has been successfully applied to a number of experimental
systems, including the solution-phase Belousov-Zhabotinsky
(BZ) reaction.11 Other approaches, including the Pyragas
method12 and the OPF method,13 have been exploited for the
BZ system,14 enzyme reactions,15 and electrochemical sys-
tems.16-19 For a full survey, see refs 20 and 21.

In this paper we explore the application of the SPF method
to control of the chaotic combustion in the CO+ O2 system.
Several “experimental difficulties” are presented, and we discuss
their resolution. In particular, we determine the optimum form
of the control perturbation for this type of system in terms of a
modified SPF algorithm in which the perturbations are applied
only for a fraction of the period. These aspects are further
confirmed numerically through the control of chaos in a model
of the H2 + O2 system, which also exhibits chaotic ignition
behavior in a CSTR and for which a satisfactory kinetic
mechanism has been established.22 We conclude with some
general comments about the operation of the SPF method in
practice and the limits on its successful implementation.

2. Experimental Section

The full details of the basic experimental apparatus and
procedure have been published elsewhere.7,8 Briefly, the reactor
comprises a 0.57 dm3 spherical Pyrex vessel mounted in a
recirculating-air furnace providing temperature control tempo-
rally ((0.5 K) with spatial uniformity ((1 K) across the reactor
surface. Reactant-grade gases are supplied from cylinders of
O2 and of a (CO+ 1% H2) mixture, subject to separate
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preheating, through individual electronic mass flow controllers.
The pressure is set by a needle valve, and the inflow rates are
adjusted to provide the desired mixture composition and mean
residence time. The reaction is monitored by a photomultiplier
tube (PMT) to monitor emission (there is chemiluminesence
associated with the formation of electronically excited CO2

during ignition). New features relevant to the present study
include computer control of the voltage supply to the mass flow
controllers and data acquisition of the output signal from the
PMT to the controlling PC with a sampling rate of 1-104 s-1.
The output from the PMT is also recorded on a chart recorder.

The control experiments in this work are operated at a total
pressure in the reactor of 19 mmHg (2.53 kPa) with a mean
residence timetres ) 25 ( 3 s and an unperturbed mixture
composition with (CO+ 1%H2):O2 ) 7.1:5.6 (approximately
1.3:1). The response of the system operating under these
conditions to changes in the ambient temperature is determined
by increasingTa in small steps and allowing the system to settle
fully before the output from the thermocouple is recorded. In
this way, the location of thep-Ta ignition limit and subsequent
changes in oscillatory waveform can be mapped out. Hysteresis
effects can be determined by locating the boundaries asTa is
subsequently reduced.

The SPF control algorithm requires the determination of the
next-maximum map during chaotic operation and then the
identification of the “fixed point” of that map, the slope of the
map in the vicinity of the fixed point, and, finally, the shift in
the map arising from a small perturbation to one of the operating
parameters. In this work, the perturbation is applied to the mass
flow rate of the CO+ 1%H2 inflow.

The procedure for implementation of the SPF algorithm here
is as follows. The output from the PMT is somewhat noisy due
to background glow from the heating coils and other “stray light”
sources. In principle, the light could be filtered to collect only
the chemiluminescence at 420 nm, but this weak emission is
not sufficiently strong to provide a useful signal alone. It is
important to be able to distinguish between the peak light
intensity during an ignition from smaller maxima due to noise,
so a “threshold” signal is selected and data are only collected
when the emission intensity exceeds this value. Once the
ambient temperature has been adjusted such that the system lies
within the chaotic regime and has stabilized sufficiently, a
“baseline signal” from the PMT is established by monitoring
the voltage recorded on the analog-to-digital converter between
peaks over a period of several ignitions (typically this will have
a value of the order of 0.2 mV). A threshold signal, typically
exceeding the baseline by 0.2 mV, is then selected. The baseline
is sampled at random during the subsequent evolution of the
system, and the threshold is adjusted dynamically to remain at
this increment above the baseline.

