
Free Energies of Electron Transfer Reactions in Polarizable, Nondipolar, Quadrupolar
Solvents

Jonggu Jeon and Hyung J. Kim*
Department of Chemistry, Carnegie Mellon UniVersity, 4400 Fifth AVenue,
Pittsburgh, PennsylVania 15213-2683

ReceiVed: June 13, 2000; In Final Form: September 12, 2000

A continuum theory is developed for describing the influence of polarizable, nondipolar, quadrupolar solvents
on charge-transfer processes. The fluctuating configuration of solvent quadrupole moments and associated
nonequilibrium free energy are described in terms of multidimensional solvent coordinates. The solvent
reorganization free energy is obtained in the framework of both one- and two-sphere cavity descriptions of
the reaction systems. As an application, electron transfer for bridged donor-acceptor systems in benzene is
considered. It is found that the continuum theory predictions for outer-sphere reorganization free energy are
in good accord with both experimental estimates and molecular-level theory results.

Introduction

The reorganization of solvent dipole moments plays a major
role in charge-transfer kinetics and related spectroscopy in
solution. In the Marcus theory1,2 of outer-sphere electron transfer
(ET) reactions, the activation barrier height∆Gq and solvent
reorganization free energy∆Gr are related by

where∆Grxn is the free energy of reaction. In eq 1, the electronic
coupling relevant to ET is assumed to be weak, so that the
reaction occurs nonadiabatically. In a dielectric continuum
solvent description,∆Gr can be approximated as1,2

whereRD andRA are the cavity radii for the donor and acceptor
moieties,R is the separation between the two and∆q is the
charge transferred. The optical and static dielectric constants,
ε∞ and ε0, describe the response of the electronic and total
polarizations of the solvent, respectively. The sister expression
of eq 2 in the single-sphere cavity formulation is

wherea is the cavity size and∆µ is the dipole moment change
associated with charge transfer, i.e.,∆µ ) ∆qR. Except for the
uncertainties associated with cavities, eqs 2 and 3, together with
eq 1, provide a very simple and yet clear and elegant framework
to analyze and interpret ET free energetics and the related Stokes
shift in polar solvents.

The status of ET theory for nondipolar, quadrupolar solvents,
such as benzene and dense CO2, is a rather different story. While
there is convincing experimental evidence for the importance
of the solvent quadrupole reorganization,3-11 there is no

corresponding theory with the simplicity and clarity of eqs 2
and 3. This is mainly due to the lack of theoretical attention
paid to the construction of a continuum formulation for
describing free energetics in these solvents. Earlier attempts with
a local interaction description were mainly limited to the
investigation of macroscopic liquid properties12-14 and equi-
librium solvation.15 While several molecular-level approaches
do capture reorganization aspects of these solvents,16-19 their
practicality is often overshadowed by the complexity of theory
involved in the analyses.

Recently, we have developed a novel continuum theory to
describe equilibrium and nonequilibrium solvation in nondipolar,
quadrupolar solvents.20,21Unlike previous attempts, the effective
Hamiltonian involves both local and nonlocal interactions that
have a clear connection to molecular-level descriptions. Its
application to equilibrium solvation shows that the polarity of
quadrupolar solvents measured as their solvating power of
localized solutes is much higher than that predicted by their
dielectric constants.20 In this Letter, we apply this theory to study
ET. Using a multipole expansion,22 we obtain a free energy
hypersurface in terms of multidimensional solvent coordi-
nates,23,24which gauge the nonequilibrium solvent quadrupolar
configurations. In this paper, we confine ourselves to outer-
sphere reorganization free energetics. Further details and ap-
plications to other systems will be reported elsewhere.21

Formulation

We consider an ET reaction systemstermed as a solute
hereaftersimmersed in a spherical cavity of radiusa in a
polarizable, nondipolar, quadrupolar solvent. In this initial
attempt, we do not distinguish between the induced and
permanent components of the solvent quadrupole moments to
simplify our formulation. In the continuum formalism,25-27 the
solvent is then described in terms of the densities of its
quadrupole and induced dipole moments after a suitable
averaging process.28 Hereafter, these density variables will be
referred to as quadrupolarization and electronic polarization
fields,Q andPel, respectively. The effective HamiltonianĤ for
the combined solute-solvent system in the presence of arbitrary
Pel andQ is20,21

