Adsorption of Multiple \mathbf{H}_{2} Molecules on $\mathbf{P d}_{3}$ and $\mathbf{P d}_{4}$ Clusters. A Density Functional Study

Jerzy Moc, ${ }^{\dagger}$ Djamaladdin G. Musaev,* and Keiji Morokuma*
Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322

Received: June 20, 2000; In Final Form: October 2, 2000

Abstract

The reaction/adsorption of multiple H_{2} molecules on Pd_{n} clusters with $n=3$ and 4 were studied using the density functional theory. It has been shown that the activation of the first H_{2} molecule by Pd_{3} and Pd_{4} takes place without or with a small energetic barrier (based on $\Delta H(298.15 \mathrm{~K})$) and leads to the formation of $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ and $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ complexes, respectively, where the $\mathrm{H}-\mathrm{H}$ bond is broken. For the $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ complex, various isomeric structures were found in the singlet and triplet states, among which the singlet Pd4_1_c_(e, é), with the two H ligands bridging the Pd-Pd edges not sharing the Pd atom, is found to be the most favorable. Unlike the first H_{2} addition reaction, dissociative adsorption of the second H_{2} molecule, reactions $\mathrm{Pd}_{3}(\mathrm{H})_{2}+\mathrm{H}_{2} \rightarrow \mathrm{Pd}_{3}(\mathrm{H})_{4}$ and $\mathrm{Pd}_{4}(\mathrm{H})_{2}+\mathrm{H}_{2} \rightarrow \mathrm{Pd}_{4}(\mathrm{H})_{4}$, appeared to be thermodynamically and kinetically unfavorable. Instead, molecular adsorption of additional mH_{2} molecules onto the "naked" Pd centers of the $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ and $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ complexes was shown to be feasible, which is in good agreement with the experimental $\mathrm{Pd}_{n}+\mathrm{D}_{2}$ saturation studies. The thermodynamic stabilities of the resulting $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}(m=$ $1-3)$ and $\mathrm{Pd}_{4}\left(\mathrm{H}_{2}\left(\mathrm{H}_{2}\right)_{m}(m=1-4)\right.$ species were discussed in terms of the ΔH and ΔG values estimated at $T=298.15$ and 70 K .

I. Introduction

Atomic and molecular clusters have been extensively investigated for the last couple of decades, both experimentally and theoretically. ${ }^{1}$ Those clusters consisting of transition metal (TM) atoms such as Pd or Pt are of particular interest because of their technological importance in heterogeneous catalysis. It has been inferred from gas-phase reactivity studies that small TM clusters exhibit properties that differ fundamentally from the corresponding bulk metal. ${ }^{2}$ Strong size-dependence of reactivity of metal clusters has been observed in many cases, ${ }^{3,4}$ especially with molecular hydrogen. ${ }^{2,3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{f}-3 \mathrm{i}, 4}$

From a computational point of view, TM clusters provide an excellent opportunity to address various structural, electronic, and reactivity issues. In recent papers, ${ }^{5,6}$ we have studied activation of the first H_{2} and CH_{4} molecules on Pt_{n} and Pd_{n} clusters with $n=2$, 3 , using the density functional theory (DFT) method with the B3LYP functional and CASPT2 (complete active space second-order perturbation) methods. For the Pt and Pd atoms and Pt_{2} and Pd_{2} dimers, B3LYP proved to yield reliable electronic structures as verified against the CASPT2 calculations and experimental data. ${ }^{5}$ For chemical reactions of metal clusters, full geometry optimization was found to be essential to model such processes. ${ }^{5,6}$ Activation of the H_{2} reactant by the Pt_{2} dimer and the Pt_{3} trimer was shown to occur on the single metal atom, followed by H migration to the other Pt atom(s) with a negligible barrier. The above mechanism differed from that operative for Pd_{2} and Pd_{3}, where the metal atoms work "collaboratively" to break the $\mathrm{H}-\mathrm{H}$ bond without (or with a very small) barrier. ${ }^{5,6}$ Consequently, we have found different mechanisms of the $\mathrm{H}-\mathrm{H}$ (and $\mathrm{C}-\mathrm{H}$) bond activation on Pt_{n} and Pd_{n} clusters studied; this reaction occurred on the top of the former, but on the edge of the latter, clusters.

[^0]In the present work, we extend the theoretical DFT study of reactivity of palladium clusters toward H_{2} by considering both the Pd_{4} tetramer and the interaction of Pd_{3} and Pd_{4} with multiple H_{2} molecules. Our results are relevant to the experimental observations by Cox et al. ${ }^{4}$ on the chemisorption of simple molecules, including H_{2} and D_{2}, on small unsupported Pd_{n} clusters $(n<25)$. In particular, on the basis of the saturation studies with D_{2}, these authors concluded that the resulting clusters were "hydrogen rich", i.e., that they had a D/Pd ratio greater than 1 . The latter ratio was also shown to approach unity as the cluster size increased. ${ }^{4}$

Three issues we wish to address here are as follows: (1) How many H_{2} molecules can Pd_{3} and Pd_{4} clusters accommodate? (2) What are the reaction mechanisms for adsorption of the consecutive H_{2} molecules on these clusters? (3) What are the actual structures and spin states of the corresponding products?

II. Computational Methods

Optimized structures and normal-mode frequencies were calculated using the B3LYP method ${ }^{7,8}$ and the relativistic effective core potential (ECP) of Wadt and Hay with the valence double- ζ (VDZ) basis set ${ }^{9}$ on Pd in conjunction with the DZ basis ${ }^{10}$ for H (BSI, below). The energetics were improved using the relativistic ECP of Dolg et al. on Pd and the associated valence triple- ζ (VTZ) basis ${ }^{11}$ combined with Dunning's ${ }^{12}$ augmented correlation-consistent basis for H (BSII, below). ${ }^{13}$ Spin-restricted and spin-unrestricted calculations were carried out for singlets and triplets, respectively. For activation reaction paths, minima were connected to each transition state (TS) by following the intrinsic reaction coordinate (IRC). ${ }^{14}$ Enthalpies and Gibbs free energies were calculated at both room temperature $(T=298.15 \mathrm{~K})$ and low temperature $(70 \mathrm{~K})^{15}$ at 1 atm , using vibrational frequencies evaluated at the B3LYP/BSI level. (Note that the actual cluster temperature in the experiment by

TABLE 1: Energies and Thermodynamic Values (kcal/mol) for Reactions Involving Pd \mathbf{H}_{3} Clusters Calculated at the B3LYP/BSII Level

