J. Phys. Chem. R000,104,11829-11835 11829
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Linear regression yields minimum-variance, unbiased estimates of the adjustable parameters, provided only
that the analyzed data be unbiased and of finite variance. If further the data are normally distributed, then so
will be the estimated parameters. But frequently data are transformed before fitting, and if the original data
are normal, the transformed data may not be. In particular, inversion and logarithmic conversion yield biased,
non-Gaussian distributions, so least-squares analysis of such data yields biased, nonnormally distributed
parameters, even when the transformed data are properly weighted in accord with the transformation. Monte
Carlo calculations are used to study the effects of such nonnormal data in cases of relevance to the analysis
of equilibrium and kinetics data (exponential decay, binding constants, enzyme kinetics, fluorescence quenching,
adsorption). Typically 19equivalent data sets are processed to obtain precise information about the parameter
biases and distributions. The biases generally persist in the limit of an infinite number of data values, which
means that the estimators are not only biased but also inconsistent.

Introduction 0.16 100

The statistical properties of linear least-squares (LLS) estima- =
tors are well establisheld If the data are distributed indepen- 012 L 1 8o
dently and normally (i.e., with the Gaussian distribution) about
their true values, the estimators of the parameters will be y B -1 60
unbiasedand minimumeariance and will themselves be nor- 0.08 1y
mally distributed about their true values, with variances that B - 40
can be calculated from threatrix of the normal equationhese
results hold also if the data are heteroscedastic, i.e., of unequal 0.04 - 4 20
uncertainty ¢yi), provided they are weighted properly, =
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If the weights are neglected, the parameter estimates remainFigure 1. Comparison nonlinear and weighted linear fits to a data set
unbiased, but are no longer minimum-variaAde other words, ~ ©f 501 points spread evenly betweerr 1.1 andx = 12, with constant
neglect of weights biases the error estimates but not the €O @y = 0.002) iny. The nonlinear fit is an unweighted fit =

¢ timat (A + BX~!and yieldsA = 0.977(41),B = 5.011(21), ang;®> = 514.
parameter estimates. o _ The weighted linear fit yield# = 1.091(40) B = 4.932(21), ang? =
Actually, the data need not be normally distributed in order 500, The “true” parameter values ake= 1 andB = 5, and the values

for least-squares to yield unbiased, minimum-variance estimatesin parentheses represent 1 standard error in terms of the final digits.
of the parameters. But is necessary for them to be finite-

variance and unbiasédThere are many situations in experi- Figure 1 illustrates effects of one of two frequently used data
mental physical science where data are transformed to facilitatetransformations, reciprocation. The other, logarithmic conver-
analysis by linear regression. It is by now well recognized that sion, is often used to render first-order kinetics data and
such transformations alter the relative weights of the data, sothermodynamic temperature dependence into linear functions
that usually the resulting LS analysis becomes a weight@dtfit. ~ of the independent variablé§.Reciprocation is employed in a
However, it has not been appreciated that theyliasthe data variety of situations, including analysis of equilibrium and
and hence also the parameter estimates. Moreover, this “datddinding constant dat&* enzyme kineticd? 14 adsorption
bias” does not diminish with increasing numbers of data values isotherms>*%and fluorescence quenchihg*® If we represent
nin the data set; in fact, it can actualiycreasewith n. The the transformed dependent variable bythen simple error
resulting estimators ar@consistentand at some the biases ~ propagation yields, for logarithmic conversian, = oy/y, and

in the parameters must exceed their standard errors. To illustratgfor reciprocationg, = o,/y> The weights thus become functions
this point, Figure 1 shows two nominally equivalent least- of the measured values, and this can contribute significantly
squares analyses of a single set of data having constant, normallyo the bias in the LS parametéfs.

