Adsorption of Multiple H₂ Molecules on Pd₃ and Pd₄ Clusters. A Density Functional Study

Jerzy Moc,[†] Djamaladdin G. Musaev,* and Keiji Morokuma*

Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322

Received: June 20, 2000; In Final Form: October 2, 2000

The reaction/adsorption of multiple H₂ molecules on Pd_n clusters with n = 3 and 4 were studied using the density functional theory. It has been shown that the activation of the first H₂ molecule by Pd₃ and Pd₄ takes place without or with a small energetic barrier (based on ΔH (298.15 K)) and leads to the formation of Pd₃(H)₂ and Pd₄(H)₂ complexes, respectively, where the H–H bond is broken. For the Pd₄(H)₂ complex, various isomeric structures were found in the singlet and triplet states, among which the singlet **Pd4_1_c_(e,e')**, with the two H ligands bridging the Pd–Pd edges not sharing the Pd atom, is found to be the most favorable. Unlike the first H₂ addition reaction, dissociative adsorption of the second H₂ molecule, reactions Pd₃(H)₂ + H₂ \rightarrow Pd₃(H)₄ and Pd₄(H)₂ + H₂ \rightarrow Pd₄(H)₄, appeared to be thermodynamically and kinetically unfavorable. Instead, molecular adsorption of additional mH₂ molecules onto the "naked" Pd centers of the Pd₃(H)₂ and Pd₄(H)₂ complexes was shown to be feasible, which is in good agreement with the experimental Pd_n + D₂ saturation studies. The thermodynamic stabilities of the resulting Pd₃(H)₂(H₂)_m (m = 1-4) species were discussed in terms of the ΔH and ΔG values estimated at T = 298.15 and 70 K.

I. Introduction

Atomic and molecular clusters have been extensively investigated for the last couple of decades, both experimentally and theoretically.¹ Those clusters consisting of transition metal (TM) atoms such as Pd or Pt are of particular interest because of their technological importance in heterogeneous catalysis. It has been inferred from gas-phase reactivity studies that small TM clusters exhibit properties that differ fundamentally from the corresponding bulk metal.² Strong size-dependence of reactivity of metal clusters has been observed in many cases,^{3,4} especially with molecular hydrogen.^{2,3a,3b,3f-3i,4}

From a computational point of view, TM clusters provide an excellent opportunity to address various structural, electronic, and reactivity issues. In recent papers,5,6 we have studied activation of the *first* H_2 and CH_4 molecules on Pt_n and Pd_n clusters with n = 2, 3, using the density functional theory (DFT) method with the B3LYP functional and CASPT2 (complete active space second-order perturbation) methods. For the Pt and Pd atoms and Pt2 and Pd2 dimers, B3LYP proved to yield reliable electronic structures as verified against the CASPT2 calculations and experimental data.5 For chemical reactions of metal clusters, full geometry optimization was found to be essential to model such processes.^{5,6} Activation of the H₂ reactant by the Pt₂ dimer and the Pt₃ trimer was shown to occur on the single metal atom, followed by H migration to the other Pt atom(s) with a negligible barrier. The above mechanism differed from that operative for Pd₂ and Pd₃, where the metal atoms work "collaboratively" to break the H-H bond without (or with a very small) barrier.^{5,6} Consequently, we have found different mechanisms of the H-H (and C-H) bond activation on Pt_n and Pd_n clusters studied; this reaction occurred on the top of the former, but on the edge of the latter, clusters.

In the present work, we extend the theoretical DFT study of reactivity of palladium clusters toward H₂ by considering both the Pd₄ tetramer and the interaction of Pd₃ and Pd₄ with multiple H₂ molecules. Our results are relevant to the experimental observations by Cox et al.⁴ on the chemisorption of simple molecules, including H₂ and D₂, on small unsupported Pd_n clusters (n < 25). In particular, on the basis of the saturation studies with D₂, these authors concluded that the resulting clusters were "hydrogen rich", i.e., that they had a D/Pd ratio greater than 1. The latter ratio was also shown to approach unity as the cluster size increased.⁴

Three issues we wish to address here are as follows: (1) How many H_2 molecules can Pd_3 and Pd_4 clusters accommodate? (2) What are the reaction mechanisms for adsorption of the consecutive H_2 molecules on these clusters? (3) What are the actual structures and spin states of the corresponding products?

II. Computational Methods

Optimized structures and normal-mode frequencies were calculated using the B3LYP method^{7,8} and the relativistic effective core potential (ECP) of Wadt and Hay with the valence double- ζ (VDZ) basis set⁹ on Pd in conjunction with the DZ basis¹⁰ for H (BSI, below). The energetics were improved using the relativistic ECP of Dolg et al. on Pd and the associated valence triple- ζ (VTZ) basis¹¹ combined with Dunning's¹² augmented correlation-consistent basis for H (BSII, below).¹³ Spin-restricted and spin-unrestricted calculations were carried out for singlets and triplets, respectively. For activation reaction paths, minima were connected to each transition state (TS) by following the intrinsic reaction coordinate (IRC).¹⁴ Enthalpies and Gibbs free energies were calculated at both room temperature (T = 298.15 K) and low temperature (70 K)¹⁵ at 1 atm, using vibrational frequencies evaluated at the B3LYP/BSI level. (Note that the actual cluster temperature in the experiment by

^{*} To whom correspondence should be addressed.

[†]Permanent address: Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.