∆Gq ) 1
4∆Gr

(∆Gr + ∆Grxn)
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(two-sphere cavity model) (2)
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(one-sphere cavity model) (3)
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where Ĥ0 and v̂ are the solute electronic Hamiltonian and
electric field operators in a vacuum,r andr ′ represent positions
in the solvent medium, the superscriptV indicates that the
integrations are restricted to the volume outside the cavity, and
A:B for second-rank tensorsA and B denotesΣijAijBij. For
simplicity, both the dipolar and quadrupolar susceptibilities,øel

andCQ, are assumed to be scalars. The former is related to the
optical dielectric constant byε∞ ) 1 + 4πøel. In eq 4 the trace
part of the solvent quadrupolarization is retained, so thatQ(r )
is the local density of the quadrupole momentq evaluated atr

with the charge distributionF.
Except for the terms involvingQ, a Hamiltonian similar to

Ĥ (plus the contribution of solvent orientational polarization)
has been used extensively in solvation studies in dipolar
solvents.29 The four terms involvingQ in eq 4 represent, in
sequence, the free energy cost for inducing quadrupolarization,
and continuum analogues of solvent dipole-quadrupole, quad-
rupole-quadrupole, and quadrupole-solute charge interactions.
Sinceq does not interact with itself, the corresponding contribu-
tion at the continuum level, viz., interaction ofQ(r ) andQ(r ′)
at r ) r ′ should be excluded. This is denoted as the subscript
0+ in eq 4. The subtraction of a similar self-interaction term
for Pel is absorbed intoøel, for convenience. We parenthetically
note that with a harmonic oscillator model for the solvent
molecular polarizability,30 this prescription oføel leads to the
well-known Lorenz-Lorentz relation.31 This indicates that
correlation between the charge distributions of different solvent
molecules is not reflected in our continuum theory.31 We also
point out that explicit spatial dispersions, e.g., (∇‚Pel)2 and (∇‚
Q)2, are ignored in our formulation.

As detailed in ref 32, the relative time scales of the solute
and solvent electronic motions play an important role in ET
free energetics. In this Letter we restrict our consideration to
weakly coupled ET, where the solvent electronic response is
much faster than the transferring solute electron. We can then
eliminate Pel adiabatically throughδĤ/δPel ) 0 because it
always follows the localized solute charge distributions during
ET.22,32To incorporate this, we first simplify the representations
of the field variables as20,21

whereΛel, ΛQ, andf are scalar functions andI is the unit matrix.
Because of cavity boundaries, however, the adiabatic elimination
of Pel in this scalar representation is still a formidable task. To
efficiently handle this, we borrow the solvent coordinate
description, widely used for dipolar solvents.22-24 To be specific,

we extend the multipole expansion of equilibriumQ in ref 20
to a general nonequilibrium configuration as33

where Ylm are spherical harmonics and the origin of the
coordinate system is at the center of the solute molecule. Here
λlm represents thelm-multipole component of a hypothetical
solute charge distribution, with which the nonequilibriumQ
under consideration would be in equilibrium. In eq 7,âl andSl

are dimensionless quantities defined as20,21

and kl(z) and kl
d(z) are related to modified Bessel functions

Kn(z)

The lengthy expression in square brackets on the right-hand
side ofSl arises from the cavity boundary.20,21 The κ factor in
eqs 7 and 8 determined by

measures the degree of screening of the solute electric field by
Q.

After some algebra we can eliminatePel and obtainĤ in terms
of arbitraryλlm (and thusQ)21

whereæ̂lm is the solutelm-multipole operator

associated with its charge density operatorF̂ET(x). The reaction
field factorsR∞

lm andRQ
lm in eq 11
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characterize strengths ofPel andQ responses to thelm-multipole
moment, respectively. The main difference betweenR∞

lm and
RQ

lm is theFl(κa) factor in the latter

which gauges the short-range effect of the solute-quadrupole
interactions, compared to solute-dipole interactions (see Figure
1). The term involvingR∞

lm on the right-hand side of eq 11
describes the dispersion and polarization stabilizations of the
solute through Coulombic interactions withPel.22 The terms
quadratic and linear inλlm represent, respectively, the self-energy
of Q and its interaction with the solute, screened byPel. We
note that except for the difference arising from theRQ

lm factor,
the basic structure of eq 11 is exactly the same as that ofĤ
developed in ref 22 for polarizable, dipolar solvents. Thus, the
analysis of solvent polarization fluctuations there is nearly
directly transferable to the present case.