In the “data collection” mode, the output signal from the PMT
is monitored, and if this increases beyond the selected threshold
value, the sampling rate is increased appropriately and the
voltage values are captured into the PC memory and displayed
in an appropriate window on screen. Each value is compared
with the previous value, and the previous value is discarded if
it is lower. The maximum emission intensity during the ignition
event determined in this way is recorded. The sampling rate is
reduced when the signal falls below the threshold. This
procedure repeats at the next crossing of the threshold, so the
maximum emission intensity for the next ignition is recorded
and so on. The maximum for one ignition is plotted against the
maximum for the next ignition (the next-maximum map) in a
separate window.

Once sufficient points on the next-maximum map have been
collected, a small change is made to the voltage supplied by
the PC to the fuel mass flow controller and the above procedure
is repeated to determine the new map. Once the two maps have
been collected, the data are analyzed to provide numerical
estimates of the fixed point and slope of the map in the vicinity
of the fixed point, for both the unperturbed system and the
perturbed system. This gives an estimate of the appropriate
control parameters for the SPF algorithm. In practice, the user
may need to “refine” the values of these control parameters,
which typically have a high uncertainty, when the algorithm is
implemented (see below).

3. Results

(a) p-Ta Ignition Limit Diagram. The mixture composition
and mean residence time employed in this study differ slightly
from that used by Johnson and Scott, so the first task is to
determine the experimental conditions for the various dynamic
regimes. The so-calledp-Ta ignition limit diagram for this
present system, with an mass flow rate of O2 fO2 ) 5.6 standard
cubic centimeter per minute (sccm) and a mass flow rate of
CO fCO ) 7.2 sccm, is shown in Figure 1. For ambient
temperatures above the ignition limit there are various regions
corresponding to different periodic states, with boundaries
corresponding to period-doubling bifurcations. There is also a
distinguished region for which the reaction exhibits an aperiodic
(chaotic) response. This region can be entered by increasing
(or decreasing) the ambient temperature or pressure, as indicated
from Figure 1, and also by varying the flow rates of the
individual reactants (changing the mixture composition and
mean residence time). The extent of the region of chaotic
behavior in terms of the experimental parameters that can be
varied conveniently during an experiment (and hence are
potential control parameters) is given in Table 1.

Thus, the chaotic region is narrow in terms of the ambient
temperature, but reasonably wide for the O2 and CO inflow rates
(in terms of the degree of experimental control the operator has
over these quantities), with chaos existing over the range from

Figure 1. Pressure-ambient temperature (p-Ta) ignition limit diagram
for system with (CO+ 1% H2):O2 ) 7.2:5.6 showing region of chaotic
evolution arising from period-doubling cascades.

TABLE 1: Extent of Chaotic Region for System with p ) 19
mmHg

parameter lower boundary upper boundary value used

temperaturea (K) 786 (( 2) 791 (( 2) 789
O2 flowb (sccm) 4.0 (( 0.1) 9.0 (( 0.15) 5.6
CO flowc (sccm) 6.9 (( 0.5) 7.4 (( 0.2) 7.14

a sccm) standard cubic centimeters per minute;withfO2 ) 5.6 sccm
andfCO ) 7.14 sccm.b With T ) 789 K andfCO ) 7.14 sccm.c With
T ) 789 K andfO2 ) 5.6 sccm.
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4.0 to 9.0 sccm in the former case and from 6.9 to 7.4 in the
latter. The system was found to be more responsive to variations
in the CO flow, so this was chosen as the control parameter for
the present study. Throughout this paper, then, we takeTa )
789 K, an O2 flow rate of 5.6 sccm, and, for the unperturbed
system, take a CO flow ratefCO ) 7.14 sccm.

(b) Next-Maximum Maps. Using the procedure described
in section 2, the next-maximum map has been determined for
a system operating at the above conditions with a CO inflow
rate fCO ) 7.14 sccm and again for a “perturbed system” with
fCO ) 7.41 sccm (note that this is the maximum CO flow rate
for which chaotic evolution is observed under these conditions).
These maps are displayed in Figure 2. The period-1 fixed point
is identified by the intersection of the map with the identity
line xn+1 ) xn and the slope of the map and the shift in the
fixed point is determined from these data (see below).