TABLE 1: Energies and Thermodynamic Values (kcal/mol) for Reactions Involving Pd₃ Clusters Calculated at the B3LYP/BSII Level

	ΔE		T = 298.15 K		T = 70 K	
reaction species ^a		ΔZPE	ΔH	ΔG	ΔH	ΔG
$Pd_3(^{3}B_2) + H_2$	0.0	0.0	0.0	0.0	0.0	0.0
$Pd_3(^1A_1) + H_2$	4.8	4.9	4.9	5.8	4.9	5.1
$Pd_{3}(H_{2})(Pd3_1_a)$	-8.2	-5.7	-6.9	1.2	-6.2	-4.6
$Pd_{3}(H_{2}) ({}^{3}A')(Pd3_1_a)$	-10.9	-8.9	-9.8	-3.1	-9.3	-8.0
1st H ₂ act TS (Pd3_1_b)	-1.7	-1.5	-3.0	5.5	-2.0	-0.5
1st H ₂ act TS (3 A) (Pd3_1_b)	-1.8	-1.6	-2.6	3.7	-2.0	-0.8
$Pd_{3}(H)_{2}$ (Pd3_1_c_(e,f))	-34.5	-33.3	-34.8	-26.4	-33.8	-32.3
$Pd_{3}(H)_{2} ({}^{3}A'')(Pd3_1_c_(t,e))$	-16.4	-16.0	-17.0	-10.0	-16.4	-15.1
$Pd_{3}(H)_{2}$ (Pd3_1_c_(e,f)) [+ mH2]	0.0	0.0	0.0	0.0	0.0	0.0
$Pd_{3}(H)_{2}(H_{2})(Pd3_2_a(e,f))$	-13.1	-11.0	-11.7	-5.6	-11.3	-10.1
$Pd_{3}(H)_{2}(H_{2})(Pd3_2_a(e,e))$	-10.9	-7.7	-8.6	-1.7	-8.1	-6.8
$Pd_{3}(H)_{2}(H_{2})(Pd3_2_a'_(e,f))$	-11.3	-9.1	-10.0	-3.1	-9.6	-8.2
2nd H ₂ act TS (Pd3_2_b)	8.5	9.7	7.9	17.0	9.3	10.7
2nd H_2 act TS (Pd3_2_b) reverse ^b	0.0	-0.2	-0.6	0.5	-0.2	-0.2
$Pd_{3}(H)_{4}(Pd3_2_c_(t,e,e,e))$	8.5	9.9	8.5	16.5	9.5	10.9
$Pd_{3}(H)_{2}(H_{2})_{2}(Pd3_3_a(e,f))$	-23.5	-19.1	-20.8	-7.2	-19.9	-17.2
$Pd_{3}(H)_{2}(H2)_{3}(Pd3_4_a(e,f))$	-35.0	-28.0	-30.7	-10.1	-29.3	-25.2

^{*a*} If not indicated, the electronic state of the system is a closed-shell singlet. ^{*b*} Relative to the $Pd_3(H)_4(Pd3_2_c(t,e,e,e))$ product.

Cox et al.⁴ was not reported.) The calculations were performed using Gaussian $98.^{16}$

To present our results in a systematic way, we have introduced the Pdn_x_y_z notation for the calculated structures. Here "n" indicates the number of TM atoms in the cluster (in this paper n = 3 and 4); "x" shows which H₂ molecule (1st, 2nd, 3rd, etc.) participates in the reaction; "y" describes the nature of the species: y = a (or a') indicates the initial dihydrogen complex, $\mathbf{y} = \mathbf{b}$ corresponds to the H–H activation TS, $\mathbf{y} = \mathbf{c}$ indicates the H–H activated product, and $\mathbf{y} = \mathbf{d}$ (d1, etc.) is assigned to the isomerization TS; and "z" shows the position of the H-ligands in the activated system. In the activated system, the H-ligand can be positioned (1) on the single (terminal) Pd atom (we call this site "t"), (2) on the edge of the Pd-Pd bond (this site is denoted "e"), or (3) on the plane of the Pd-Pd-Pd face (this site is termed "f"). Because the systems calculated here have an even number of H-ligands, "z" will have an even number of components, and (e,e) indicates that the two H-ligands bridge the Pd-Pd edges sharing the Pd atom; (e,e') shows that the two H-ligands bridge the Pd-Pd edges not sharing the Pd atom; (e,f) shows that the first H-ligand bridges the Pd-Pd edge and the second H-ligand caps the Pd-Pd-Pd face, which shares the Pd-Pd edge; (e,f') indicates that the first H-ligand bridges the Pd-Pd edge and the second H-ligand caps the Pd-Pd-Pd face, which does not share the Pd-Pd edge, and so on.

III. Results and Discussion

In Tables 1 and 2 we summarize relative energies and thermodynamic values for reactions involving Pd₃ and Pd₄ clusters, respectively. Structures relevant to Pd₃ are drawn in Figures 1 and 2, and ΔH and ΔG of the reactions/adsorptions Pd₃(H)₂ + mH₂ \rightarrow Pd₃(H)₂(H₂)_m (m = 1-3) compared in Figure 3. For Pd₄, structures are depicted in Figures 4, 6, and 7, the first H₂ activation ΔH profile is given in Figure 5, and ΔH and ΔG of the reactions/adsorptions Pd₄(H)₂ + mH₂ \rightarrow Pd₄(H)₂(H₂)_m (m = 1-4) are presented in Figure 8. Below we discuss only B3LYP/BSII thermodynamic results. The lower-level B3LYP/ BSI values are listed in Tables S1 and S2 (Supporting Information) for comparison purposes.

A. Reaction of the H_2 molecule with Pd₃. Our previous studies⁶ revealed that the ground state of the Pd₃ cluster

corresponds to nearly degenerate triplet ³B₂ and ³B₁ states (under C_{2v}), with the former state being less than 1 kcal/mol more stable. The lowest singlet state, ¹A₁, was found to lie 4.8 kcal/ mol higher in energy than the lowest triplet state, ${}^{3}B_{2}$, at the B3LYP/BSII level. In our previous paper⁵ we have tested the ability of the B3LYP method to reproduce both the proper multiplicity of the ground state and the energy difference between the lowest singlet and triplet states of the Pd_n clusters for n = 1 and 2. B3LYP correctly predicted the Pd atom's singlet ground state. The singlet-triplet splitting, calculated at the B3LYP/BSII level, was underestimated by 1.4 and 3.1 kcal/ mol relative to the CASPT2/BSII and experimental data, respectively. Likewise, for Pd₂, the triplet ground state was found at both the CASPT2 and the B3LYP levels. The energy gap between the lowest singlet and triplet states calculated at the B3LYP/BSII level was underestimated by 3.5 kcal/mol with respect to the CASPT2 results. Thus, these data lend some credit to the B3LYP predictions of the ground-state multiplicity of Pd_n clusters.