distributed error iry. The unweighted nonlinear fit and weighted ~ There is another potentially serious consequence of the
linear fit yield parameter values that disagree>t8c and hence inversion transformation. If the original variagés normal, then

fail many consistency tests. its inverseu = 1/y not only is nonnormal, but also hasfinite
variance Thus, the transformed data violate one of the prime
TE-mail: tellinjp@ctrvax.vanderbilt.edu, FAX: 615-343-1234. preconditions for LS, which in turn means that the resulting
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LS parameters are also characterized by infinite variance. Inwherez = y,? andC is a normalization constant. £ variate
practice, of course, such divergence will be impossible to has a mean of and a variance of1222 which means thag,?
recognize in a single data set. And as long as the data are nohas a mean of unity and a variance o#.2/
excessively uncertain, the variances of their inverses will be  Note thatf (eq 5) is independent of an arbitrary scale factor
well-defined in an asymptotic sense, leading to similarly well- in the weights, hence the simple proportionality in eq 1. Also,
defined LS parameters. X is completely determined by the selection of values for the

To demonstrate the significance of these problems, | have independent variables. Thus, if the fitted quantities are the
carried out Monte Carlo (MC) calculations on the linear measured datathemselves (rather than any transforms thereof),
regression of logarithmically and reciprocally transformed data. and if their error structure is known at least relatively,
The computations employed methods like those used in my (=XTWX) is completely known before any measurementg of
recent study of the nonlinear analysis of normal déts will have been made. Singe 00 A1, it too is known to within a
be shown below, there is nothing pathological about the scale factor, permitting its use Experimental design
particular data set that produced the results in Figure 1; rather, If the data error structure is known absolutely, then the
this behavior is a predictable consequence of the “data bias” proportionality constant in eq 1 can be taken as unity, whence
resulting from the inversion of thg values to yield the straight-  the proportionality constant connectivgandA =1 is likewise
line relationship. In simplest terms the bias in this case just unity, giving
reflects the inequalityly 0= yO.

v =A"1 (8)

Background If additionally, the parent data distributions are normal, the

The theory of least-squares has been summarized retently parameter distributions are also normal, as already noted. Thus,
and so will be covered only briefly here. The LS equations are V is known exactly at the outset, and the confidence intervals
obtained by minimizing the sum of weighted squared residuals for the parameters can be evaluated from standard error function

S tables. Any failure to observe this result in MC calculations on
LLS represents a flaw in the computational procedures.
S= ZWiéi2 (2) Since the use of eq 8 implies prior knowledge of the statistics
of the y;, the corresponding weights may be designateé as
with respect to a set of adjustable paramgfgnahered; is the priori weights?324 At the other extreme is the situation where
residual (observed-calculated mismatch) forithepoint,w; is nothing is known about the statistics of ti4e except that the

its weight, and the column vectg containsp elements, one parent distributions are assumed to be normal, with constant
for each adjustable parameter. The problem is a linear one if variance, independent gf. In this case the weights; can be
the measured values of the dependent varighlean be related  set to 1.00, giving unweighted regression. The variangeis
to those of the independent variable(s) ¢, ...) and the  then estimated from the fit itself, as
adjustable parameters through the matrix equatfdi! 552
I

y=Xg+o 3) T
wherey andé are column vectors containingelements (for  Thjs represents am posterioriassessment of the varianceyin
then measured values) and thesign matrixX hasn rows and Correspondingly,
p columns and depends only on the values of the independent
variable(s) (assumed to be error-free) and not on the parameters V= S AL (10)
p or dependent variables The solution to the minimization v
problem is the set of equations

=l

©)

Under the same conditions as stated just before eg?7s

XWX = Ap = X"Wy (4) distributed as a scalegf variate.
Given the probability distribution functiof(y), one can
where the square weight matri%’ here is diagonal, witm obtain the distribution functiorQ(u) for a second random

elementsW; = w;. Equations 4 are solved for the parameters variableu related toy by the functionu(y) using

breg. dy(u)
du

B=A"X"Wy ) Qu) = z Ply,(u)] (11)
where A~1 is the inverse ofA (the matrix of the normal  where the sum is over all poinysthat solveu = u(y;). If data
equations). Knowledge of the parameters permits calculationy; are normally distributed about their true values and are
of the residual®) from eq 3 and thence &, which in matrix inverted tou; = 1/, eq 11 yields