(c) SPF Control. The light emission intensity exhibits a
classic single-humped maximum, as illustrated in Figure 2,
suggesting that the SPF control method will be appropriate for
chaos control. If we represent the map in the form

wherexn and xn+1 are the current and next maximum values
andf is the CO flow rate, then linearizing in the vicinity of the
fixed point xF, we can write

wherem is the slope of the map at the fixed pointxF. If the
flow rate is varied by a small amountδf and if this variation
moves the fixed point without significantly changing the gradient
m, the linearized map can be written as

where

If during the evolution of the unperturbed system (with flow
ratef) we observe a point on the map close to that corresponding
to the unstable period-1 fixed point, so that

where∆x , xF, then a perturbationδf to the flow, such that

will direct the system to the (unstable) fixed point of the
unperturbed system. The necessary perturbation10 is given by

where the “control parameter”g is defined as

The value of g can be determined, therefore, from the
experimental next-maximum maps for the perturbed and un-
perturbed systems such as those shown in Figure 2. For those
data, we obtain the following values:

yielding

for the current system. This value is used as a first estimate of
the control parameter. The large experimental uncertainty does,
however, require that the operator be allowed to “optimize” the
choice ofg during the actual control experiment, so a facility
for this is incorporated into the control software. We may also
note here that the gradientm appears to satisfy the requirement
of the basic SPF method in that is not changed by the
perturbation.

During an experiment, then, once the appropriate value for
the control parameter has been set, the maxima in the emitted
light intensity are monitored by the control algorithm and once
a point on the map is observed to fall within some predetermined
region in the vicinity of the unstable period-1 fixed point
(typically we choose thatxn should lie within (25% of xF

estimated from the map), the control algorithm is activated
automatically and the CO flow rate is perturbed according to
eq 7. Further refinement of the choice of the control parameter
may be made if the convergence to a controlled period-1 state
is seen to fail or if the calculated perturbation to the flow rate
would be so large as to move the system out of the chaotic
region in terms of the operating conditions.

The successful control of a period-1 state within the chaotic
region for the CO+ O2 reaction under the above experimental
conditions using the SPF method is illustrated in Figure 3A,B.
In Figure 3A, the time series from the PMT record is shown,
exhibiting a chaotic response up to the point at which the control
algorithm is activated and then evolution to a period of control.
At the end of the control period (decided by the operator), the
system returns to the chaotic state. Sequences of up to 60
controlled period-1 ignitions have been achieved with care
through this approach. The convergence of the maxima to the
controlled period-1 state is shown in Figure 3B: there is a
definite “transient period” between the onset of control and the

Figure 2. Next-maximum temperature maps for two different param-
eter values within chaotic region:×, fCO ) 7.14 sccm;b, fCO ) 7.41
sccm. The dashed linexn+1 ) xn is shown to help indicate the location
of the unstable period-1 fixed point.

xn+1(f + δf) ) xF(f) (6)

δf ) m
(m - 1)dxF/df

∆x ≡ ∆x
g

(7)

g )
(m - 1)

m

dxF

df
(8)

unperturbed system:fCO ) 7.14 ((2%) sccm,

fixed pointxs(fCO) ) 2.33 ((3%) mV,

gradientm ) - 2.43 ((6%)

perturbed system:fCO ) 7.41 ((2%) sccm,

fixed pointxs(fCO) ) 2.22 ((3%) mV,

gradientm ) - 2.46 ((6%)

g ) - 0.24 ((125%) mV sccm-1

xn+1(f) ) F(xn,f) (1)

xn+1(f) ) m[xn - xF(f)] + xF(f) (2)

xn+1(f+δf) ) m[xn - xF(f+δf)] + xF(f+δf) (3)

xF(f + δf) ) δf
dxF(f)

df
+ xF(f) (4)

xn ) xF(f) + ∆x (5)
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establishment of a period-1 response. For the system shown in
Figure 3, this “control transient time” (CTT) period is 113 s.
(We should note that the CTT as defined here differs from the
“transient time” introduced by Ott et al.9 and used by Kiss et
al.18 which refers to the time taken by the system to approach
the neighborhood of the fixed point: in that work the SPF
method effectively produces control in one step once activated.)