Before we turn to ET, we briefly pause here for perspective.
At equilibrium, our formulation based on eq 4 yields a nonlocal
constitutive relationD(k) ) ε(k)‚E(k) with the neglect of the
boundaries.21 Herek is a wave vector,D andE are the electric
displacement vector and Maxwell field, related inr -space
via21,25-27

andε(k) is the nonlocal dielectric permittivity tensor,34 which
depends parametrically on the susceptibilitiesøel andCQ in eq
4. While this formulation couched inε(k) and its nonequilibrium
extensions provide a convenient macroscopic description for a
bulk medium, the incorporation of the cavity effects in the
calculation of the local solvent field and its interaction with
the solute is not straightforward in thek-space representation.
This is mainly due to the complication arising from the
boundaries, coupled with the nonlocal nature of the theory. By
contrast, the explicit separation ofPel and Q employed here
allows a systematic analysis of nonequilibrium solvation in
r -space with account of the cavity effects.21

Nonadiabatic Electron-Transfer Reactions

We now consider nonadiabatic ET using eq 11. Since
microscopic variables are projected out through statistical
averaging inĤ there, its expectation value yields the system
free energy.1 Thus, in the multidimensional solvent coordinate
system spanned byλlm, the diabatic free energy hypersurfaces,
GR andGP, for the ET reactant (R) and product (P) states are
defined by

whereψR,P are the solute electronic wave functions associated
with the R and P states. The respective minimum points on these
surfaces given by

correspond to the stableQ configurations associated with the
R and P states. The reorganization free energy∆Gr for Q
rearrangement is then

In the simple dipole description of the solute charge distribution,
∆Gr reduces to

wherey ) κa is a dimensionless cavity radius and theF1(y)
term in the square brackets is neglected in passage to the final
expression. It should be noticed that compared to the dipolar
solvent eq 3, the only additional information needed for∆Gr is
the quadrupolar susceptibilityCQ (cf. eqs 10 and 14). In view
of the lack of direct experimental information as well as the
approximate nature of the continuum approach, we have
proposed to determineCQ spectroscopically in ref 20. To be
specific,CQ is chosen such that resulting 2∆Gr reproduces Stoke
shift of coumarin 153, studied in ref 10. Withε∞ ) 2.24, this
yieldsCQ ) 3.56 Å2 (andκ ) 0.633 Å-1) for benzene at room
temperature. In the numerical calculations of ET in benzene
below, thisCQ value is employed.

Figure 1. ∆Gr as a function of cavity size: quadrupolar benzene with
CQ ) 3.56 Å2 (s); model dipolar solvent withε0 ) 35 (‚‚‚). For both
solvents,ε∞ ) 2.24 (corresponding to the benzene value) and∆µ )
34 D are employed. The latter is the estimated dipole moment change
for the bridged donor-acceptor systems studied in ref 8.
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In Figure 1, the reorganization free energy of benzene
calculated with eq 19 is shown as a function ofa. We used∆µ
) 34 D to make contact with ref 8, where the bridged ET
systems between the dimethoxyanthracene donor and cy-
clobutene dicarboxylate acceptor units were studied. For
comparison,∆Gr (eq 3) of a highly dipolar solvent withε0 )
35 andε∞ ) 2.24 is also exhibited.∆Gr for benzene decreases
more rapidly witha than that for the dipolar solvent, primarily
due to the firstF1(y) term in eq 19. As mentioned above, this
trend is closely related to the fact that the interactions involving
quadrupoles are of shorter range than those involving dipoles.
Despite this, the quadrupolar reorganization free energy remains
quite substantial even for largea. With a ) 7.25 Å employed
in ref 8b for the above ET systems, our theory predicts∆Gr ∼
0.15 eV.35 This compares well with the molecular-level estimate,
0.16 eV, there with the thermodynamic perturbation theory.19