In general, hydrogen molecules can coordinate to Pd_3 clusters via several ways. Previously, it was shown that the coordination mode through the H–H bond perpendicular to the Pd–Pd edge of Pd₃ led to the dihydride complex $Pd_3(H)_2$ without a barrier on the singlet potential energy surface (PES). A small activation barrier was present on the triplet PES, equal approximately to the S–T splitting of Pd₃ (ca. 5 kcal/mol).⁶ For the singlet Pd₃(H)₂ product complex, three distinct isomers of (e,e), (e,f), and (f,f) type (cf. Section II) were found. The (e,f) isomer appeared to be energetically the most favorable, followed by the (e,e) and the (f,f) kinds, although the three isomers were lying within 2 kcal/mol of one another. Also, the Pd₃(H)₂ structures could rearrange easily (at a very low energy barrier) relative to each other.

However, in our previous paper⁶ we did not present results relevant to H₂ coordination directly to one of the Pd centers. As shown in Figure 1, coordination of this type results in the formation of a weakly bound Pd₃(H₂) complex, Pd3_1_a, with the calculated adsorption enthalpies ΔH (298.15 K) of -9.8 and -11.8 kcal/mol for the triplet and singlet states, respectively (Table 1). The corresponding values of the free energy of adsorption ΔG (298.15 K) are -3.1 and -4.6 kcal/mol. The Pd3_1_a initial complex rearranges subsequently via Pd3_1_b TS into Pd3_1_c(e,f) and Pd3_1_c(t,e) dihydride com-

TABLE 2: Energies and Thermodynamic Values (kcal/mol) for Reactions Involving Pd₄ Clusters Calculated at the B3LYP/BSII Level

	ΔE		T = 298.15 K		T = 70 K	
reaction species ^a		ΔZPE	ΔH	ΔG	ΔH	ΔG
$Pd_4(^{3}A'') + H_2$	0.0	0.0	0.0	0.0	0.0	0.0
$Pd_4(^1A_1) + H_2$	16.8	16.8	16.8	17.5	16.8	17.0
$Pd_4(H_2)(Pd4_1_a)$	6.9	9.0	8.0	16.1	8.5	10.1
$Pd_4(H_2)$ (³ A) (Pd4_1_a)	-8.8	-7.0	-7.7	-1.1	-7.4	-6.0
1st H ₂ act TS (Pd4_1_b)	13.3	13.8	12.2	21.1	13.3	14.9
1st H ₂ act TS (³ A)(Pd4_1_b)	4.4	4.0	2.8	10.5	3.5	5.0
$Pd_4(H)_2(Pd4_1_c_(e,e))$	-15.5	-13.5	-14.9	-6.2	-13.9	-12.3
Pd ₄ (H) ₂ (Pd4_1_c_(e,e'))	-20.9	-19.0	-20.3	-11.3	-19.5	-17.8
$Pd_4(H)_2(Pd4_1_c_(f,f))$	-19.3	-18.3	-20.0	-10.9	-18.8	-17.2
isomer TS (Pd4_1_d1)	-14.6	-13.2	-14.9	-5.9	-13.7	-12.1
$Pd_4(H)_2 (^{3}A)(Pd4_1_c(t,e))$	0.1	1.3	0.0	8.0	0.8	2.3
migrat TS (3A)(Pd4_1_d2)	3.8	3.9	2.6	10.1	3.5	4.8
$Pd_4(H)_2(^{3}A')(Pd4_1_c(e,e))$	-4.5	-4.1	-5.3	2.4	-4.5	-3.1
$Pd_4(H)_2(^{3}A)(Pd4_1_c(e,e'))$	-8.3	-7.6	-8.9	-1.3	-8.1	-6.7
$Pd_4(H)_2({}^{3}A'')(Pd4_1_c_(e,f))$	-5.2	-5.1	-6.4	1.3	-5.5	-4.2
$Pd_4(H)_2 (Pd4_1_c_(e,e')) [+ mH2]$	0.0	0.0	0.0	0.0	0.0	0.0
$Pd_4(H)_2(H_2)(Pd4_2_a(e,e'))$	-10.8	-9.2	-9.9	-3.7	-9.6	-8.3
$Pd_4(H)_2(H_2)(Pd4_2_a(f,f))$	-10.0	-8.8	-9.9	-3.0	-9.2	-7.9
$Pd_4(H)_2(H_2)(Pd4_2_a'(f,f))$	-9.0	-8.0	-9.0	-2.7	-8.4	-7.2
$Pd_4(H)_2(H_2)(Pd4_2_a(e,f))$	-9.2	-7.6	-8.4	-2.4	-8.0	-6.8
2nd H_2 act TS (Pd4_2_b)	6.5	7.1	5.6	13.5	6.7	8.0
2nd H_2 act TS (Pd4_2_b) reverse ^b	1.3	0.7	0.7	0.7	0.7	0.7
$Pd_4(H)_4(Pd4_2_c(t,e,e,e))$	5.2	6.4	4.9	12.7	6.0	7.3
$Pd_4(H)_2(H_2)_2(Pd4_3_a(f,f))$	-22.2	-19.3	-21.2	-7.6	-20.1	-17.5
$Pd_4(H)_2(H_2)_2(Pd4_3_a(e,e'))$	-21.0	-17.7	-19.1	-6.2	-18.5	-15.9
$Pd_4(H)_2(H_2)_2(Pd4_3_a'_(f,f))$	-20.5	-17.6	-19.4	-6.0	-18.4	-15.8
$Pd_4(H)_2(H_2)_2(Pd4_3_a'_(e,e'))$	-20.4	-16.5	-18.2	-4.8	-17.3	-14.7
$Pd_4(H)_2(H_2)_3(Pd4_4_a(e,e'))$	-31.4	-25.4	-28.0	-7.8	-26.7	-22.7
$Pd_4(H)_2(H_2)_4(Pd4_5_a(e,e'))$	-43.2	-34.3	-38.0	-10.1	-36.0	-30.6

^{*a*} If not indicated, the electronic state of the system is a closed-shell singlet. ^{*b*} Relative to the $Pd_4(H)_4(Pd4_2_c(t,e,e,e)))$ product.