The variation in the CO flow rate imposed on the system by
the control algorithm is plotted in Figure 3C. The initial
perturbations take the system beyond the upper limit of
spontaneous chaos, but soon the perturbation settles to a small
value so that the system lies within the range of spontaneous
chaos. It is noticeable, however, for this reaction that occasional
large perturbations are required which again take the system
transiently outside the spontaneous chaos range.

(d) Variation of Perturbation Time. In the experiments
described in the previous section, the control perturbation is
applied immediately after the calculation of eq 7 is completed
and the perturbed flow rate is maintained over the whole period
until the next maximum is observed. A new perturbation is then
calculated and this is applied over the whole period until the
next maximum, and so on. In this section, we describe the effect
of varying the fraction of the ignition period over which the
perturbation is applied. Before the control algorithm is activated,
the system is monitored as described previously in its chaotic
state. We now also determine the mean period<τ> between
ignitions during this monitoring phase. Typically, we find<τ>
) 6.6 s. (A feature of the CO+ O2 system is that the period
between ignitions does not vary significantly even though the
amplitudes vary markedly during chaotic evolution.) The control
algorithm can now be implemented but with the perturbation
applied for only some fraction of the ignition period, with the
flow rate then returned to its unperturbed value until the next
maximum is observed. Control is observed for all cases with
the perturbation applied for between 10% and 100% of a given
ignition period using the same value for the control parameter
g in each case. The transient evolution from the chaotic to the
controlled response following the activation of the control
algorithm does, however, vary significantly with this parameter,
as indicated in Figure 4.

Initially, decreasingthe period for which the control pertur-
bation is applied leads to anincreasedrate at which the control
is established. The rate of establishment of control appears to
attain some plateau for perturbations applied for between 20%
and 30% of the ignition period, as indicated in Figure 5, which
plots the inverse of the CTT determined from the traces in Figure
4. Control is not possible in this reaction system for perturbations
applied for less than 20% of the oscillatory period, perhaps due
to the finite response time of the mass flow controllers in
adjusting to their new values.

(e) Drift in the Next-Maximum Map. Despite the success
of the modified SPF algorithm, the CO+ O2 system exhibits a
number of features that make control less than straightforward
compared to some other experimental systems. A major dif-
ficulty for long-term control arises through the tendency of the
reaction to “drift” over the course of an experimental run. Thus,
the boundaries separating different oscillatory modes in thep-Ta

diagram, and even the ignition limit itself, change during the
course of an experimentsalmost certainly due to the continual
slow conditioning of the reactor surface. To illustrate the effect
of this for the SPF control algorithm, the variation of the next-
maximum map in time over the course of 1 h for an experiment
under constant experimental conditions is shown in Figure 6A.
A considerable drift in the map, and hence in the fixed point,
occurs even under these “constant” conditions, so small imposed
perturbations calculated on the basis of eq 7 could easily be
swamped. This effect can be reduced by allowing the system a
long conditioning period before any attempt at control is
implemented, but is never completely removed. Similar, but
longer time scale drifts are observed in other systems for which
control has been achieved, most notably the control of chaos in
electrodissolution reactions.18

Long-lived effects on the evolution of the system can also
arise simply from the imposition of a perturbation on the flow
rate. The next-maximum maps recorded for identical operating
conditions before and 60 s after a relatively large perturbation
(1.0 sccm on the O2 flow rate applied for 300 s and then
removed) are shown in Figure 6B. The map clearly remains
significantly shifted even after the perturbation has been

Figure 3. Control of chaos by SPF algorithm: (A) time series from
PMT showing approach to stabilized period-1 orbit after control
algorithm is activated (“control on”) and return to chaotic state when
control algorithm is deactivated (“control off”); (B) plot of observed
maximum PMT signal from time series during and after control,
showing the “control transient time” (CTT); (C) variation of CO flow
rate due to perturbations imposed by control algorithm. The horizontal
lines indicate the upper and lower limits for the CO flow for which
the unperturbed system exhibits the chaotic response.
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removed. This effect means that care must be taken to allow
only small-amplitude perturbations in the control algorithm.