reaction species ${ }^{a}$	ΔE		$T=298.15 \mathrm{~K}$		$T=70 \mathrm{~K}$	
		$\triangle \mathrm{ZPE}$	ΔH	ΔG	ΔH	ΔG
$\mathrm{Pd}_{3}\left({ }^{3} \mathrm{~B}_{2}\right)+\mathrm{H}_{2}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{Pd}_{3}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}_{2}$	4.8	4.9	4.9	5.8	4.9	5.1
$\mathrm{Pd}_{3}\left(\mathrm{H}_{2}\right)(\mathbf{P d} 3$ _1_a)	-8.2	-5.7	-6.9	1.2	-6.2	-4.6
$\mathrm{Pd}_{3}\left(\mathrm{H}_{2}\right)\left({ }^{3} \mathrm{~A}^{\prime}\right)(\mathbf{P d} 3$ _1_-a)	-10.9	-8.9	-9.8	-3.1	-9.3	-8.0
1st H_{2} act TS (Pd3_1_b)	-1.7	-1.5	-3.0	5.5	-2.0	-0.5
1st H_{2} act TS (${ }^{3} \mathrm{~A}$) ($\mathbf{P d 3}$ _1__b)	-1.8	-1.6	-2.6	3.7	-2.0	-0.8
$\mathrm{Pd}_{3}(\mathrm{H})_{2}(\mathbf{P d 3}$ _1_c_(e,f))	-34.5	-33.3	-34.8	-26.4	-33.8	-32.3
$\mathrm{Pd}_{3}(\mathrm{H})_{2}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)(\mathbf{P d 3}$ _1_c_(t,e))	-16.4	-16.0	-17.0	-10.0	-16.4	-15.1
$\mathrm{Pd}_{3}(\mathrm{H})_{2}(\mathbf{P d} 3$ _1_c_(e,f)) [$+\mathrm{mH} 2]$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)(\mathbf{P d 3}$ _2_a_(e,f))	-13.1	-11.0	-11.7	-5.6	-11.3	-10.1
$\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)(\mathbf{P d} 3$ _2_a_(e,e) $)$	-10.9	-7.7	-8.6	-1.7	-8.1	-6.8
$\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)\left(\mathbf{P d} 3\right.$ _2_- $\mathbf{a}^{\prime} _(\mathbf{e}, \mathbf{f})$)	-11.3	-9.1	-10.0	-3.1	-9.6	-8.2
2nd H_{2} act TS (Pd3_2_b)	8.5	9.7	7.9	17.0	9.3	10.7
2nd H_{2} act TS (Pd3_2_b) reverse ${ }^{\text {b }}$	0.0	-0.2	-0.6	0.5	-0.2	-0.2
$\mathrm{Pd}_{3}(\mathrm{H})_{4}(\mathbf{P d} 3 \ldots 2 \ldots \mathbf{c}$ [(t,e,e,e) $)$	8.5	9.9	8.5	16.5	9.5	10.9
$\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{2}(\mathbf{P d} 3$-3_-a_(e,f))	-23.5	-19.1	-20.8	-7.2	-19.9	-17.2
$\mathrm{Pd}_{3}(\mathrm{H})_{2}(\mathrm{H} 2)_{3}(\mathbf{P d} 3$ _ $\mathbf{4}$ _a_(e,f) $)$	-35.0	-28.0	-30.7	-10.1	-29.3	-25.2

Cox et al. ${ }^{4}$ was not reported.) The calculations were performed using Gaussian $98 .{ }^{16}$

To present our results in a systematic way, we have introduced the $\mathbf{P d} \boldsymbol{n} _\mathbf{x} _\mathbf{y} _\mathbf{z}$ notation for the calculated structures. Here " \boldsymbol{n} " indicates the number of TM atoms in the cluster (in this paper $n=3$ and 4); " x " shows which H_{2} molecule (1 st, 2nd, 3rd, etc.) participates in the reaction; " \mathbf{y} " describes the nature of the species: $\mathbf{y}=\mathbf{a}$ (or \mathbf{a}^{\prime}) indicates the initial dihydrogen complex, $\mathbf{y}=\mathbf{b}$ corresponds to the $\mathrm{H}-\mathrm{H}$ activation $\mathrm{TS}, \mathbf{y}=\mathbf{c}$ indicates the $\mathrm{H}-\mathrm{H}$ activated product, and $\mathbf{y}=\mathbf{d}(\mathbf{d 1}$, etc.) is assigned to the isomerization TS; and " z " shows the position of the H -ligands in the activated system. In the activated system, the H -ligand can be positioned (1) on the single (terminal) Pd atom (we call this site " t "), (2) on the edge of the $\mathrm{Pd}-\mathrm{Pd}$ bond (this site is denoted "e"), or (3) on the plane of the $\mathrm{Pd}-\mathrm{Pd}-\mathrm{Pd}$ face (this site is termed " f "). Because the systems calculated here have an even number of H-ligands, " \mathbf{z} " will have an even number of components, and (e,e) indicates that the two H -ligands bridge the $\mathrm{Pd}-\mathrm{Pd}$ edges sharing the Pd atom; (e,e') shows that the two H -ligands bridge the $\mathrm{Pd}-\mathrm{Pd}$ edges not sharing the Pd atom; (e,f) shows that the first H -ligand bridges the $\mathrm{Pd}-\mathrm{Pd}$ edge and the second H -ligand caps the $\mathrm{Pd}-$ $\mathrm{Pd}-\mathrm{Pd}$ face, which shares the $\mathrm{Pd}-\mathrm{Pd}$ edge; (e, $\left.\mathbf{f}^{\prime}\right)$ indicates that the first H -ligand bridges the $\mathrm{Pd}-\mathrm{Pd}$ edge and the second H -ligand caps the $\mathrm{Pd}-\mathrm{Pd}-\mathrm{Pd}$ face, which does not share the $\mathrm{Pd}-\mathrm{Pd}$ edge, and so on.

III. Results and Discussion

In Tables 1 and 2 we summarize relative energies and thermodynamic values for reactions involving Pd_{3} and Pd_{4} clusters, respectively. Structures relevant to Pd_{3} are drawn in Figures 1 and 2 , and ΔH and ΔG of the reactions/adsorptions $\mathrm{Pd}_{3}(\mathrm{H})_{2}+\mathrm{mH}_{2} \rightarrow \mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}(m=1-3)$ compared in Figure 3. For Pd_{4}, structures are depicted in Figures 4, 6, and 7, the first H_{2} activation ΔH profile is given in Figure 5, and ΔH and ΔG of the reactions/adsorptions $\mathrm{Pd}_{4}(\mathrm{H})_{2}+\mathrm{mH}_{2} \rightarrow \mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}$ ($m=1-4$) are presented in Figure 8. Below we discuss only B3LYP/BSII thermodynamic results. The lower-level B3LYP/ BSI values are listed in Tables S1 and S2 (Supporting Information) for comparison purposes.
A. Reaction of the $\mathbf{H}_{\mathbf{2}}$ molecule with $\mathbf{P d}_{3}$. Our previous studies ${ }^{6}$ revealed that the ground state of the Pd_{3} cluster
corresponds to nearly degenerate triplet ${ }^{3} \mathrm{~B}_{2}$ and ${ }^{3} \mathrm{~B}_{1}$ states (under $C_{2 v}$), with the former state being less than $1 \mathrm{kcal} / \mathrm{mol}$ more stable. The lowest singlet state, ${ }^{1} \mathrm{~A}_{1}$, was found to lie $4.8 \mathrm{kcal} /$ mol higher in energy than the lowest triplet state, ${ }^{3} \mathrm{~B}_{2}$, at the B3LYP/BSII level. In our previous paper ${ }^{5}$ we have tested the ability of the B3LYP method to reproduce both the proper multiplicity of the ground state and the energy difference between the lowest singlet and triplet states of the Pd_{n} clusters for $n=1$ and 2. B3LYP correctly predicted the Pd atom's singlet ground state. The singlet-triplet splitting, calculated at the B3LYP/BSII level, was underestimated by 1.4 and $3.1 \mathrm{kcal} /$ mol relative to the CASPT2/BSII and experimental data, respectively. Likewise, for Pd_{2}, the triplet ground state was found at both the CASPT2 and the B3LYP levels. The energy gap between the lowest singlet and triplet states calculated at the B3LYP/BSII level was underestimated by $3.5 \mathrm{kcal} / \mathrm{mol}$ with respect to the CASPT2 results. Thus, these data lend some credit to the B3LYP predictions of the ground-state multiplicity of Pd_{n} clusters.
In general, hydrogen molecules can coordinate to Pd_{3} clusters via several ways. Previously, it was shown that the coordination mode through the $\mathrm{H}-\mathrm{H}$ bond perpendicular to the $\mathrm{Pd}-\mathrm{Pd}$ edge of Pd_{3} led to the dihydride complex $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ without a barrier on the singlet potential energy surface (PES). A small activation barrier was present on the triplet PES, equal approximately to the $\mathrm{S}-\mathrm{T}$ splitting of Pd_{3} (ca. $\left.5 \mathrm{kcal} / \mathrm{mol}\right) .{ }^{6}$ For the singlet $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ product complex, three distinct isomers of (e,e), (e,f), and (f,f) type (cf. Section II) were found. The (e,f) isomer appeared to be energetically the most favorable, followed by the (\mathbf{e}, \mathbf{e}) and the (\mathbf{f}, \mathbf{f}) kinds, although the three isomers were lying within $2 \mathrm{kcal} / \mathrm{mol}$ of one another. Also, the $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ structures could rearrange easily (at a very low energy barrier) relative to each other.