form is c 1N 5
=—exg— —[=— 12
S=8"Wo (6) W=z eXp[ 20, (u yO) ] (12

If the parent distributions for the data are normal and the wherey, is the true value ofy (for the ith point) andC is a
proportionality constant in eq 1 is taken as 1.00, then the quantity normalizing constant. This function has Lorentzian wings;
S is distributed as g? variate forv = n — p degrees of therefore, as already noted, the variance wofis infinite.
freedomt? Correspondingly, the quantit@v follows the However, as was also noted previously, this divergence will be
reduced chi-squareg,@) distribution, given by of no practical concern providefd/y| is sufficiently small,

whereupon the variance aofi will be well-defined in an
P(2) dz= C£ 22 exp(-vz/2) dz @) asymptotic sens€. On the other hand, whefv,/yo| = s,
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TABLE 1. Monte Carlo Statistics of A =1 and Its 12000 T T T T T T m
Reciprocal, from 10 Values with Normally Distributed

Random Error of Specified ga2
oa [AO A AR A0 A 2-RAE AL

0.05 0.99996 2.49% 103 100255 2542 103 1.00252
010 0.99992 9.96% 10 1.01036 1.083 102 1.01032
015 0.99988 224% 102 102425 2745102 1.02422
020 0.99984 3986 102 104629 6.44% 102 1.04623 4000
020 1.00116 3.99% 102 104473 599%& 102 1.04623
035 0.99961 1226 10 114868 136%& 10?  1.20093
035 1.00202 1224 10 115218 256% 10?  1.20093

8000

Count

0.35 0.99972 1.22%x 10! 0.89179 1.158 10* 1.20093 0
0.35 1.00107 1.22% 10°* 1.05755 3.191% 1C° 1.20093 o ] 2 3
a Same seed used for first foug values, to illustrate the effects of A

scaling for a given set of unit-variance normal deviatg8btained by

" . Figure 2. Histogrammed results of ¥Monte Carlo estimates of a
numerical integration.

constantA = 1 (open points) and its reciprocal, with random normal

. s . . error ofoa = 0.35 superimposed upak The curves are the LS fits of
sampling statistics fon show erratic behavior for botty and the properly weighted histogram counts to a Gaussiaidand eq 12

o?. Although(ilis mathematically defined in this case (inthe  for A1 (The statistical errors in the counts are smaller than the plotted
sense of the Cauchy principal value), the sampling estimatespoints in this and most subsequent figures; this may be assumed in
of [Wdo not converge, because the central limit theorem does cases where they are not shown.)

not apply.

Even if the data are narrowly enough defined to avoid
catastrophic divergence problems in inversion, the transformed
variatesu; remain nonnormal and are biased estimators of the ~ 20000
true upj. Thus, even a linear LS fit can be expected to yield
biased estimates of the paramej@r3his result assumes proper Count
weighting of the data following the transformation, and as
already noted, the weighting actually contributes to the bias. 10000
Likewise, data transformed using = In y; will yield biased
parameter estimates. In this case we have the additional problem 5000
that the transformation fails for negatiyg though with the
restriction to positivey; the variance ofy does remain finite. 0

From a purely phenomenological standpoint, slightly non-
normal distributions can be represented as skewed Gaussians,

25000 | T T | T

(x— Xo)z Figure 3. Histogrammed results of ¥®onte Carlo values of products
P(X) = C[1 + q(x — X;)] exp| — ——— (13) and ratios of normal variates. In all cases the mean values &ré.0.
.2 Open points: X= AxB, oa = 0g = 1. Filled circles: A/IB, oa = 0.1,

X og = 1. Squares:A/B, oa = 1, og = 0.1. For the filled circles, the

smooth curve represents a fit to eq 12; in the other cases the lines are

-1 — / - H
whereC~* = v2rox and the skew parameteris determined just linear connections between adjacent points.