4. Numerical Study of H2 + O2 Reaction

The operational points described at the end of the previous
section indicate that descriptive quantitative measures of the
control, beyond those presented in Figure 5, are effectively
unavailable from the experimental system. A satisfactory
chemical kinetic mechanism describing the chaotic behavior
observed experimentally in the CO+ O2 system does not yet
exist, but such a mechanism for similar responses in the related
H2 + O2 reaction has been established.22 In this section, we
report on a numerical study of chaos control in this model.

The “minimal complex oscillator model” for the H2+O2

system comprises 12 elementary reactions involving seven

chemical species and the reacting gas temperature. Numerical
integration of the corresponding reaction rate and energy balance
equations for this reaction in a CSTR have been performed using
the SPRINT algorithm, which is appropriate for stiff systems
and allows for the temperature dependence of reaction heat
capacities and enthalpies. With a molar inflow ratio of the
reactants H2:O2 ) 7:3, the system exhibits chaotic oscillations
at a total pressure of 10 mmHg withtres) 1.4 s andTa ) 702.7
K. For the present purposes, guided by the experiments
described above, the bifurcation parameterp adopted will be
the ratio of the inflow concentrations (with the total molar inflow
concentration being held fixed). We takep ) 0 to correspond
to the above ratio, whilep ) 1 corresponds to a system with a
1% increase in the H2 inflow and the O2 decreased correspond-
ingly (giving H2:O2 ) 7.1:2.9). Complex (chaotic) behavior is
observed over the range-6 < p < 1.7 approximately. The next-
return map based on the maximum temperature during the
oscillation forp ) 0 is shown in Figure 7. The seven variable
model exhibits a nearly one-dimensional next-return map, with
a fixed pointxF ) 1314.0 and a slopem ) -2.39 at the fixed
point. Different control strategies have been implemented to
stabilize this fixed point.

(a) SPF Control. Here we seek to determine appropriate
perturbationsδp of the form

with K ) m/(1 - m)(dxF/dp) ) 1/g (see eq 8). Recalculating
the next-return map forp ) 0.08, we findxF ) 1310.5 andm
) -2.46, yieldingg ) -62.0 andK ) - 1.6× 10-2. Attempts
to stabilize the period-1 fixed point using the SPF method with
the perturbation applied for the whole oscillatory period failed
in our numerical integrations with this system.

(b) Higher-Dimensional Control Method. A general method
for control extending the SPF method to either involve perturba-

Figure 4. Plots of observed maximum PMT signal from time series for modified SPF method with perturbation applied for only a part of the
oscillatory period showing effect on CTT: (a) perturbations applied for 80% of period; (b) perturbations applied for 60% of period; (c) perturbations
applied for 40% of period; (d) perturbations applied for 20% of period.

Figure 5. Variation of the inverse control transient time (CTT)-1 with
the fraction of the oscillatory period for which the perturbation is
applied. A large value indicates faster convergence to the controlled
period-1 state. The solid line is draw to guide the eye and suggests an
optimum at ca. 20-30%. Control is not achieved for perturbations
applied for less than 20% of the oscillatory period.

δp ) K δxn (9)
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tion of several parameters or to exploit successive perturbations
of a single parameter has been proposed by Petrov et al.23 Here,
we apply this method to explain the failure of the SPF algorithm
in the present case. The extended method interrogates the
evolution of the system in the vicinity of the fixed point subject
to a random sequence of parameter perturbations. The observed

response map is then fitted to the following expansion

whereN is a “fitting dimension” of the system. The eigenvalues
of the controlled systemλ1, ..., λN+1 can then be set to any
desired values (the so-called “target dynamics”, e.g.,λi ) 0 for
all i for so-called “dead-beat control”) according to the control
formula

where the control coefficientsqi and ri are determined as
described in Petrov et al.24

The H2 + O2 model was integrated numerically subject to
random perturbations in the rangeδp ) [-0.05, 0.05]. Typically
the integrations were continued for approximately 12 000
oscillations, providing approximately 40 points in the vicinity
of the unstable period-1 fixed point of the next-maximum map.
These points were then fitted to the appropriate form of eq 10
and the fitting errorσ determined as a function of dimension
N. The results are shown in Table 2.