However, in our previous paper ${ }^{6}$ we did not present results relevant to H_{2} coordination directly to one of the Pd centers. As shown in Figure 1, coordination of this type results in the formation of a weakly bound $\mathrm{Pd}_{3}\left(\mathrm{H}_{2}\right)$ complex, $\mathbf{P d} 3 _1 _$a, with the calculated adsorption enthalpies $\Delta H(298.15 \mathrm{~K})$ of -9.8 and $-11.8 \mathrm{kcal} / \mathrm{mol}$ for the triplet and singlet states, respectively (Table 1). The corresponding values of the free energy of adsorption $\Delta G(298.15 \mathrm{~K})$ are -3.1 and $-4.6 \mathrm{kcal} / \mathrm{mol}$. The Pd3_1_a initial complex rearranges subsequently via Pd3_1_b TS into Pd3_1_c_(e,f) and Pd3_1_c_(t,e) dihydride com-

TABLE 2: Energies and Thermodynamic Values (kcal/mol) for Reactions Involving Pd ${ }_{4}$ Clusters Calculated at the B3LYP/BSII Level

reaction species ${ }^{a}$	ΔE		$T=298.15 \mathrm{~K}$		$T=70 \mathrm{~K}$	
		$\triangle \mathrm{ZPE}$	ΔH	ΔG	ΔH	ΔG
$\mathrm{Pd}_{4}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)+\mathrm{H}_{2}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{Pd}_{4}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}_{2}$	16.8	16.8	16.8	17.5	16.8	17.0
$\mathrm{Pd}_{4}\left(\mathrm{H}_{2}\right)(\mathbf{P d 4}$ _1_a)	6.9	9.0	8.0	16.1	8.5	10.1
$\mathrm{Pd}_{4}\left(\mathrm{H}_{2}\right)\left({ }^{3} \mathrm{~A}\right)(\mathbf{P d 4}$ _1_-a)	-8.8	-7.0	-7.7	-1.1	-7.4	-6.0
1 st H_{2} act TS (Pd4_1_b)	13.3	13.8	12.2	21.1	13.3	14.9
1st H_{2} act TS $\left({ }^{3} \mathrm{~A}\right)(\mathbf{P d 4}$ _1_b)	4.4	4.0	2.8	10.5	3.5	5.0
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathbf{P d} 4 _\mathbf{1}\right.$-c_(e,e) $)$	-15.5	-13.5	-14.9	-6.2	-13.9	-12.3
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathbf{P d 4}\right.$ _1_c__(e, $\left.\mathbf{e}^{\prime}\right)$)	-20.9	-19.0	-20.3	-11.3	-19.5	-17.8
$\mathrm{Pd}_{4}(\mathrm{H})_{2}(\mathbf{P d 4}$ _1_c_(f,f))	-19.3	-18.3	-20.0	-10.9	-18.8	-17.2
isomer TS (Pd4_1_d1)	-14.6	-13.2	-14.9	-5.9	-13.7	-12.1
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left({ }^{3} \mathrm{~A}\right)\left(\mathbf{P d} 4 _\mathbf{1}\right.$-c_($\left.\mathbf{t , e} \mathbf{e}\right)$)	0.1	1.3	0.0	8.0	0.8	2.3
migrat TS (3A)(Pd4_1_d2)	3.8	3.9	2.6	10.1	3.5	4.8
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left({ }^{3} \mathrm{~A}^{\prime}\right)\left(\mathbf{P d} 4 _\right.$1 \quad c__(e,e) $)$	-4.5	-4.1	-5.3	2.4	-4.5	-3.1
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left({ }^{3} \mathrm{~A}\right)\left(\mathbf{P d 4}\right.$ _1_c_-(e, $\left.\mathbf{e}^{\prime}\right)$)	-8.3	-7.6	-8.9	-1.3	-8.1	-6.7
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)\left(\mathbf{P d} 4 _1 _\mathbf{c}\right.$ _ $\left.(\mathbf{e}, \mathbf{f})\right)$	-5.2	-5.1	-6.4	1.3	-5.5	-4.2
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathbf{P d 4}\right.$ _1_c_-(e, $\left.\mathbf{e}^{\prime}\right)$) $[+\mathrm{mH} 2]$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)\left(\mathbf{P d 4}\right.$ _2_a_(e, $\left.\mathbf{e}^{\prime}\right)$)	-10.8	-9.2	-9.9	-3.7	-9.6	-8.3
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)(\mathbf{P d 4}$ _-2_a_($\mathbf{f , f} \mathbf{f})$	-10.0	-8.8	-9.9	-3.0	-9.2	-7.9
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)\left(\mathbf{P d 4}\right.$ _2_- \mathbf{a}^{\prime} _(f,f) $)$	-9.0	-8.0	-9.0	-2.7	-8.4	-7.2
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)(\mathbf{P d 4}$ _2_a_(e,f))	-9.2	-7.6	-8.4	-2.4	-8.0	-6.8
2nd H_{2} act TS (Pd4_2_b)	6.5	7.1	5.6	13.5	6.7	8.0
2nd H_{2} act TS (Pd4_2_b) reverse ${ }^{\text {b }}$	1.3	0.7	0.7	0.7	0.7	0.7
$\mathrm{Pd}_{4}(\mathrm{H})_{4}(\mathbf{P d 4}$ _2_c_(t,e,e,e))	5.2	6.4	4.9	12.7	6.0	7.3
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{2}(\mathbf{P d 4}$-3_-a_(f,f))	-22.2	-19.3	-21.2	-7.6	-20.1	-17.5
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{2}\left(\mathbf{P d 4}\right.$-3_a_(e, $\left.\left.\mathbf{e}^{\prime}\right)\right)$	-21.0	-17.7	-19.1	-6.2	-18.5	-15.9
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{2}\left(\mathbf{P d 4}\right.$-3_- \mathbf{a}^{\prime}-(f,f) $)$	-20.5	-17.6	-19.4	-6.0	-18.4	-15.8
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{2}\left(\mathbf{P d} 4 _3\right.$ _ \mathbf{a}^{\prime} _ $\left(\mathbf{e}, \mathbf{e}^{\prime}\right)$)	-20.4	-16.5	-18.2	-4.8	-17.3	-14.7
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{3}\left(\mathbf{P d 4}\right.$-4_a_(e, $\left.\left.\mathbf{e}^{\prime}\right)\right)$	-31.4	-25.4	-28.0	-7.8	-26.7	-22.7
$\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{4}\left(\mathbf{P d 4}\right.$-5_a_(e, $\left.\left.\mathbf{e}^{\prime}\right)\right)$	-43.2	-34.3	-38.0	-10.1	-36.0	-30.6

${ }^{a}$ If not indicated, the electronic state of the system is a closed-shell singlet. ${ }^{b}$ Relative to the $\left.\mathrm{Pd}_{4}(\mathrm{H})\right)_{4}\left(\mathbf{P d 4} \mathbf{2} \mathbf{2} _\mathbf{c} _(\mathbf{t}, \mathbf{e}, \mathbf{e}, \mathbf{e})\right)$ product.