empirically. This distribution yields for the bias i

2 A useful variation on this theme is the question of distribu-
X = x[= qo, (14) tions of products and ratios of independent normal variates.
. . . Neither of these is normally distributed, and the deviations from
The bias thus scales as the variance, a dependence which hold§, 4 are immediately obvious if both variates have standard
quite generally for modest biés. deviations comparable to their means in magnitude (see Figure
3). However, as both variates become relatively well defined
(0 =~ |u|/10), the distributions of products and ratios become at
Statistics of Reciprocals.The anomalous statistics of recip- least roughly normal, with standard deviations that follow the
rocals can be demonstrated with the simplest kind of Monte normal rules of error propagation (e.g.,gfrepresents either
Carlo calculation: Generate normal error of specified magnitude A/B or A x B, thenog/q = [(0a/A)? + (08/B)?]¥d). In fact one
on a quantity and then examine the MC statistics of it and its can verify that this holds quite well if even one of the two
reciprocal. Some results of such calculations are given in Table variates has a narrow distribution, but with one exception: The
1 and displayed in Figure 2. ratio A/B will demonstrate “reciprocal statistics” if the distribu-
For small relativesa the reciprocal seems well-behaved; but tion of B is broad, no matter how narrowly definedl is.
its average is biased by an amount that scales roughlyonfth Recognition of this behavior is important for understanding the
as predicted by eq 14, and its estimated variance is systemati-anomalous statistics reported in some MC stuéfies.
cally larger than the “true” value (the asymptotic value from Despite their poor behavior when subjected to sampling
error propagation), the disparity increasing with The last statistics, reciprocal normal variates can still be characterized
four averages clearly reflect the divergence. At the same time with respect to confidence limits from MC calculations, through
the estimates of and its variance behave as expected: The simple sorting procedures. Also, because of the one-to-one
scatter in the foufAQvalues foroa = 0.35 is consistent with mapping between quantities and their inverses, the range
the standard erroua/NY2 = 0.0011, while that in the estimated  bracketing a given fraction of a normal variate yields directly,
variance is well within the predicted relative standard error of through inversion, the equivalent range for the reciprocal variate,
(2/N)Y2 = 0.0045. and vice versa.

Results and Discussion
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Figure 5. HistogrammedSv values from same fits that produced
Figure 4. Error bars representl The smooth curve is the theoretical
,2 distribution forv = 3. In both cases, weighted fits of the binned
alues to eq 7 yielded values gt > 300, forv = 46.

Figure 4. Histogrammed results of $QS estimates of the intercept
A from fits of 5-point data sets to the linear modey # A + Bx. The
smooth curve is a Gaussian that represents the results predicted fo%
normally distributed error in (Y. The points were obtained for
normally distributed error iny, with weights calculated using the 8.0

theoreticaly values (open points) or the “observegvalues (filled). \0*.__.\._\.\
6.0 ]

Fitting Reciprocal Data to a Linear Model. To illustrate .
the effects of bias from inversion, | have used the straight-line 2 4.0
model, 1y = A + Bx, with A= 1, B =5, and the fivex values 2 50
1.1, 3.3, 5.5, 8.3, and 12.0. As a benchmark for the results @
obtained when the nonnormal inverted data are fitted, | have 0.0
also run MC calculations for normally distributed error in the - ——

fitted quantities (1), but having magnitude proportional yo?, -2.0 ——o—o—?—c o | c'>—_
as evaluated on the theoretical line. For this example, the error
. . : e : 0.05 0.10 0.15 0.20
in y was taken as 0.002, which is about one-eighth the magnitude 0.00
of the smallest value (at = 12). 1
Results obtained for normally distributed error in the fitted 30

quantity (1¥) bore out expectations: normally distributed,
unbiased parameter estimates having standard errors as predicted 25 |-
by eq 8, andSv values that follow the reduced chi-square & 20 |-
distribution of eq 7. When the weights were neglected, the &

parameters remained normal and unbiased, but their standard® 15 - 7]
errors increased by factors of 3 (f@) and 9 @). For 10 .
comparison, eq 10 predicts an even larggbut a smalleivg, 5 L -

which illustrates the unreliability of the variance-covariance 0 . . A A
matrix when heteroscedastic data are not properly weighted. 0 0.001 0.002 0003 0.004 0.005
Neglect of weights also yieldeHv values whose distribution oy

was grossly in disagreement with tjpe distribution fory = 3
(after a necessary rescaling to an average value of unity in this

Figure 6. Dependence of parameter bias (%) @n(lower) and on

the number of data points. The upper plot displays the bias in the

case). . interceptA (circles) and slop® (squares) for theoretical (open points)
When the errors are normal yninstead of 1y, the parameter  and “observed” weighting, with all results obtained usifg= 0.002.