Figure 1. B3LYP/BSI optimized structures pertinent to the reaction of Pd₃ with the first H_2 (bond lengths in Å, angles in degrees); numbers in parentheses are for triplet states. Magnitudes of imaginary frequencies are included for the TSs.

plexes, respectively, on the singlet and triplet PESs (Figure 1). This finding has been confirmed by following the IRC from both transition states (note that the **Pd3_1_c_(e,f**) complex

was previously reported⁶ as **Pd3_H_Com1**). The H–H activation barriers ΔH^{\ddagger} (298.15 K) from **Pd3_1_a** are 3.9 and 7.2 kcal/mol on the singlet and triplet PESs, respectively. Thus, with ΔH (298.15 K), the singlet first H₂ activation TS lies 7.9 kcal/ mol lower than the Pd₃(¹A₁) + H₂ singlet reactants, whereas its triplet counterpart lies 2.6 kcal/mol lower than corresponding Pd₃(³B₂) + H₂ reactants. With ΔG (298.15 K), the singlet **Pd3_1_b** is located 0.3 kcal/mol below the Pd₃(¹A₁) + H₂ asymptote, whereas the triplet TS lies 3.7 kcal/mol above the Pd₃(³B₂) + H₂ asymptote.

B. Reaction/Adsorption of One or More H₂ Molecules with the Pd₃(H)₂ Complex. Next we discuss the reaction of Pd₃(H)₂ with H₂ molecules. Because Pd₃(H)₂ has three different, but energetically very close isomers,⁶ Pd3_1_c_(e,e), Pd3_1_c_(e,f), and Pd3_1_c_(f,f), we have investigated the reaction of all these isomers with the second H₂. Various Pd₃H₄ structures were probed, and the resulting minima are shown in Figure 2. Of these, Pd3_2_a_(e,f), Pd3_2_a_(e,e), and Pd3_2_a'_(e,f) are dihydrogen complexes. According to Table 1, adsorption of H_2 onto $Pd_3(H)_2$ to give $Pd3_2_a(e,f)$, Pd3_2_a_(e,e), and Pd3_2_a'_(e,f) is exothermic at 298.15 K with the enthalpies of adsorption ΔH of -11.7, -8.6, and -10.0 kcal/mol, and free energies of adsorption ΔG of -5.6, -1.7, and -3.1 kcal/mol, respectively. The basis set superposition error (BSSE) calculated by the full counterpoise method¹⁷ and BSII did not exceed 0.13 kcal/mol for the binding energy $(-\Delta E)$ of these complexes.

Unlike the case of $Pd_3(H)_2$, no stable $Pd_3(H)_4$ structure (with zero imaginary frequencies) that contains two dissociated H_2 molecule in "e" or "f" positions was found. We did find a **Pd3_2_c** structure of this type under a C_s symmetry constraint, but it produced one imaginary frequency; following the corresponding mode led eventually to the $Pd_3(H)_2(H_2)$ complex,

Figure 2. B3LYP/BSI optimized structures pertinent to the reactions of $Pd_3(H)_2$ with one, two, and three H_2 molecules (bond lengths in Å). Values shown in italics are ΔH (298.15 K) relative to the ground-state reactants, $Pd_3(H)_2 + mH_2$ (see Table 1). The reaction coordinate vector and the corresponding imaginary frequency are shown for the TS.

Pd3_2_a_(e,e). Instead, a Pd₃(H)₄ structure holding one H in a "t" position and corresponding to a genuine minimum, **Pd3_2_c_(t,e,e,e)**, was found (Figure 2). This $Pd_3(H)_4$ lies 8.5 (ΔH at 298.15 K) and 16.5 (ΔG at 298.15 K) kcal/mol above the reactants $Pd_3(H)_2$ (Pd3_1_c_(e,f)) + H₂. The computed pathway of this reaction follows a route where the second H₂ is first bound in Pd₃(H)₂(H₂) (Pd3_2_a(e,f)) and then activated at the productlike TS (Pd3_2_b) (Figure 2). Activation enthalpy ΔH^{\ddagger} (298.15 K) for the latter step is 7.9 kcal/mol with respect to $Pd_3(H)_2 + H_2$; for the reverse process (at the B3LYP/BSII//B3LYP/BSI level), this enthalpy is negative by 0.5 kcal/mol (Table 1). Therefore, $Pd_3(H)_4$ (Pd3_2_c_(t,e,e,e)) containing two dissociated H2 molecules would not exist either kinetically or thermodynamically. In summary, the reaction of $Pd_3(H)_2$ with H_2 molecules gives only complex $Pd_3(H)_2(H_2)$, where the second H_2 is not activated. Thermodynamically, the

most favorable structure of $Pd_3(H)_2(H_2)$ is that of $Pd3_2_a_(e,f)$ with C_s symmetry.

Our calculations show that the **Pd3_2_a_(e,f)** complex can accept two additional H₂ molecules to its "naked" ("unsaturated") Pd centers (see Figure 2 and Table 1). At 298.15 K, the computed enthalpies of reaction for adsorption of 2H₂ and 3H₂ onto Pd₃(H)₂ to form Pd₃(H)₂(H₂)₂ (**Pd3_3_a_(e,f)**) and Pd₃(H)₂(H₂)₃ (**Pd3_4_a(e,f)**) are -20.8 and -30.7 kcal/mol, respectively. The corresponding free energies of adsorption ΔG (298.15 K) are -7.2 and -10.1 kcal/mol (Table 1). The hydrogen-saturated Pd₃ cluster, Pd₃(H)₂(H₂)₃, holds one dissociated and three "slightly activated" H₂ molecules (the latter with the H–H bond-lengths increase of 0.04–0.06 Å and H–Pd distances of 1.86–1.92 Å) and exhibits a H/Pd ratio of 2.7. Comparison of the thermodynamics of the reactions Pd₃(H)₂ + mH₂ \rightarrow Pd₃(H)₂(H₂)_m (m = 1-3) at T = 298.15 and 70 K

Figure 3. Profiles of ΔH (298.15 and 70 K) and ΔG (298.15 and 70 K) for the Pd₃(H)₂ + mH₂ \rightarrow Pd₃(H)₂(H₂)_m (m = 1-3) reaction as functions of m. For m = 1, the values for the most stable complex, Pd₃(H)₂(H₂) (**Pd3_2_a(e,f)**), are used.