Figure 1. B3LYP/BSI optimized structures pertinent to the reaction of Pd_{3} with the first H_{2} (bond lengths in \AA, angles in degrees); numbers in parentheses are for triplet states. Magnitudes of imaginary frequencies are included for the TSs.
plexes, respectively, on the singlet and triplet PESs (Figure 1). This finding has been confirmed by following the IRC from both transition states (note that the Pd3_1_c_(e,f) complex
was previously reported ${ }^{6}$ as $\mathbf{P d} \mathbf{3} _\mathbf{H} _\mathbf{C o m 1}$). The H-H activation barriers $\Delta H^{\ddagger}(298.15 \mathrm{~K})$ from Pd3_1_a are 3.9 and 7.2 $\mathrm{kcal} / \mathrm{mol}$ on the singlet and triplet PESs, respectively. Thus, with $\Delta H(298.15 \mathrm{~K})$, the singlet first H_{2} activation TS lies $7.9 \mathrm{kcal} /$ mol lower than the $\operatorname{Pd}_{3}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}_{2}$ singlet reactants, whereas its triplet counterpart lies $2.6 \mathrm{kcal} / \mathrm{mol}$ lower than corresponding $\mathrm{Pd}_{3}\left({ }^{3} \mathrm{~B}_{2}\right)+\mathrm{H}_{2}$ reactants. With $\Delta G(298.15 \mathrm{~K})$, the singlet Pd3_1_b is located $0.3 \mathrm{kcal} / \mathrm{mol}$ below the $\mathrm{Pd}_{3}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}_{2}$ asymptote, whereas the triplet TS lies $3.7 \mathrm{kcal} / \mathrm{mol}$ above the $\mathrm{Pd}_{3}\left({ }^{3} \mathrm{~B}_{2}\right)+\mathrm{H}_{2}$ asymptote.
B. Reaction/Adsorption of One or More $\mathbf{H}_{\mathbf{2}}$ Molecules with the $\mathbf{P d}_{\mathbf{3}}(\mathbf{H})_{\mathbf{2}}$ Complex. Next we discuss the reaction of $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ with H_{2} molecules. Because $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ has three different, but energetically very close isomers, ${ }^{6} \mathbf{P d 3} _\mathbf{1} _\mathbf{c} _(\mathbf{e}, \mathbf{e})$, Pd3_1_c_(e,f), and Pd3_1_c_(f,f), we have investigated the reaction of all these isomers with the second H_{2}. Various $\mathrm{Pd}_{3} \mathrm{H}_{4}$ structures were probed, and the resulting minima are shown in Figure 2. Of these, Pd3_2_a_(e,f), Pd3_2_a_(e,e), and Pd3_2_a'_(e,f) are dihydrogen complexes. According to Table 1, adsorption of H_{2} onto $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ to give $\mathbf{P d} \mathbf{3}$ _2_a_(e,f), Pd3_2_a_(e,e), and Pd3_2_(a'_(e,f) is exothermic at 298.15 K with the enthalpies of adsorption ΔH of $-11.7,-8.6$, and $-10.0 \mathrm{kcal} / \mathrm{mol}$, and free energies of adsorption ΔG of -5.6 , -1.7 , and $-3.1 \mathrm{kcal} / \mathrm{mol}$, respectively. The basis set superposition error (BSSE) calculated by the full counterpoise method ${ }^{17}$ and BSII did not exceed $0.13 \mathrm{kcal} / \mathrm{mol}$ for the binding energy $(-\Delta E)$ of these complexes.

Unlike the case of $\mathrm{Pd}_{3}(\mathrm{H})_{2}$, no stable $\mathrm{Pd}_{3}(\mathrm{H})_{4}$ structure (with zero imaginary frequencies) that contains two dissociated H_{2} molecule in " \mathbf{e} " or " \mathbf{f} " positions was found. We did find a Pd3_2_c structure of this type under a C_{s} symmetry constraint, but it produced one imaginary frequency; following the corresponding mode led eventually to the $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)$ complex,

Figure 2. B3LYP/BSI optimized structures pertinent to the reactions of $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ with one, two, and three H_{2} molecules (bond lengths in \AA). Values shown in italics are $\Delta H(298.15 \mathrm{~K})$ relative to the ground-state reactants, $\mathrm{Pd}_{3}(\mathrm{H})_{2}+\mathrm{mH}_{2}$ (see Table 1). The reaction coordinate vector and the corresponding imaginary frequency are shown for the TS.

Pd3_2_a_(e,e). Instead, a $\mathrm{Pd}_{3}(\mathrm{H})_{4}$ structure holding one H in a " \mathbf{t} " position and corresponding to a genuine minimum, Pd3_2_c_(t,e,e,e), was found (Figure 2). This $\mathrm{Pd}_{3}(\mathrm{H})_{4}$ lies $8.5(\Delta H$ at 298.15 K$)$ and $16.5(\Delta G$ at 298.15 K$) \mathrm{kcal} / \mathrm{mol}$ above the reactants $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathbf{P d} \mathbf{3} _\mathbf{1} _\mathbf{c} _(\mathbf{e}, \mathbf{f})\right)+\mathrm{H}_{2}$. The computed pathway of this reaction follows a route where the second H_{2} is first bound in $\mathrm{Pd}_{3}\left(\mathrm{H}_{2}\left(\mathrm{H}_{2}\right)\right.$ ($\mathbf{P d} 3 _2 _\mathbf{a} _(\mathbf{e}, \mathbf{f})$) and then activated at the productlike TS (Pd3_2_b) (Figure 2). Activation enthalpy $\Delta H^{\ddagger}(298.15 \mathrm{~K})$ for the latter step is $7.9 \mathrm{kcal} / \mathrm{mol}$ with respect to $\mathrm{Pd}_{3}(\mathrm{H})_{2}+\mathrm{H}_{2}$; for the reverse process (at the B3LYP/BSII//B3LYP/BSI level), this enthalpy is negative by $0.5 \mathrm{kcal} / \mathrm{mol}$ (Table 1). Therefore, $\mathrm{Pd}_{3}(\mathrm{H})_{4}\left(\mathbf{P d} 3 _2 _c _(\mathbf{t}, \mathbf{e}, \mathbf{e}, \mathbf{e})\right)$ containing two dissociated H_{2} molecules would not exist either kinetically or thermodynamically. In summary, the reaction of $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ with H_{2} molecules gives only complex $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)$, where the second H_{2} is not activated. Thermodynamically, the
most favorable structure of $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)$ is that of $\mathbf{P d} 3 _2$ _a_(e,f) with C_{s} symmetry.

Our calculations show that the Pd3_2_a_(e,f) complex can accept two additional H_{2} molecules to its "naked" ("unsaturated") Pd centers (see Figure 2 and Table 1). At 298.15 K, the computed enthalpies of reaction for adsorption of $2 \mathrm{H}_{2}$ and $3 \mathrm{H}_{2}$ onto $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ to form $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{2}$ ($\mathbf{P d} \mathbf{3} _\mathbf{3} _\mathbf{a} _(\mathbf{e}, \mathbf{f})$) and $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{3}\left(\mathbf{P d} 3 _4 _\mathbf{a} _(\mathbf{e}, \mathbf{f})\right)$ are -20.8 and $-30.7 \mathrm{kcal} / \mathrm{mol}$, respectively. The corresponding free energies of adsorption ΔG (298.15 K) are -7.2 and $-10.1 \mathrm{kcal} / \mathrm{mol}$ (Table 1). The hydrogen-saturated Pd_{3} cluster, $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{3}$, holds one dissociated and three "slightly activated" H_{2} molecules (the latter with the $\mathrm{H}-\mathrm{H}$ bond-lengths increase of $0.04-0.06 \AA$ and $\mathrm{H}-\mathrm{Pd}$ distances of $1.86-1.92 \AA$) and exhibits a H / Pd ratio of 2.7 . Comparison of the thermodynamics of the reactions $\mathrm{Pd}_{3}(\mathrm{H})_{2}+$ $\mathrm{mH}_{2} \rightarrow \mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}(m=1-3)$ at $T=298.15$ and 70 K