The large fitting error forN ) 1 indicates that the one-
dimensional model cannot be fitted to the perturbed system
dynamics satisfactorily, and hence the SPF algorithm fails.
Although the dynamics of the unperturbed system is ap-
proximately one-dimensional, the perturbation continuously
diverts the trajectory away from the attractor, resulting in a
higher dimension for the controlled system.

With N ) 2, usingλ1 ) λ2 ) λ3 ) 0 as the target dynamics,
the control formula becomes

This linear model is only expected to work in the linear region
close to the fixed point: if the algorithm is applied outside this
range, the system is likely to diverge from the fixed point. In
our calculations we imposed a maximum allowed perturbation
|δpmax| ) 0.5. Subject to this constraint, the chaotic response
has been successfully controlled via eq 12, as indicated in Figure
8. The controlled system and the imposed perturbation are,
however, somewhat “noisy” and the mean value of the control
parameter during the control period is clearly somewhat lower
than zero; i.e., the operating conditions have been varied from
the autonomous system (although it remains well within the
chaotic range).

The nature of this response may arise from the relatively large
value of the third control parameter (the coefficient of theδpn-1

term) in eq 12. In the presence of real experimental noise an
alternative approach may be required. In other systems, a
recursive proportional algorithm has been exploited16 (neglecting
the term involving δxn-1 in eq 12). Petrov et al. applied

Figure 6. Evidence of drift in the next-return map for the CO+ O2

system. (A) Evolution of the next-maximum map in time for an
experiment under constant experimental conditions: data collected at
the following times: [, 5 min; O, 10 min;2, 20 min;9, 30 min;×,
40 min; b, 60 min. (B) Shift in map following imposition and then
removal of a large perturbation to the CO flow:×, before perturbation;
b, after perturbation.

Figure 7. The next-return map based on the maximum temperature
for the unperturbed H2 + O2 system.

TABLE 2: Variation of Fitting Error with Dimension of
Linear Model (Eq 9) at p ) 0 with Perturbation Applied for
Different Durations

perturbation duration

full cycle (1.5s) 0.3 s 0.5 s

N σ N σ N σ

1 2.30 1 0.33 1 0.39
2 0.25 2 0.24 2 0.31
3 0.17 3 0.25 3 0.22

δxn+1 ) ∑
k)1

N

aN-k+1 δxn-k+1 + ∑
k)1

N

bN-k+1 δpn-k+1 (10)

δpn ) ∑
k)1

N

qN-k+1 δxn-k+1 + ∑
k)2

N

rN-k+1 δpn-k+1 (11)

δpn ) 8.2× 10-2 δxn + 7.2× 10-3 δxn-1 + 4.6δpn-1 (12)
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perturbations to two control parameters: one parameter was used
to target the fixed point and the second was varied to keep the
phase point on the attractor. The simultaneous variation of two
different experimental parameters is somewhat demanding in
the combustion reactions of interest here: different control
devices (e.g., for the mass flow and the oven temperature) are
typically subject to differing time constants and a substantially
larger set of data is required to characterize the map and the
effect of two parameter variations. Carr and Schwartz25 have
shown that the length of time for which a perturbation is applied
can be used as a second parameter. We now investigate this
approach with the present numerical model.

(c) Perturbation Applied for 0.3 s. The fitting errors arising
for systems withN ) 1, 2, and 3 for which the perturbation is
applied for only 0.3 s between each maximum (approximately
20% of the period of the unstable period-1 oscillation) are also
given in Table 2. In this case the system can be regarded as
one-dimensional even in the presence of random perturbations.
Robust control is exhibited with the control formula

as indicated in Figure 9. The fixed point is successfully
stabilized, and the perturbations to the flow ratio are now smaller
and more evenly distributed aboutp ) 0. The SPF method is

therefore expected to work in this case and is observed in our
computations usingK ) - 7.1 × 10-2, corresponding tog )
-14.1. (Note that the control constants obtained with the SPF
and random perturbation algorithms are numerically different
although of the same magnitude.)