(Figure 3, Table 1) indicates the following: (1) At T = 298.15 K, an unfavorable entropy contribution in free energy ($-T\Delta S$) is significant and increases strongly with m; (2) At 70 K, the entropy contribution affects ΔG to a much lesser extent. (3) The heats of reaction calculated at 70 K are -11.3, -19.9, and -29.3 kcal/mol using ΔH , whereas they are -10.1, -17.2, and -25.2 kcal/mol using ΔG for m = 1, 2, and 3, respectively. Alternatively, the heats of reaction calculated at 70 K for the Pd₃(H)₂(H₂)_{m-1} + H₂ \rightarrow Pd₃(H)₂(H₂)_m (m = 1-3) process, i.e., for adsorption of the consecutive H₂ molecules, are found to be -11.3, -8.6, and -9.4 kcal/mol (ΔH), and -10.1, -7.1, and -8.0 kcal/mol (ΔG) for m = 1, 2, and 3, respectively.

C. Bare Pd₄ Cluster. The bare Pd₄ cluster has been the subject of INDO-MRCIS,¹⁸ ab initio (SCF- and CASSCF-based)^{19,20} and a variety of DFT²⁰⁻²² studies. All these studies concluded that the ground-state of Pd₄ is a tetrahedral-like triplet state. In particular, extensive calculations at the multireference configuration interaction (CI) with single and double excitations

(MRSDCI)¹⁹ and DFT²⁰ levels (using relativistic ECP) consistently predicted that the linear, square, and rhomboid planar structures of Pd₄ would be significantly higher in energy compared to the tetrahedral arrangement for both triplet and singlet multiplicities. Our thorough studies of the structure and stability of the Pd₄ cluster also led to the same conclusion. Therefore, we will discuss in detail only the thermodynamically most favorable tetrahedral-like structures of Pd₄. Our data for the square and rhomboid planar structures of Pd₄ are presented in the Supporting Information.

Jahn-Teller distortion of the triplet T_d (³T₂) structure of Pd₄ to C_{2v} symmetry was predicted to stabilize the cluster only slightly (1.6 kcal/mol), in accordance with the earlier result.¹⁸ Here, we found that the distorted $C_{2\nu}({}^{3}B_{2})$ structure, reported²² to be ground state at the B3LYP level, shows one imaginary frequency and distorts further to the C_s (³A") structure (see Figure 4).^{23a} The triplet ground-state structure of Pd₄ has Pd-Pd distances of 2.60-2.72 Å, which can be compared with the MRSDCI bond length of 2.69 Å¹⁹ and other DFT distances of 2.58-2.76 Å²⁰ and 2.60-2.78 Å.^{22,23b} The lowest singlet state of Pd₄ (¹A₁) derives from the D_{2d} structure (Figure 4) and lies 16.8 kcal/mol above the triplet (Table 2).²⁴ This value of the singlet-triplet splitting, calculated at the B3LYP/BSII level, may be underestimated by ca. 5 kcal/mol, considering the results for Pd₂.⁵ It is in a good agreement with the previous DFT results^{20,22} of 16.1 and 16.7 kcal/mol but is substantially larger than the MRSDCI (MRSDCI + Q)¹⁹ and INDO-MRCIS¹⁸ values of 0.4 (1.2) and 8.8 kcal/mol, respectively.

D. Activation of the First H₂ on Pd₄. As expected, in the first step of the reaction between Pd₄ cluster and H₂ molecule, the dihydrogen complex Pd₄(H₂) is formed (structure Pd4_1_a in Figure 4). The ground state of this complex is a triplet, with the singlet state lying 15.7 kcal/mol higher. The calculated enthalpies of the reaction Pd₄ + H₂ \rightarrow Pd₄(H₂) are -7.7 and -8.8 kcal/mol for the triplet and singlet states, respectively (Table 2 and Figure 5). In the next step, the activation of H₂

Figure 4. B3LYP/BSI optimized structures pertinent to the reactions of Pd₄ with the first H₂ (bond lengths in Å); geometrical parameters in parentheses are for triplet states. Values shown in italics are ΔH (298.15 K) relative to the ground-state reactants, Pd₄ (³A'') + H₂ (see Table 2). The reaction coordinate vector and the corresponding imaginary frequency are shown for each TS.

Figure 5. Profiles of ΔH (298.15 K) for activation of the first H₂ on Pd₄.

Figure 6. B3LYP/BSI optimized structures pertinent to the reactions of Pd₄(H)₂ with one H₂ (bond lengths in Å). Values shown in italics are ΔH (298.15 K) relative to the ground-state reactants, Pd₄(H)₂ + mH₂ (see Table 2). The reaction coordinate vector and the corresponding imaginary frequency are shown for the TS.

takes place via transition state **Pd4_1_b**, which involves breaking an H–H bond and forming the $Pd_4(H)_2$ complex. Interestingly, on the singlet PES the first H₂ activation TS lies 4.6 kcal/mol below the $Pd_4(S) + H_2$ asymptote, whereas on the triplet PES this TS is 2.8 kcal/mol higher than the corresponding $Pd_4(T) + H_2$ asymptote (Figure 5).

In terms of H–H bond length, the singlet TS Pd4_1_b is an "early" saddle point (r(H-H) = 0.93 Å), with the H-H bond being broken positioned "parallel" to one of the Pd-Pd edges. Following the IRC from Pd4_1_b on the singlet PES, this TS was found to connect the initial complex Pd4_1_a with the Pd4_1_c_(e,e) product, wherein the two H-ligands bridge the edges sharing the Pd atom (Figure 4). Complex Pd4_1_c_(e,e) is predicted to be 23 kcal/mol more stable than the initial complex Pd4_1_a, but it is not the thermodynamically most favorable isomer of Pd4(H)2. Indeed, our calculations reveal that the structure $Pd4_1_c_(e,e)$, of C_s symmetry, easily isomerizes to a more stable structure **Pd4_1_c_(e,e')**, of C_{2v} symmetry, another "edge-edge" type isomer, where the two H-ligands bridge the Pd-Pd edges not sharing the Pd atom. Pd4_1_c_(e,e') is 5.4 kcal/mol more stable than Pd4_1_c_(e,e) and lies 20.3 kcal/mol below the ground-state reactants $Pd_4(T) + H_2$. This isomerization process occurs through transition state Pd4_1_d1 and involves movement of H from one edge site to the another via the adjacent face site (see Figure 4). The Pd-H distances in **Pd4_1_c_(e,e)** and **Pd4_1_c_(e,e')** of 1.63–1.70 Å can be compared with the experimentally observed Pd-H bond lengths in $(\Delta$ -H)₂Pd₂ compounds (1.62-1.79 Å).²⁶ Another singlet Pd₄(H)₂ isomer we found, Pd4_1_c_(f,f), features both H atoms occupying the face sites and is only 0.3 kcal/mol less stable than $Pd4_1_c_(e,e')$ (Table 2). The $Pd4_1_c_(e,e')$ \rightarrow Pd4_1_c_(f,f) isomerization is likewise anticipated to be a low-barrier reaction and was not pursued here.