distributions are no longer Gaussian, as is illustrated in Figure The lower plot shows the bias i (“observed” weighting) fon = 5,

4. The proper weights in this case 31#¥o,. As the “rollers of with the smooth curve being a fitted quadratic through the origin.

the dice” in this Monte Carlo game, we have the choice of

evaluating the weights using either the “true” or the “observed” is important to preserve thestructure of the data; this was

yi values. The former choice results in a negative bia& of done by simply doubling, tripling, etc. the number of points at

—2.55(8)%, and a positive bias Biof about the same absolute  eachx. The key result here is that none of the biases vanishes

magnitude. The latter weighting choice doubles the biases inin the limit n — o, which demonstrates that both estimators

magnitude but reverses their signs. The dispersion parametersire inconsistent for both weighting choices. Moreover, since

are also biased by statistically significant amounts, as comparedthe parameter standard errors scaled®, it is clear that the

with the “true” values (calculated for normal error iry)t/ by bias must exceed the standard error for suitably largewas
+1.1(2)% @a, theoretical weighting)+0.3(2)% @a, Observed), this realization that led to the preparation of Figure 1, which
+1.5(2)% g, theoretical) and-0.4(2)% @, observed). Thus, illustrates statistically significant bias for the weighted linear

despite the larger biases in the parameters, the “observedfit of the transformed data. By contrast, the nonlinear estimators
weighting (which is the only one available for the linear analysis from an unweighted fit of thg values are consistent (though
of actual data) yields smaller parameter variances. Both distribu- biased for finiten).2

tions of 9v values resemble the theoretigaf distribution for The parameter standard errors and biases both depend on the
v = 3 but still deviate from it by statistically significant amounts  x-structure of the data. For example, if the first point is moved
(Figure 5)%° from x = 1.1 tox = 0, the statistics for the intercept become

Figure 6 illustrates that the bias scales roughly with the data essentially those of §/at that point: The bias practically
variance, as predicted by eq 14. To obtain mh@ependence it  vanishes, and the standard error drops to 0.002. At the same
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Figure 7. Relative parameter biadg/f = (BU— PBuwud/Prue as a 0.0 7]
function of A, for LLS model 1y = A + Bx, with B=5: (open points) e r——% 2 %
A; (filled points) B. Standard errors (not shown) are mostly smaller 01k _
than the displayed points. For this and the following figuyés fixed )
at 10% of the smallesy value, and the weights are assessed using W”/.‘:
“observed”y:. L . ' L
0.00 0.05 0.10 0.15 0.20
0.01 — " . . 100 1/
Figure 9. Percent bias in intercept (a) and slopa (b) as functions
i § § § % g % - of 1/n, for 4% proportional error iry (circles), and foro,; = 0.5 ;2
0.00 - E (x). For proportional error, open points represent results obtained
Acp/op - evaluating the weights using “trusji, while filled were obtained by
-0.01 weighting on “observed¥;. For most values of b/ two points are
plotted; MC statistical errors (not shown) are comparable to the spread
in these values. For reference, the “exact” standard errors for five-
-0.02 point data sets are, = 0.336 andss = 0.1355 (4% error) and, =
0.419 andog = 0.0586 (1, = 0.5).
0.03 | .
M ! L i 0.1 tests indicates a need to go beyond eqs 8 and 10 to assess
0.1 1 118 100 parameter errors for the linear model.
_ S The observation of opposite signs for the biases from the two
Figure 8. Relative bias in parameter errorsos/os = (0 — Op.we)l weighting options in Figure 6 suggests that the total bias includes