Finally, we turn to∆Gr in the presence of two spherical
cavities. Its derivation a` la Marcus is more involved than eq 19
because of the technical difficulty in extendingQ(r ) to the origin
where there is a singularity. The reason for this is that eq 7 is
based on the equilibrium quadrupolarization configuration,20

determined variationally outside the cavity.33 With the removal
of this anomaly at the singularity,21 we find

with yD,A ) κRD,A. The exponential factor e-κR in the solvent-
mediated donor-acceptor interaction clearly reveals the short-
range character of the quadrupolarization. As an application of
eq 20, we briefly consider photoinduced ET of bridged
porphyrin-quinone systems, studied by Mataga and co-workers.7

They found that total reorganization free energy, i.e., inner
sphere+ outer sphere, in the nonadiabatic ET scheme is∼0.8
eV in benzene. By fitting both charge separation and recom-
bination kinetics data, they estimated that the outer-sphere
contribution would be∆Gr ≈ 0.18 eV although a larger value
would yield a better agreement with the former data. With the
cavity radii of 5 and 3.5 Å used in ref 7 for porphyrin and
quinone, we assess∆Gr ∼ 0.29 eV from eq 20. Considering
the uncertainties in experimental estimates, this result seems to
be in reasonable accord with ref 7.

In summary, we have developed a continuum theory to
describe equilibrium and nonequilibrium solvation in polariz-
able, nondipolar, quadrupolar solvents. We have derived a
simple expression for solvent reorganization free energy,
couched in terms of cavity size, optical dielectric constant and
quadrupolar susceptibility. Its application to electron-transfer
reactions for various bridged donor-acceptor systems in
benzene has yielded reasonable agreement with both experi-
ments and molecular-level theories. This seems to indicate that
the current theory correctly captures the essential features of
nonequilibrium solvation in quadrupolar solvents. Nevertheless,

it would be desirable to consider other charge shift systems to
further test the theory. Also it would be worthwhile in the future
to extend it to incorporate explicit spatial dispersions and
separation of electronic and orientational quadrupolarizations.

Acknowledgment. We thank Profs. D. H. Waldeck and M.
B. Zimmt for sending us a preprint of their ET modeling study.
This work was supported in part by NSF Grant No. CHE-
9708575.

References and Notes

(1) Marcus, R. A.J. Chem. Phys.1956, 24, 966, 979.
(2) For reviews on electron-transfer reactions in solution, see, e.g.:

Newton, M. D.; Sutin, N.Annu. ReV. Phys. Chem.1984, 35, 437. Marcus,
R. A.; Sutin, N.Biochim. Biophys. Acta1985, 811, 265. Cannon, R. D.;
Endicott, J. F. InMechanisms of Inorganic and Organometallic Reactions;
Twigg, M. V., Ed.; Plenum: New York, 1989.

(3) Koppel, I. A.; Palm, V. A.Org. React. (Tartu)1969, 6, 213.
(4) Wasielewski, M. R.; Niemczyk, M. P.; Svec, W. A.; Pewitt, E. B.

J. Am. Chem. Soc.1985, 107, 1080.
(5) Harrison, R. J.; Pearce, B.; Beddard, G. S.; Cowan, J. A.; Sanders,

J. K. M. Chem. Phys.1987, 116, 429.
(6) Chatterjee, S.; Davis, P. D.; Gottschalk, P.; Kurz, M. E.; Sauerwein,

B.; Yang, X.; Schuster, G. B.J. Am. Chem. Soc.1990, 112, 6329.
(7) Asahi, T.; Ohkohchi, M.; Matsusaka, R.; Mataga, N.; Zhang, R.

P.; Osuka, A.; Maruyama, K.J. Am. Chem. Soc.1993, 115, 5665.
(8) (a) Read, I.; Napper, A.; Kaplan, R.; Zimmt, M. B.; Waldeck, D.