Figure 7. B3LYP/BSI optimized structures pertinent to the reactions of $Pd_4(H)_2$ with two, three, and four H_2 molecules (bond lengths in Å). Values shown in italics are ΔH (298.15 K) relative to the ground-state reactants, $Pd_4(H)_2 + mH_2$ (see Table 2).

Figure 8. Profiles of ΔH (298.15 and 70 K) and ΔG (298.15 and 70 K) for the Pd₄(H)₂ + mH₂ \rightarrow Pd₄(H)₂(H₂)_m (m = 1-4) reaction as functions of m. For m = 1 and 2, the values for the most stable complexes, Pd₄(H)₂(H₂) (Pd4_2_a(e,e') and Pd₄(H)₂(H₂)₂ (Pd4_3_a(f,f)), respectively, are used.

On the triplet PES, activation of the first H_2 proceeds through a similar TS, Pd4_1_b, while a barrier height calculated from the initial complex Pd4_1_a is 10.5 kcal/mol (on the singlet PES it is only 4.2 kcal/mol; see Figure 5). The net activation enthalpy at 298.15 K relative to the Pd₄(T) + H₂ asymptote is found to be 2.8 kcal/mol, as mentioned above. The triplet TS Pd4_1_b appears later along the reaction coordinate (r(H– H) =1.27 Å) as compared to its singlet counterpart, but again the H–H activation takes place in "parallel" to the Pd–Pd edge (Figure 4). Following the IRC from Pd4_1_b on the triplet PES, one finds that this transition state connects the initial complex Pd4_1_a with the product Pd4_1_c_(t,e), in which one H is bound to the single Pd atom, and the second H bridges the Pd–Pd edge (note that no singlet analogue of this structure was found). Pd4_1_c_(t,e) rearranges rather easily via migration of the TS, Pd4_1_d2, to the more stable isomer Pd4_1_c_(e,e). The latter isomer rearranges further to the most stable triplet Pd₄(H)₂ structure, Pd4_1_c_(e,e'), wherein both hydrogens occupy the edge sites not sharing the Pd atom. Recall that this kind of structure is most favorable in the singlet state as well. Because we have shown that $(e,e) \rightarrow (e,e')$ -type isomerization occurs on the singlet PES with a very low energetic barrier, we did not study the triplet case in more detail. The triplet structures Pd4_1_c_(e,e) and Pd4_1_c_(e,e') are ca. 10 kcal/mol less stable in ΔH (298.15 K) than their singlet counterparts and show correspondingly longer Pd-H bonds, by 0.02-0.11 Å. The second stable triplet Pd₄(H)₂ isomer, Pd4_1_c_(e,f), shows a unique "edge-face" structure, not existing for the singlet state (Figure 4),²⁷ and lies only 2.5 kcal/ mol higher than Pd4_1_c_(e,e').

Past the first H_2 activation TS, the singlet PES goes down below the triplet one, and as a consequence, it crosses the triplet PES in this region (see Figure 5). Assuming the $Pd_4 + H_2$ reaction starts on the ground-state triplet PES, this behavior implies that (1) the triplet **Pd4_1_b** determines the actual first H_2 activation barrier, and (2) the reaction will subsequently proceed on the singlet PES if the coupling element between the singlet and the triplet is sufficiently large (Pd is heavy enough that spin-orbit effects on this reaction can be expected to be important). In this regard we notice the recent paper by Moc et al.,^{25b} in which the B3LYP spin–crossover points found along the reaction coordinate were consistent with those predicted at the higher multiconfigurational second-order quasidegenerate perturbation theory (MCQDPT2) level.

E. Reaction/Adsorption of One or More H₂ Molecules with a Pd₄(H)₂ Complex. A large number of Pd₄H₄ structures were examined, and the most stable ones are summarized in Figure 6. An open Pd₄(H)₄ cluster, Pd4_2_c_(t,e,e,e), comprises two dissociated H₂ molecules,²⁸ whereas Pd₄(H)₂(H₂) species Pd4_2_a_(e,e'), Pd4_2_a_(f,f), Pd4_2_a'(f,f) and Pd4_2_a_(e,e') include both dissociated and molecular H₂. Adsorption of H₂ onto Pd₄(H)₂ to form Pd₄(H)₂(H₂) is predicted to be exothermic, where the computed ΔH (298.15 K) values fall in the range between -8.4 and -9.9 kcal/mol. Similarly, the ΔG (298.15 K) is calculated to range between -2.4 and -3.7 kcal/mol for those reactions (Table 2). Among the four Pd₄(H)₂(H₂) isomers found, Pd4_2_a(e,e') and Pd4_2_a(f,f) are the most stable.

In contrast, dissociative adsorption, $Pd_4(H)_2 + H_2 \rightarrow Pd_4(H)_4(Pd4_2_c_(t,e,e,e))$, is predicted to be endothermic (the calculated ΔH is 4.9 kcal/mol at 298.15 K) and proceeds with a 5.6 kcal/mol barrier (ΔH^{\ddagger} (298.15 K) relative to $Pd_4(H)_2 + H_2$ at the productlike TS $Pd4_2_b$ (Figure 6). As the energetic barrier for the reverse reaction is only 0.7 kcal/mol (Table 2), the $Pd_4(H)_4$ cluster $Pd4_2_c_(t,e,e,e)$ is kinetically and thermodynamically unstable.