Figure 3. Profiles of ΔH (298.15 and 70 K) and ΔG (298.15 and 70 K) for the $\mathrm{Pd}_{3}(\mathrm{H})_{2}+\mathrm{mH}_{2} \rightarrow \mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}(m=1-3)$ reaction as functions of m. For $m=1$, the values for the most stable complex, $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)\left(\mathbf{P d} 3 _2 _\right.$_a_(e,f)), are used.
(Figure 3, Table 1) indicates the following: (1) At $T=298.15$ K , an unfavorable entropy contribution in free energy ($-T \Delta S$) is significant and increases strongly with m; (2) At 70 K , the entropy contribution affects ΔG to a much lesser extent. (3) The heats of reaction calculated at 70 K are $-11.3,-19.9$, and $-29.3 \mathrm{kcal} / \mathrm{mol}$ using ΔH, whereas they are $-10.1,-17.2$, and $-25.2 \mathrm{kcal} / \mathrm{mol}$ using ΔG for $m=1,2$, and 3 , respectively. Alternatively, the heats of reaction calculated at 70 K for the $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m-1}+\mathrm{H}_{2} \rightarrow \mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}(m=1-3)$ process, i.e., for adsorption of the consecutive H_{2} molecules, are found to be $-11.3,-8.6$, and $-9.4 \mathrm{kcal} / \mathrm{mol}(\Delta H)$, and $-10.1,-7.1$, and $-8.0 \mathrm{kcal} / \mathrm{mol}(\Delta G)$ for $m=1,2$, and 3 , respectively.
C. Bare $\mathbf{P d}_{4}$ Cluster. The bare Pd_{4} cluster has been the subject of INDO-MRCIS, ${ }^{18}$ ab initio (SCF- and CASSCFbased) ${ }^{19,20}$ and a variety of DFT^{20-22} studies. All these studies concluded that the ground-state of Pd_{4} is a tetrahedral-like triplet state. In particular, extensive calculations at the multireference configuration interaction (CI) with single and double excitations
(MRSDCI) ${ }^{19}$ and DFT 20 levels (using relativistic ECP) consistently predicted that the linear, square, and rhomboid planar structures of Pd_{4} would be significantly higher in energy compared to the tetrahedral arrangement for both triplet and singlet multiplicities. Our thorough studies of the structure and stability of the Pd_{4} cluster also led to the same conclusion. Therefore, we will discuss in detail only the thermodynamically most favorable tetrahedral-like structures of Pd_{4}. Our data for the square and rhomboid planar structures of Pd_{4} are presented in the Supporting Information.

Jahn-Teller distortion of the triplet $\mathrm{T}_{\mathrm{d}}\left({ }^{3} \mathrm{~T}_{2}\right)$ structure of Pd_{4} to $C_{2 v}$ symmetry was predicted to stabilize the cluster only slightly ($1.6 \mathrm{kcal} / \mathrm{mol}$), in accordance with the earlier result. ${ }^{18}$ Here, we found that the distorted $C_{2 v}\left({ }^{3} \mathbf{B}_{2}\right)$ structure, reported ${ }^{22}$ to be ground state at the B3LYP level, shows one imaginary frequency and distorts further to the $C_{s}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$ structure (see Figure 4). ${ }^{23 \mathrm{a}}$ The triplet ground-state structure of Pd_{4} has $\mathrm{Pd}-$ Pd distances of $2.60-2.72 \AA$, which can be compared with the MRSDCI bond length of $2.69 \AA^{19}$ and other DFT distances of $2.58-2.76 \AA^{20}$ and $2.60-2.78 \AA .{ }^{22,23 \mathrm{~b}}$ The lowest singlet state of $\mathrm{Pd}_{4}\left({ }^{1} \mathrm{~A}_{1}\right)$ derives from the $D_{2 d}$ structure (Figure 4) and lies $16.8 \mathrm{kcal} / \mathrm{mol}$ above the triplet (Table 2). ${ }^{24}$ This value of the singlet-triplet splitting, calculated at the B3LYP/BSII level, may be underestimated by ca. $5 \mathrm{kcal} / \mathrm{mol}$, considering the results for $\mathrm{Pd}_{2}{ }^{5}$ It is in a good agreement with the previous DFT results ${ }^{20,22}$ of 16.1 and $16.7 \mathrm{kcal} / \mathrm{mol}$ but is substantially larger than the MRSDCI (MRSDCI +Q$)^{19}$ and INDO-MRCIS ${ }^{18}$ values of 0.4 (1.2) and $8.8 \mathrm{kcal} / \mathrm{mol}$, respectively.
D. Activation of the First $\mathbf{H}_{\mathbf{2}}$ on $\mathbf{P d}_{4}$. As expected, in the first step of the reaction between Pd_{4} cluster and H_{2} molecule, the dihydrogen complex $\mathrm{Pd}_{4}\left(\mathrm{H}_{2}\right)$ is formed (structure $\mathbf{P d} \mathbf{4} _\mathbf{1}$ _a in Figure 4). The ground state of this complex is a triplet, with the singlet state lying $15.7 \mathrm{kcal} / \mathrm{mol}$ higher. The calculated enthalpies of the reaction $\mathrm{Pd}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{Pd}_{4}\left(\mathrm{H}_{2}\right)$ are -7.7 and $-8.8 \mathrm{kcal} / \mathrm{mol}$ for the triplet and singlet states, respectively (Table 2 and Figure 5). In the next step, the activation of H_{2}

Figure 4. B3LYP/BSI optimized structures pertinent to the reactions of Pd_{4} with the first H_{2} (bond lengths in \AA); geometrical parameters in parentheses are for triplet states. Values shown in italics are $\Delta H(298.15 \mathrm{~K})$ relative to the ground-state reactants, $\mathrm{Pd}_{4}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)+\mathrm{H}_{2}\left(\right.$ see $\left.\mathrm{Table}^{2}\right)$. The reaction coordinate vector and the corresponding imaginary frequency are shown for each TS.

Figure 5. Profiles of $\Delta H(298.15 \mathrm{~K})$ for activation of the first H_{2} on Pd_{4}.

Figure 6. B3LYP/BSI optimized structures pertinent to the reactions of $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ with one H_{2} (bond lengths in A). Values shown in italics are $\Delta H(298.15 \mathrm{~K})$ relative to the ground-state reactants, $\mathrm{Pd}_{4}(\mathrm{H})_{2}+$ mH_{2} (see Table 2). The reaction coordinate vector and the corresponding imaginary frequency are shown for the TS.
takes place via transition state Pd4_1_b, which involves breaking an $\mathrm{H}-\mathrm{H}$ bond and forming the $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ complex. Interestingly, on the singlet PES the first H_{2} activation TS lies $4.6 \mathrm{kcal} / \mathrm{mol}$ below the $\mathrm{Pd}_{4}(\mathrm{~S})+\mathrm{H}_{2}$ asymptote, whereas on the
triplet PES this TS is $2.8 \mathrm{kcal} / \mathrm{mol}$ higher than the corresponding $\mathrm{Pd}_{4}(\mathrm{~T})+\mathrm{H}_{2}$ asymptote (Figure 5).