(d) Perturbation Applied for 0.5 s. The fitting errors in
Table 2 for this case are comparable for those with the
perturbation applied for 0.3 s, so control might be expected even
with N ) 1. However, as illustrated in Figure 10, the control
formulaδpn ) - 8.3× 10-2δxn obtained in this case does not
give robust control. The amplitude is brought to the neighbor-
hood of the fixed point for several iterations, but then diverges.
Similarly, the SPF method, withK ) -7.1 × 10-2 so g )
-14.1, also fails. Control is successful withN ) 2, with δpn )
-1.12× 10-1δxn -7.8 × 10-4δxn-1 - 0.43 δpn-1.

5. Some Comments on the SPF Method

In this section we investigate the application of the SPF
method for systems with underlying higher-dimensional dynam-
ics such as the CO+ O2 or H2 + O2 systems studied here. In
particular, we will try to determine the conditions under which
the modification of applying perturbations for a limited duration
will be effective in a given instance and what determines the
optimum perturbation duration.

We have integrated the governing equations for the H2 + O2

model under spontaneously chaotic conditions. The response

Figure 8. (a) Plot of observed temperature maxima for H2 + O2 system
using the control eq 12 activated at oscillation numbern ) 100. The
control becomes effective fromn ≈ 110 whenxn reaches the vicinity
of the fixed point. (b) The perturbationδpn applied during the control
procedure.

δpn ) -4.7× 10-2xn

Figure 9. (a) Plot of observed temperature maxima for H2 + O2 system
using the modified SPF control algorithm, with the perturbation applied
for only 0.3 s in each oscillation. (b) The perturbationδpn applied during
the control procedure. Control is switched off atn ) 200.
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has then been interrogated through the application of random
perturbations as above, but now with the perturbations applied
for only a fixed duration in each cycle, less than the full
oscillatory period. Again, approximate 40 points lying within
the vicinity of the unstable period-1 fixed point were collected
in each case, and these were fitted to the two-dimensional fitting
equation in the form

to yield the appropriate values of the fitting coefficientsai, bi

for a given perturbation duration. Next, we imagine that an SPF
algorithm is to be implemented, so thatδpn is related toδxn by
δpn ) Kδxn (see eq 9) andδpn-1 will be similarly related to
δxn-1. Substituting these forms into eq 13, we obtain

This equation can be used to determine the fitting eigenvalues
λ1,2: introducing a dummy variableδyn ) δxn-1, the map can
be written in the form

The eigenvalues are then determined from the Jacobian matrix
J

yielding the characteristic equation

A number of points concerning this equation can be made.
For the unperturbed system,bi ) 0 and the roots ofλ2 - a1λ

- a2 ) 0 yield the eigenvalues of the two-dimensional map for
the autonomous system.

The SPF method based on a one-dimensional map hasa2 )
b2 ) 0, yielding

For the target dynamics for the SPF method, we then choose
the value ofK ) -a1/b1 so the first root becomes zero. The
higher-dimensional character of the system is thus reflected in

the changes in the eigenvalues fromλSPF that arise due to the
final term in eq 15, and as this becomes significant, the SPF
choice forK will become inappropriate and the method will
fail. (This presumably is part of the reason that the practical
implementation of the SPF method to the CO+ O2 system
described in section 3 and for other systems elsewhere typically
requires the operator to vary the control parameter from that
calculated on the basis of the SPF algorithm.)