Thus, the results presented in this section demonstrate that the complex $Pd_4(H)_2$ does not activate the second H_2 molecule. Instead, it forms a molecular complex, $Pd_4(H)_2(H_2)$, whose most favorable structures are Pd4_2_a_(e,e') and Pd4_2_a_(f,f), with the second H₂ coordinated to one of the Pd centers and three other Pd centers left "naked". One may therefore expect that these "naked" Pd centers are able to bind additional H₂ molecules as in the Pd₃ case. Indeed, our calculations show that Pd₄(H)₂ takes up totally four additional H₂ molecules. The structures illustrating the binding of two, three, and four H₂ molecules are depicted in Figure 7. The ΔH and ΔG (at 298.15 K) values for adsorption of $2H_2$ onto $Pd_4(H)_2$ to form $Pd_4(H)_2$ - $(H_2)_2$ range from -18.2 to -21.2 kcal/mol and from -4.8 to -7.6 kcal/mol, respectively (Table 2). Likewise, the calculated heats of the $Pd_4(H)_2 + 3H_2 \rightarrow Pd_4(H)_2(H_2)_3$ and $Pd_4(H)_2 + 4H_2$ \rightarrow Pd₄(H)₂(H₂)₄ reactions is -28.0 and -38.0 kcal/mol using ΔH (298.15 K) and -7.8 and -10.1 kcal/mol using ΔG (298.15 K), respectively (Table 2). The hydrogen-saturated Pd₄ cluster **Pd4_5_a_(e,e')**, of $C_{2\nu}$ symmetry, holds one dissociatively and four molecularly adsorbed H2 molecules and exhibits a H/Pd ratio of 2.5. The thermodynamic values for the reactions $Pd_4(H)_2$ $+ mH_2 \rightarrow Pd_4(H)_2(H_2)_m$ (m = 1-4) at 298.15 and 70 K are compared in Figure 8. The main findings from Figure 8 parallel those for Pd₃ case (Figure 3). Also, similar to the Pd₃ case, the estimated heats of reaction at 70 K of the $Pd_4(H)_2(H_2)_{m-1} + H_2$ \rightarrow Pd₄(H)₂(H₂)_m (m = 1-4) process, i.e., for adsorption of the consecutive H_2 molecules, are -9.6, -10.5, -6.6, and -9.3 kcal/mol (using ΔH values) and -8.3, -9.2, -5.2, and -7.9 kcal/mol (using ΔG values) for m = 1, 2, 3, and 4, respectively.

IV. Conclusions

In the present work, reaction and adsorption of multiple H_2 molecules on Pd_3 and Pd_4 clusters were investigated at the B3LYP level. From a thorough study of the PESs involved and detailed thermodynamic considerations, we have established the following:

(1) The reaction of Pd₃ (triplet ground state) with an H_2 molecule is initiated by the formation of the Pd₃(H₂) dihydrogen

complex. Negative net activation enthalpy is found for the overall $Pd_3(triplet) + H_2 \rightarrow Pd_3(H)_2$ (singlet) process.

(2) The reaction of Pd₄ (triplet ground state) with an H_2 molecule is initiated by the formation of the Pd₄(H₂) dihydrogen complex. Because of the larger thermodynamic stability of the singlet dihydride complex Pd₄(H)₂ (dissociative adsorption product) relative to the triplet counterpart, a spin-crossing should occur to move the reaction to the singlet PES.

(3) The overall Pd₄(triplet) + $H_2 \rightarrow Pd_4(H)_2$ (singlet) reaction is calculated to be exothermic, ΔH (298.15 K) = -20.3 kcal/ mol, with a net activation enthalpy at 298.15 K of 3 kcal/mol.

(4) Among various possible isomers of the singlet $Pd_4(H)_2$, the most stable is $Pd4_1_c_(e,e')$, where the two hydride ligands bridge the edges of the Pd-Pd bonds not sharing the same Pd atom. The second stable possible isomer is $Pd4_1_c_(f,f)$, in which the hydride ligands cap the faces of the Pd-Pd-Pd planes.

(5) Dissociative adsorption of the second H_2 via the $Pd_3(H)_2 + H_2 \rightarrow Pd_3(H)_4$ and $Pd_4(H)_2 + H_2 \rightarrow Pd_4(H)_4$ reactions is not feasible, as the products lack both thermodynamic and kinetic stability.

(6) Consistent with the experimental $Pd_n + D_2$ saturation studies by Cox et al.,⁴ $Pd_3(H)_2$ and $Pd_4(H)_2$ complexes are found to adsorb additional mH₂ molecules. The resultant $Pd_3(H)_2(H_2)_m$ (m = 1-3) and $Pd_4(H)_2(H_2)_m$ (m = 1-4) species are stable at low temperatures (because of decreased unfavorable entropy contribution), as indicated by the computed ΔG (70 K) values for the relevant reactions. Our hydrogen-saturated clusters, $Pd_3(H)_2(H_2)_3$ and $Pd_4(H)_2(H_2)_4$, exhibit H/Pd ratios of 2.7 and 2.5, respectively.²⁹

Acknowledgment. J.M. acknowledges the Emerson Center for the Visiting Fellowship. He also thanks the staff of the Emerson Center for kind help and for the use of the computer facilities and programs. The authors thank Dr. Q. Cui for his help at the early stage of this project. The present research is in part supported by a grant (CHE-9627775) from the National Science Foundation. Acknowledgment is also made for generous support of computing time at the Emerson Center of Emory University and the U.S. National Center for Supercomputing Applications (NCSA).

Supporting Information Available: Tables giving Cartesian coordinates of all the structures discussed in the paper, tables including energies and thermodynamic values for reactions involving Pd₃ and Pd₄ clusters as calculated at the B3LYP/BSI level, and a figure of bare Pd₄ cluster planar isomer structures. This information is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) See, for example: (a) *Physics and Chemistry of Finite Systems: From Clusters to Crystals*; Jena, P., Khanna, S. N., Rao, B. K., Eds.; Kluwer Academic: Dordrecht, 1992. (b) *Chemical Reactions in Clusters*; Berstein, E. R., Ed.; Oxford University Press: New York, 1996. (c) *Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms*; Haberland, H., Ed.; Springer-Verlag: New York, 1994.

(2) See, for example: Knickelbein, M. B.; Koretsky, G. M.; Jackson, K. A.; Pederson, M. R.; Hajnal, Z. J. Chem. Phys. **1998**, 109, 10692 and references therein.