H. J. Am. Chem. Soc.1999, 121, 10976. (b) Read, I.; Napper, A.; Zimmt,
M. B.; Waldeck, D. H.J. Phys. Chem. A, in press.

(9) Berg, M.Chem. Phys. Lett.1994, 228, 317.
(10) Reynolds, L.; Gardecki, J. A.; Frankland, S. J. V.; Horng, M. L.;

Maroncelli, M. J. Phys. Chem.1996, 100, 10337.
(11) Larsen, D. S.; Ohta, K.; Fleming, G. R.J. Chem. Phys.1999, 111,

8970.
(12) de Gennes, P. G.Mol. Cryst. Liq. Cryst.1971, 12, 193.
(13) Palierne, J. F.Europhys. Lett.1987, 4, 1009.
(14) Evangelista, L. R.; Barbedo, G.Phys. Lett. A1994, 185, 213.
(15) Chitanvis, S. M.J. Chem. Phys.1996, 104, 9065.
(16) Matyushov, D. V.Chem. Phys.1993, 174, 199. Matyushov, D.

V.; Schmid, R.J. Chem. Phys.1995, 103, 2034.
(17) Perng, B.-C.; Newton, M. D.; Raineri, F. O.; Friedman, H. L.J.

Chem. Phys.1996, 104, 7153, 7177.
(18) (a) Ladanyi, B. M.; Maroncelli, M.J. Chem. Phys.1998, 109, 3204.

(b) Perng, B.-C.; Ladanyi, B. M.J. Chem. Phys.1999, 110, 6389.
(19) Matyushov, D. V.; Voth, G. A.J. Chem. Phys.1999, 111, 3630.
(20) Jeon, J.; Kim, H. J. Submitted toJ. Solution Chem.
(21) Jeon, J.; Kim, H. J. To be submitted toJ. Chem. Phys.
(22) Kim, H. J.J. Chem. Phys.1996, 105, 6818, 6833.
(23) Lee, S.; Hynes, J. T.J. Chem. Phys.1988, 88, 6853.
(24) Basilevsky, M. V.; Chudinov, G. E.; Newton, M. D.Chem. Phys.

1994, 179, 263.
(25) Robinson, F. N. H.Macroscopic Electromagnetism; Pergamon:

Oxford, U.K., 1973.
(26) Adu-Gyamfi, D.Physica1978, 93A, 553.
(27) Logan, D. E.Mol. Phys.1981, 44, 1271.
(28) Russakoff, G.Am. J. Phys.1970, 38, 1188.
(29) For reviews, see: Tomasi, J.; Persico, M.Chem. ReV. 1994, 94,

2027. Rivail, J. L.; Rinaldi, D.; Ruiz-Lopez, M. F. InComputational
Chemistry: ReView of Current Trends; Lecszynsky, J., Ed.; World
Scientific: Singapore, 1995. Cramer, C. J.; Truhlar, D. J.Chem. ReV. 1999,
99, 2161.

(30) See, e.g., Jackson, J. D.Classical Electrodynamics, 2nd ed.;
Wiley: New York, 1975.

(31) See, e.g., Bo¨ttcher, C. J. F.Theory of Electric Polarisation;
Elsevier: Amsterdam, 1952.

(32) Kim, H. J.; Hynes, J. T.J. Chem. Phys.1992, 96, 5088.
(33) Following ref 20, we neglect any oscillatory behavior that could

be present inQ.
(34) For an earlier effort to determineε(k) for quadrupolar solvents in

the continuum framework, see ref 26. For molecular-level investigations,
see refs 17 and 18b.

(35) For perspective, we point out that if we instead adopt the two-
sphere cavity formulation in eq 20 below, we obtain∆Gr ≈ 0.3 eV with
the radius of∼4 Å for both cavities.

∆Gr ≈ 4πκ
2CQ

3ε∞
2

(∆q)2{F0(κRD)
1

RD
+ F0(κRA)

1
RA

- úe-κR

R }
) ú

4πκ
2CQ

3ε∞
2

(∆q)2{ 1

(úyD
2 + 2yD + 2)RD

+

1

(úyA
2 + 2yA + 2)RA

- e-κR

R } (20)

Letters J. Phys. Chem. A, Vol. 104, No. 44, 20009815