In terms of $\mathbf{H}-\mathrm{H}$ bond length, the singlet TS Pd4_1_b is an "early" saddle point $(r(\mathrm{H}-\mathrm{H})=0.93 \AA)$, with the $\mathrm{H}-\mathrm{H}$ bond being broken positioned "parallel" to one of the $\mathrm{Pd}-\mathrm{Pd}$ edges. Following the IRC from Pd4_1_b on the singlet PES, this TS was found to connect the initial complex Pd4_1_a with the Pd4_1_c_(e,e) product, wherein the two H-ligands bridge the edges sharing the Pd atom (Figure 4). Complex Pd4_1_c_(e,e) is predicted to be $23 \mathrm{kcal} / \mathrm{mol}$ more stable than the initial complex Pd4_1_a, but it is not the thermodynamically most favorable isomer of $\mathrm{Pd}_{4}(\mathrm{H})_{2}$. Indeed, our calculations reveal that the structure Pd4_1_c_(e,e), of C_{s} symmetry, easily isomerizes to a more stable structure Pd4_1_c_(e,e'), of $C_{2 v}$ symmetry, another "edge-edge" type isomer, where the two H -ligands bridge the $\mathrm{Pd}-\mathrm{Pd}$ edges not sharing the Pd atom. Pd4_1_c_(e,e') is $5.4 \mathrm{kcal} / \mathrm{mol}$ more stable than Pd4_1_c_(e,e) and lies $20.3 \mathrm{kcal} / \mathrm{mol}$ below the ground-state reactants $\mathrm{Pd}_{4}(\mathrm{~T})+\mathrm{H}_{2}$. This isomerization process occurs through transition state Pd4_1_d1 and involves movement of H from one edge site to the another via the adjacent face site (see Figure 4). The $\mathrm{Pd}-\mathrm{H}$ distances in Pd4_1_c_(e,e) and Pd4_1_c_(e,e') of 1.63-1.70 Å can be compared with the experimentally observed $\mathrm{Pd}-\mathrm{H}$ bond lengths in $(\Delta-H)_{2} \mathrm{Pd}_{2}$ compounds $(1.62-1.79 \AA) .{ }^{26}$ Another singlet $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ isomer we found, Pd4_1_c_(f,f), features both H atoms occupying the face sites and is only $0.3 \mathrm{kcal} / \mathrm{mol}$ less stable than Pd4_1_c_(e,e') (Table 2). The Pd4_1_c_(e,e') \rightarrow Pd4_1_c_(f,f) isomerization is likewise anticipated to be a low-barrier reaction and was not pursued here.

Figure 7. B3LYP/BSI optimized structures pertinent to the reactions of $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ with two, three, and four H_{2} molecules (bond lengths in \AA). Values shown in italics are $\Delta H(298.15 \mathrm{~K})$ relative to the ground-state reactants, $\mathrm{Pd}_{4}(\mathrm{H})_{2}+\mathrm{mH}_{2}$ (see Table 2).

Figure 8. Profiles of ΔH (298.15 and 70 K) and ΔG (298.15 and $70 \mathrm{~K})$ for the $\mathrm{Pd}_{4}(\mathrm{H})_{2}+\mathrm{mH}_{2} \rightarrow \mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}(m=1-4)$ reaction as functions of m. For $m=1$ and 2, the values for the most stable complexes, $\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)\left(\mathbf{P d 4} _\mathbf{2}\right.$ _a_(e, e') and $\mathrm{Pd}_{4}\left(\mathrm{H}_{2}\left(\mathrm{H}_{2}\right)_{2}\right.$ (Pd4_3_a_(f,f)), respectively, are used.

On the triplet PES, activation of the first H_{2} proceeds through a similar TS, Pd4_1_b, while a barrier height calculated from the initial complex Pd4_1_a is $10.5 \mathrm{kcal} / \mathrm{mol}$ (on the singlet PES it is only $4.2 \mathrm{kcal} / \mathrm{mol}$; see Figure 5). The net activation enthalpy at 298.15 K relative to the $\mathrm{Pd}_{4}(\mathrm{~T})+\mathrm{H}_{2}$ asymptote is found to be $2.8 \mathrm{kcal} / \mathrm{mol}$, as mentioned above. The triplet TS Pd4_1_b appears later along the reaction coordinate ($\mathrm{r}(\mathrm{H}-$ $\mathrm{H})=1.27 \AA$) as compared to its singlet counterpart, but again the $\mathrm{H}-\mathrm{H}$ activation takes place in "parallel" to the $\mathrm{Pd}-\mathrm{Pd}$ edge (Figure 4). Following the IRC from Pd4_1_b on the triplet

PES, one finds that this transition state connects the initial complex Pd4_1_a with the product Pd4_1_c_(t,e), in which one H is bound to the single Pd atom, and the second H bridges the $\mathrm{Pd}-\mathrm{Pd}$ edge (note that no singlet analogue of this structure was found). Pd4_1_c_(t,e) rearranges rather easily via migration of the TS, Pd4_1_d2, to the more stable isomer Pd4_1_c_(e,e). The latter isomer rearranges further to the most stable triplet $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ structure, $\mathbf{P d 4} _\mathbf{1} _\mathbf{c} _\left(\mathbf{e}, \mathbf{e}^{\prime}\right)$, wherein both hydrogens occupy the edge sites not sharing the Pd atom. Recall that this kind of structure is most favorable in the singlet state as well. Because we have shown that $(\mathbf{e}, \mathbf{e}) \rightarrow\left(\mathbf{e}, \mathbf{e}^{\prime}\right)$-type isomerization occurs on the singlet PES with a very low energetic barrier, we did not study the triplet case in more detail. The triplet structures Pd4_1_c_(e,e) and Pd4_1_c_(e,e') are ca. $10 \mathrm{kcal} / \mathrm{mol}$ less stable in $\Delta H(298.15 \mathrm{~K})$ than their singlet counterparts and show correspondingly longer $\mathrm{Pd}-\mathrm{H}$ bonds, by $0.02-0.11 \AA$. The second stable triplet $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ isomer, Pd4_1_c_(e,f), shows a unique "edge-face" structure, not existing for the singlet state (Figure 4), ${ }^{27}$ and lies only $2.5 \mathrm{kcal} /$ mol higher than Pd4_1_c_(e,e').

Past the first H_{2} activation TS, the singlet PES goes down below the triplet one, and as a consequence, it crosses the triplet PES in this region (see Figure 5). Assuming the $\mathrm{Pd}_{4}+\mathrm{H}_{2}$ reaction starts on the ground-state triplet PES, this behavior implies that (1) the triplet Pd4_1_b determines the actual first H_{2} activation barrier, and (2) the reaction will subsequently proceed on the singlet PES if the coupling element between the singlet and the triplet is sufficiently large (Pd is heavy enough that spin-orbit effects on this reaction can be expected to be important).

In this regard we notice the recent paper by Moc et al., ${ }^{25 b}$ in which the B3LYP spin-crossover points found along the reaction coordinate were consistent with those predicted at the higher multiconfigurational second-order quasidegenerate perturbation theory (MCQDPT2) level.
E. Reaction/Adsorption of One or More $\mathbf{H}_{\mathbf{2}}$ Molecules with a $\mathbf{P d}_{4}(\mathbf{H})_{2}$ Complex. A large number of $\mathrm{Pd}_{4} \mathrm{H}_{4}$ structures were examined, and the most stable ones are summarized in Figure 6. An open $\mathrm{Pd}_{4}(\mathrm{H})_{4}$ cluster, $\mathbf{P d 4}$ _2_c_(t,e,e,e), comprises two dissociated H_{2} molecules, ${ }^{28}$ whereas $\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)$ species Pd4_2_a_(e, é), Pd4_2_a_(f,f), Pd4_2_- $\mathbf{a}^{\prime} _(\mathbf{f}, \mathbf{f})$ and Pd4_2_a_(e,f) include both dissociated and molecular H_{2}. Adsorption of H_{2} onto $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ to form $\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)$ is predicted to be exothermic, where the computed $\Delta H(298.15 \mathrm{~K})$ values fall in the range between -8.4 and $-9.9 \mathrm{kcal} / \mathrm{mol}$. Similarly, the $\Delta G(298.15 \mathrm{~K})$ is calculated to range between -2.4 and $-3.7 \mathrm{kcal} / \mathrm{mol}$ for those reactions (Table 2). Among the four $\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)$ isomers found, $\mathbf{P d 4} _\mathbf{2} _\mathbf{a} _\left(\mathbf{e}, \mathbf{e}^{\prime}\right)$ and Pd4_2_a_(f,f) are the most stable.