Suppose we make a particular choice for the control parameter
K (perhaps the corresponding SPF value). Then the eigenvalues
are given by

Iterations of the control algorithm with approach/diverge from
the period-1 fixed point according to whether the magnitudes
|λ1,2| are less than or greater than 1. For the control algorithm
to work, we require both eigenvalues to have magnitude less
than unity. This effectively imposes a constraint on the range
of suitable choices for the control parameterK in terms of the
fitting parametersai andbi. The range of acceptable values for
K for the H2 + O2 system is shown as a function of the duration
of the imposed perturbation in Figure 11a. Control using the
modified SPF algorithm is only possible within the closed region
in the diagram corresponding to|λ1,2| < 1.

Figure 10. Failure of one-dimensional control algorithm with perturba-
tion applied for 0.5 s.

δxn+1 ) a1 δxn + a2 δxn-1 + b1 δpn + b2 δpn-1 (13)

δxn+1 ) (a1 + b1K) δxn + (a2 + b2K) δxn-1 (14)

δxn+1 ) (a1 + b1K) δxn + (a2 + b2K) δyn

δyn+1 ) δxn

J ) (a1 + b1 K a2 + b2K
1 0 )

λ2 - (a1 + b1K)λ - (a2 + b2K) ) 0 (15)

λSPF) (a1 + b1K), 0

Figure 11. (a) Plot of the available “control space” for the H2 + O2

model system. Control is only achievable for combinations of the control
parameterK and the perturbation durationtp between the two solid
curves. (b) Variation of the control transient time, represented as log-
(1/|λ|) with perturbation timet for a system withK ) -0.035 showing
a pronounced optimum choice of perturbation period.

λ1,2 ) (1/2){a1 + b1K ( [(a1 + b1K)2 + 4(a2 + b2K)]1/2

(16)
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In Figure 11b, we plot the inverse of the logarithm of the
principal eigenvalue (that with magnitude closer to unity) as a
function of the perturbation duration for a system withK )
-0.035. This is qualitatively equivalent to the plot of the inverse
control transient time CTT-1 given in Figure 5 for the
experimental CO+ O2 system. Control is only possible with
log |1/λ| > 0, and hence, for this value ofK it is only possible
for a perturbation timetp in the range 0.22 s< tp < 0.41 s. The
plot shows a distinct maximum corresponding to an optimum
choice for the perturbation duration in a manner similar to that
observed in the experiments. For the present choice ofK, the
optimal perturbation time is ca. 0.33 s. We have plotted the
“optimal” value of tp as a function of the control parameterK
in Figure 11a. An interesting point is that, for some choices for
K, there appear to be two values for this locus, indicating that
the corresponding log(1/|λ|)-tp graph may show more than one
maximum. This point will be investigated elsewhere.

6. Conclusions

The present work has demonstrated the application of the
SPF method in general terms to the control of chaos in a
technologically important combustion reaction. The method does
not require any detailed knowledge of the chemical mechanism
driving the reaction, nor does it involve large perturbations that
take the system outside the region of chaotic behavior. All the
information required to implement the control algorithm is
determined experimentally: this involves the location of the
fixed point of the next-maximum map, the slope of the map in
the vicinity of this fixed point, and the shift in the fixed point
accompanying a small change in one of the experimental control
parameters. The methodology also works even though the
present system shows a marked “drift” over the course of the
experiment. We find that there is a considerable improvement
in the efficiency of the control algorithm in the present case if
the perturbation is applied only for a fraction of the oscillatory
period. The numerical study of the H2 + O2 system also
demonstrates this feature and suggests that it arises because the
perturbations displace the system significantly from the original
attractor. As noted by Petrov et al.,23 in such cases the behavior
of the perturbed system is partly controlled by the stable
manifolds that are not described by the one-dimensional map
of the unperturbed system. This explains why a higher-
dimensional algorithm is required. The specific implementation
of the higher-dimensional control exploited in the experiments
here, treating the period for which the perturbation is applied
as a parameter, differs from that used by Carr and Schwartz.25

In their numerical computations, the duration of the perturbation
was varied from oscillation to oscillation in an appropriate

manner determined from the control equation. In our approach,
we choose a fixed duration for which the perturbation is applied
in each oscillation. This simplification makes the control
algorithm substantially easier to apply in practice and, subject
to some empirical optimization, still appears to work satisfac-
torily.
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