(3) See, for example: (a) Whetten, R. L.; Cox, D. M.; Trevor, D. J.; Kaldor, A. *Phys. Rev. Lett.* **1985**, *54*, 1494. (b) Guesic, M. E.; Morse, M. D.; Smalley, R. E. *J. Chem. Phys.* **1985**, *82*, 590. (c) Zakin, M. R.; Cox, D. M.; Kaldor, A. *J. Chem. Phys.* **1987**, *87*, 5046. (d) Nakajima, A.; Kishi, T.; Sone, Y.; Nonose, S.; Kaya, K. Z. *Phys. D* **1991**, *19*, 385. (e) Kaldor, A.; Cox, D. M.; Zakin, M. R. *Adv. Chem. Phys.* **1988**, *70*, 211. (f) Trevor, D. J.; Cox, D. M.; Kaldor, A. *J. Am. Chem. Soc.* **1990**, *112*, 3742. (g) Geusic, M. E.; Morse, M. D.; O'Brien, S. C.; Smalley, R. E. *Rev. Sci. Instrum.*

1985, 56, 2123. (h) Parks, E. K.; Liu, K.; Richtsmeier, S. C.; Pobo, L. G.; Riley, S. J. J. Chem. Phys. 1985, 82, 5470. (i) Kaldor, A.; Cox, D. M. J. Chem. Soc., Faraday Trans. 1990, 86, 2459.

(4) Fayet, P.; Kaldor, A.; Cox, D. M. J. Chem. Phys. 1990, 92, 254. (5) Cui, Q.; Musaev, D. G.; Morokuma, K. J. Chem. Phys. 1998, 108, 8418

(6) Cui, Q.; Musaev, D. G.; Morokuma, K. J. Phys. Chem. A 1998, 102, 6373.

(7) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(8) DFT has proven to yield reliable results for both properties of TM systems; see for example: (a) Bauschlicher, C. W.; Langhoff, S. R.; Partridge, H. In Modern Electronic Structure Theory; Yarkony, D. R., Ed.; World Scientific: London, 1995. (b) Siegbahn, P. E. M. Adv. Chem. Phys. 1997, 93, 333. (c) Ziegler, T. Chem. Rev. 1991, 91, 651. (d) Salahub, D. R.; Castro, M.; Fourinier, R.; Calaminici, P.; Godbout, N.; Goursot, A.; Jamorski, C.; Kobayashi, J.; Martinez, A.; Papai, I.; Proyonov, E.; Russo, N.; Sirois, S.; Ushio, J.; Vela, A. In Theoretical and Computational Approaches to Interface Phenomena; Sellers, H., Olab, J., Eds.; Plenum Press: New York, 1995; p 187. (e) Musaev, D. G.; Morokuma, K. J. Phys. Chem. 1996, 100, 6509.

(9) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. (10) Dunning, T. H., Jr. J. Chem. Phys. 1970, 53, 2823.

(11) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor.

Chim. Acta 1990, 77, 123.

(12) Dunning, T. H., Jr.J. Chem. Phys. 1989, 90, 1007. Note that here, d functions on H were excluded from the correlation-consistent basis set.

(13) Note that BSI and BSII correspond to BSI and BSIII, respectively, in ref 6.

(14) (a) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. (b) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.

(15) The choice of low temperature (70 K) was based on the recent experimental infrared study² on the reaction of iron clusters Fe_n with H₂. The resulting $Fe_nH_p(H_2)_q$ products were examined at flow-tube temperatures in the range between 290 and 70 K.²

(16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 1998.

(17) Boys, S.; Bernardi, F. Mol. Phys. 1970, 19, 553.

(18) Estiu, G. L.; Zerner, M. C. J. Phys. Chem. 1994, 98, 4793.

(19) Dai, D.; Balasubramanian, K. J. Chem. Phys. 1995, 103, 648. Jahn-Teller distortion of the triplet Pd4(Td) structure was not considered by these authors

(20) Zacarias, A. G.; Castro, M.; Tour, J. M.; Seminario, J. M. J. Phys. Chem. A 1999, 103, 7692.

(21) Goursot, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114.7452

(22) Valerio, G.; Toulhout, H. J. Phys. Chem. 1996, 100, 10827.

(23) (a) The $C_s({}^{3}A')$ structure of Pd₄ was ca. 0.3 kcal/mol less stable than the C_s (³A") one and had an imaginary frequency. (b) The atomization energy of Pd₄, 109.9 kcal/mol ($\Delta E + \Delta ZPE$), agrees reasonably well with the MRSDCI and other DFT values of 117 kcal/mol¹⁹ and 114.9 and 118.2 kcal/mol,20,22 respectively.

(24) The D_{2d} point group for the lowest singlet Pd₄ structure also emerged from another DFT study,²⁵ whereas only the S₄ subgroup was reported to be the singlet Pd₄ lowest-energy structure in ref 22; our Pd-Pd distances for the singlet Pd4 remain in close agreement with those computed in refs 22 and 25.

(25) (a) Harada, M.; Dexpert, H. J. Phys. Chem. 1996, 100, 565. Only the singlet state of Pd₄ was considered by these authors. (b) Moc, J.; Fedorov, D. G.; Gordon, M. S. J. Chem. Phys. 2000, 112, 10247

(26) (a) Fryzuk, M. D.; Lloyd, B. R.; Clentsmith, G. K. B.; Rettig, S. J. J. Am. Chem. Soc. 1991, 113, 4332. (b) Fryzuk, M. D.; Lloyd, B. R.; Clentsmith, G. K. B.; Rettig, S. J. J. Am. Chem. Soc. 1994, 116, 3804.

(27) The C_s -symmetry-constraint calculations of the structure Pd4_1_c_(f,f) in the triplet state showed two imaginary frequencies.

(28) We have found several additional open-type Pd₄(H)₄ clusters of very similar energy to Pd4_2_c_(t,e,e,e), which are not reported to save space

(29) With reference to the Pd₄ tetramer, the conclusion of Cox et al.⁴ was that the deuterium-saturated cluster exhibited D/Pd = 3, meaning at least one more D2 adsorbed on Pd4 as compared to our hydrogen-saturated cluster (Pd4_5_a_(e,e')).