In contrast, dissociative adsorption, $\mathrm{Pd}_{4}(\mathrm{H})_{2}+\mathrm{H}_{2} \rightarrow$ $\mathrm{Pd}_{4}(\mathrm{H})_{4}\left(\mathbf{P d} \mathbf{4} _\mathbf{2} _\mathbf{c} _(\mathbf{t}, \mathbf{e}, \mathbf{e}, \mathbf{e})\right)$, is predicted to be endothermic (the calculated ΔH is $4.9 \mathrm{kcal} / \mathrm{mol}$ at 298.15 K) and proceeds with a $5.6 \mathrm{kcal} / \mathrm{mol}$ barrier $\left(\Delta H^{\ddagger}(298.15 \mathrm{~K})\right.$ relative to $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ $+\mathrm{H}_{2}$ at the productlike TS Pd4_2_b (Figure 6). As the energetic barrier for the reverse reaction is only $0.7 \mathrm{kcal} / \mathrm{mol}$ (Table 2), the $\mathrm{Pd}_{4}(\mathrm{H})_{4}$ cluster Pd4_2_c_(t,e,e,e) is kinetically and thermodynamically unstable.

Thus, the results presented in this section demonstrate that the complex $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ does not activate the second H_{2} molecule. Instead, it forms a molecular complex, $\mathrm{Pd}_{4}\left(\mathrm{H}_{2}\left(\mathrm{H}_{2}\right)\right.$, whose most favorable structures are Pd4_2_a_(e,e') and Pd4_2_a_(f,f), with the second H_{2} coordinated to one of the Pd centers and three other Pd centers left "naked". One may therefore expect that these "naked" Pd centers are able to bind additional H_{2} molecules as in the Pd_{3} case. Indeed, our calculations show that $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ takes up totally four additional H_{2} molecules. The structures illustrating the binding of two, three, and four H_{2} molecules are depicted in Figure 7. The ΔH and ΔG (at 298.15 K) values for adsorption of $2 \mathrm{H}_{2}$ onto $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ to form $\mathrm{Pd}_{4}(\mathrm{H})_{2}-$ $\left(\mathrm{H}_{2}\right)_{2}$ range from -18.2 to $-21.2 \mathrm{kcal} / \mathrm{mol}$ and from -4.8 to $-7.6 \mathrm{kcal} / \mathrm{mol}$, respectively (Table 2). Likewise, the calculated heats of the $\mathrm{Pd}_{4}(\mathrm{H})_{2}+3 \mathrm{H}_{2} \rightarrow \mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{3}$ and $\mathrm{Pd}_{4}(\mathrm{H})_{2}+4 \mathrm{H}_{2}$ $\rightarrow \mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{4}$ reactions is -28.0 and $-38.0 \mathrm{kcal} / \mathrm{mol}$ using $\Delta H(298.15 \mathrm{~K})$ and -7.8 and $-10.1 \mathrm{kcal} / \mathrm{mol}$ using $\Delta G(298.15$ K), respectively (Table 2). The hydrogen-saturated Pd_{4} cluster Pd4_5_a_(e, e'), of $C_{2 v}$ symmetry, holds one dissociatively and four molecularly adsorbed H_{2} molecules and exhibits a H / Pd ratio of 2.5. The thermodynamic values for the reactions $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ $+\mathrm{mH}_{2} \rightarrow \mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}(m=1-4)$ at 298.15 and 70 K are compared in Figure 8. The main findings from Figure 8 parallel those for Pd_{3} case (Figure 3). Also, similar to the Pd_{3} case, the estimated heats of reaction at 70 K of the $\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m-1}+\mathrm{H}_{2}$ $\rightarrow \mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}(m=1-4)$ process, i.e., for adsorption of the consecutive H_{2} molecules, are $-9.6,-10.5,-6.6$, and -9.3 $\mathrm{kcal} / \mathrm{mol}$ (using ΔH values) and $-8.3,-9.2,-5.2$, and -7.9 $\mathrm{kcal} / \mathrm{mol}$ (using ΔG values) for $m=1,2,3$, and 4 , respectively.

IV. Conclusions

In the present work, reaction and adsorption of multiple H_{2} molecules on Pd_{3} and Pd_{4} clusters were investigated at the B3LYP level. From a thorough study of the PESs involved and detailed thermodynamic considerations, we have established the following:
(1) The reaction of Pd_{3} (triplet ground state) with an H_{2} molecule is initiated by the formation of the $\mathrm{Pd}_{3}\left(\mathrm{H}_{2}\right)$ dihydrogen
complex. Negative net activation enthalpy is found for the overall $\mathrm{Pd}_{3}($ triplet $)+\mathrm{H}_{2} \rightarrow \mathrm{Pd}_{3}(\mathrm{H})_{2}$ (singlet) process.
(2) The reaction of Pd_{4} (triplet ground state) with an H_{2} molecule is initiated by the formation of the $\mathrm{Pd}_{4}\left(\mathrm{H}_{2}\right)$ dihydrogen complex. Because of the larger thermodynamic stability of the singlet dihydride complex $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ (dissociative adsorption product) relative to the triplet counterpart, a spin-crossing should occur to move the reaction to the singlet PES.
(3) The overall Pd_{4} (triplet) $+\mathrm{H}_{2} \rightarrow \mathrm{Pd}_{4}(\mathrm{H})_{2}$ (singlet) reaction is calculated to be exothermic, $\Delta H(298.15 \mathrm{~K})=-20.3 \mathrm{kcal} /$ mol, with a net activation enthalpy at 298.15 K of $3 \mathrm{kcal} / \mathrm{mol}$.
(4) Among various possible isomers of the singlet $\mathrm{Pd}_{4}(\mathrm{H})_{2}$, the most stable is $\mathbf{P d 4} _\mathbf{1} _\mathbf{c} _\left(\mathbf{e}, \mathbf{e}^{\prime}\right)$, where the two hydride ligands bridge the edges of the $\mathrm{Pd}-\mathrm{Pd}$ bonds not sharing the same Pd atom. The second stable possible isomer is Pd4_1_c_(f,f), in which the hydride ligands cap the faces of the $\mathrm{Pd}-\mathrm{Pd}-\mathrm{Pd}$ planes.
(5) Dissociative adsorption of the second H_{2} via the $\mathrm{Pd}_{3}(\mathrm{H})_{2}$ $+\mathrm{H}_{2} \rightarrow \mathrm{Pd}_{3}(\mathrm{H})_{4}$ and $\mathrm{Pd}_{4}(\mathrm{H})_{2}+\mathrm{H}_{2} \rightarrow \mathrm{Pd}_{4}(\mathrm{H})_{4}$ reactions is not feasible, as the products lack both thermodynamic and kinetic stability.
(6) Consistent with the experimental $\mathrm{Pd}_{n}+\mathrm{D}_{2}$ saturation studies by Cox et al., ${ }^{4} \mathrm{Pd}_{3}(\mathrm{H})_{2}$ and $\mathrm{Pd}_{4}(\mathrm{H})_{2}$ complexes are found to adsorb additional mH_{2} molecules. The resultant $\mathrm{Pd}_{3}\left(\mathrm{H}_{2}\left(\mathrm{H}_{2}\right)_{m}\right.$ $(m=1-3)$ and $\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{m}(m=1-4)$ species are stable at low temperatures (because of decreased unfavorable entropy contribution), as indicated by the computed $\Delta G(70 \mathrm{~K})$ values for the relevant reactions. Our hydrogen-saturated clusters, $\mathrm{Pd}_{3}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{3}$ and $\mathrm{Pd}_{4}(\mathrm{H})_{2}\left(\mathrm{H}_{2}\right)_{4}$, exhibit H / Pd ratios of 2.7 and 2.5 , respectively. ${ }^{29}$

Acknowledgment. J.M. acknowledges the Emerson Center for the Visiting Fellowship. He also thanks the staff of the Emerson Center for kind help and for the use of the computer facilities and programs. The authors thank Dr. Q. Cui for his help at the early stage of this project. The present research is in part supported by a grant (CHE-9627775) from the National Science Foundation. Acknowledgment is also made for generous support of computing time at the Emerson Center of Emory University and the U.S. National Center for Supercomputing Applications (NCSA).

Supporting Information Available: Tables giving Cartesian coordinates of all the structures discussed in the paper, tables including energies and thermodynamic values for reactions involving Pd_{3} and Pd_{4} clusters as calculated at the B3LYP/BSI level, and a figure of bare Pd_{4} cluster planar isomer structures. This information is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) See, for example: (a) Physics and Chemistry of Finite Systems: From Clusters to Crystals; Jena, P., Khanna, S. N., Rao, B. K., Eds.; Kluwer Academic: Dordrecht, 1992. (b) Chemical Reactions in Clusters; Berstein, E. R., Ed.; Oxford University Press: New York, 1996. (c) Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms; Haberland, H., Ed.; Springer-Verlag: New York, 1994.
(2) See, for example: Knickelbein, M. B.; Koretsky, G. M.; Jackson, K. A.; Pederson, M. R.; Hajnal, Z. J. Chem. Phys. 1998, 109, 10692 and references therein.
(3) See, for example: (a) Whetten, R. L.; Cox, D. M.; Trevor, D. J.; Kaldor, A. Phys. Rev. Lett. 1985, 54, 1494. (b) Guesic, M. E.; Morse, M. D.; Smalley, R. E. J. Chem. Phys. 1985, 82, 590. (c) Zakin, M. R.; Cox, D. M.; Kaldor, A. J. Chem. Phys. 1987, 87, 5046. (d) Nakajima, A.; Kishi, T.; Sone, Y.; Nonose, S.; Kaya, K. Z. Phys. D 1991, 19, 385. (e) Kaldor, A.; Cox, D. M.; Zakin, M. R. Adv. Chem. Phys. 1988, 70, 211. (f) Trevor, D. J.; Cox, D. M.; Kaldor, A. J. Am. Chem. Soc. 1990, 112, 3742. (g) Geusic, M. E.; Morse, M. D.; O’Brien, S. C.; Smalley, R. E. Rev. Sci. Instrum.

1985, 56, 2123. (h) Parks, E. K.; Liu, K.; Richtsmeier, S. C.; Pobo, L. G.; Riley, S. J. J. Chem. Phys. 1985, 82, 5470. (i) Kaldor, A.; Cox, D. M. J. Chem. Soc., Faraday Trans. 1990, 86, 2459.
(4) Fayet, P.; Kaldor, A.; Cox, D. M. J. Chem. Phys. 1990, 92, 254.
(5) Cui, Q.; Musaev, D. G.; Morokuma, K. J. Chem. Phys. 1998, 108, 8418.
(6) Cui, Q.; Musaev, D. G.; Morokuma, K. J. Phys. Chem. A 1998, 102, 6373.
(7) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(8) DFT has proven to yield reliable results for both properties of TM systems; see for example: (a) Bauschlicher, C. W.; Langhoff, S. R.; Partridge, H. In Modern Electronic Structure Theory; Yarkony, D. R., Ed.; World Scientific: London, 1995. (b) Siegbahn, P. E. M. Adv. Chem. Phys. 1997, 93, 333. (c) Ziegler, T. Chem. Rev. 1991, 91, 651. (d) Salahub, D. R.; Castro, M.; Fourinier, R.; Calaminici, P.; Godbout, N.; Goursot, A.; Jamorski, C.; Kobayashi, J.; Martinez, A.; Papai, I.; Proyonov, E.; Russo, N.; Sirois, S.; Ushio, J.; Vela, A. In Theoretical and Computational Approaches to Interface Phenomena; Sellers, H., Olab, J., Eds.; Plenum Press: New York, 1995; p 187. (e) Musaev, D. G.; Morokuma, K. J. Phys. Chem. 1996, 100, 6509.
(9) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(10) Dunning, T. H., Jr. J. Chem. Phys. 1970, 53, 2823.
(11) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123.
(12) Dunning, T. H., Jr.J. Chem. Phys. 1989, 90, 1007. Note that here, d functions on H were excluded from the correlation-consistent basis set. (13) Note that BSI and BSII correspond to BSI and BSIII, respectively, in ref 6.
(14) (a) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. (b) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
(15) The choice of low temperature (70 K) was based on the recent experimental infrared study ${ }^{2}$ on the reaction of iron clusters Fe_{n} with H_{2}. The resulting $\mathrm{Fe}_{n} \mathrm{H}_{p}\left(\mathrm{H}_{2}\right)_{q}$ products were examined at flow-tube temperatures in the range between 290 and $70 \mathrm{~K}^{2}{ }^{2}$
(16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;

Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 1998.
(17) Boys, S.; Bernardi, F. Mol. Phys. 1970, 19, 553.
(18) Estiu, G. L.; Zerner, M. C. J. Phys. Chem. 1994, 98, 4793.
(19) Dai, D.; Balasubramanian, K. J. Chem. Phys. 1995, 103, 648. JahnTeller distortion of the triplet $\mathrm{Pd}_{4}\left(\mathrm{~T}_{\mathrm{d}}\right)$ structure was not considered by these authors.
(20) Zacarias, A. G.; Castro, M.; Tour, J. M.; Seminario, J. M. J. Phys. Chem. A 1999, 103, 7692.
(21) Goursot, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 7452.
(22) Valerio, G.; Toulhout, H. J. Phys. Chem. 1996, 100, 10827.
(23) (a) The $C_{s}\left({ }^{3} \mathrm{~A}^{\prime}\right)$ structure of Pd_{4} was ca. $0.3 \mathrm{kcal} / \mathrm{mol}$ less stable than the $C_{s}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$ one and had an imaginary frequency. (b) The atomization energy of $\mathrm{Pd}_{4}, 109.9 \mathrm{kcal} / \mathrm{mol}(\Delta \mathrm{E}+\Delta \mathrm{ZPE})$, agrees reasonably well with the MRSDCI and other DFT values of $117 \mathrm{kcal} / \mathrm{mol}^{19}$ and 114.9 and 118.2 $\mathrm{kcal} / \mathrm{mol},{ }^{20,22}$ respectively.
(24) The $D_{2 d}$ point group for the lowest singlet Pd_{4} structure also emerged from another DFT study, ${ }^{25}$ whereas only the S_{4} subgroup was reported to be the singlet Pd_{4} lowest-energy structure in ref 22 ; our $\mathrm{Pd}-\mathrm{Pd}$ distances for the singlet Pd_{4} remain in close agreement with those computed in refs 22 and 25.
(25) (a) Harada, M.; Dexpert, H. J. Phys. Chem. 1996, 100, 565. Only the singlet state of Pd_{4} was considered by these authors. (b) Moc, J.; Fedorov, D. G.; Gordon, M. S. J. Chem. Phys. 2000, 112, 10247
(26) (a) Fryzuk, M. D.; Lloyd, B. R.; Clentsmith, G. K. B.; Rettig, S. J. J. Am. Chem. Soc. 1991, 113, 4332. (b) Fryzuk, M. D.; Lloyd, B. R.; Clentsmith, G. K. B.; Rettig, S. J. J. Am. Chem. Soc. 1994, 116, 3804.
(27) The C_{s}-symmetry-constraint calculations of the structure $\mathbf{P d 4}$ _1_c_(f,f) in the triplet state showed two imaginary frequencies.
(28) We have found several additional open-type $\mathrm{Pd}_{4}(\mathrm{H})_{4}$ clusters of very similar energy to $\mathbf{P d 4} _\mathbf{2} _\mathbf{c} _(\mathbf{t}, \mathbf{e}, \mathbf{e}, \mathbf{e})$, which are not reported to save space.
(29) With reference to the Pd_{4} tetramer, the conclusion of Cox et al. ${ }^{4}$ was that the deuterium-saturated cluster exhibited $\mathrm{D} / \mathrm{Pd}=3$, meaning at least one more D_{2} adsorbed on Pd_{4} as compared to our hydrogen-saturated cluster (Pd4_5_a_(e, $\left.\mathbf{e}^{\prime}\right)$).

[^0]: * To whom correspondence should be addressed.
 \dagger Permanent address: Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.