9p,me 8 a function of, for same linear model. Hergweis the value contributions that work in opposite directions from the data
calculated from eq 8. Error bars represent one standard error. AISOthemselves and from their variance transformation. For a closer
shown are the parameter standard errors (curves, ordinate scale to right); e ) :
Open points and dashed curvé: Filled points and solid curveB. look at these two contributions, | examined two other error
structures: 4% relative error ig, and o, O y2. The latter
time, the bias and precision of the slope are hardly affected. represents an unlikely structure for experimental data, but it is
Thus, in certain situations (SteriVolmer quenching data, for  useful here since it yields an unweighted fit in the transformed
example), where data are easily recordec &t 0, intercept data (1y); the former yields 4% relative error in the transformed
bias may not be a problem. data also, and requires weigtitsy? (cf. yi* for constantoy).
Similarly, the bias and precision are also functions ofsthe  The results (Figure 9) show that the biases are mostly smaller
range of the data, or equivalently, of the relative magnitudes of in magnitude than for constany; however, the estimators for
A andB for a givenx range. For example, in the limit where A andB remain inconsistent in every case. It is noteworthy also
they range of the data is small compared withthe fit becomes that the largest bias and inconsistency occurXdn the case
de facto unweighted, and the bias is attributable to just the non-of o, O y2, where there can be no “weighting” contribution.
Gaussian nature of the data. Quantitative results for the bias in  Linear Fitting of Logarithmically Transformed Data.
both the parameters and their errors are shown in Figures 7 and_ogarithmic conversion is often used to achieve a linear
8. For the purpose of these illustrationg was fixed at 10% of dependence for background-free exponential data. As was noted
the smallesty value, which means that it varies with The earlier, ifz=Iny, o, = gyly. Thus, ifoy is constant, the linear
relative bias inArises to 0.34 a& = 0.1 (not shown). Expressed log fit will require weights proportional tg;?, while if oy Oy,
as a fraction oby, the largest error bias under these conditions the log fit is properly an unweighted one. | have examined both

is +0.19 0, for A and —0.25 o for B. of these cases here, using the mogek ae %, with a = 1.5
The results in Figures 7 and 8 were all obtained for five- andb = 1.
point data sets. The previously notech Hependence of the Consider first the case of constart The magnitude oby

bias in bothA andB holds for allA; however, the slopes of this  is limited by practical considerations, because if it is too large

dependence and the infinitelimiting values both vary with compared with the smallegtvalue, negative values gf will

A, and in no simple way. occur. Keepingo, < Y5 of the smallesty makes such
Although the bias is statistically significant in both the occurrences adequately rare. In most of the calculations this

parameters and their standard errors, the latter bias should rarelyatio was~11, but in some it was increased%g. The reference

be a source of concern. Stated differently, any hypothesis thatdata set had 5 (sometimes 4) points covering from 0 to

is dependent on changes in the confidence limits as small as1.5-2.4.

those illustrated in Figure 8 is in need of additional data rather  Qualitatively, the results of these calculations resembled those

than additional statistical interpretation. In short, nothing in these reported for inverse data, including nonnormal parameter
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distributions andg/v distributions that did not quite fit thg,? free variable is treated as uncertain while the response variable
distribution. For fivex values spread evenly over the range is taken as error-fre€.2° The former case is more properly

= 0—2, with oy = 0.02, the bias irb was —0.24%, or—10% considered as nonlinear fitting, because the equations cannot
of op. With the upper limit extended to= 2.4 (where thisyy be expressed in the algebraically linear form of eqr$3A

represents 15% ofnin), the bias was-0.33%, while a decrease  closer examination of the dependence of the biasesfonthe

in Xmax resulted in a smaller absolute bias. Thus, at least roughly cases considered in ref 26 indicates that the slope and intercept
the bias tracks witlsy/ymin. The bias again scales ag. It is estimators are both consistéftin inverse calibration, on the
also linear in I andincreasesn magnitude with increasing other hand, both estimators are inconsistérand when used

n. Thus, as before, for sufficiently largethe bias inb must to estimate an unknown concentration, they give a bias that is

exceedoy. In the case of data spannirg= 0—2 and havings, actually worse for large than for smalln.28:2°
= 0.04 (20% ofymin), this occurs for<100 points, where the Regarding the estimation of parameter errors and confidence
bias is—1.25%. limits, both the linear analysis of nonnormal data and the

To check the effects of proportional uncertainty, | again took nonlinear analysis of normal data yield nonnormal parameter
oy to be 4% ofy. The now unweighted linear fits yielded distributions. Accordingly, the standard errors from the vari-
parameter distributions that were borderline normal, an&the ance-covariance matrix cannot fully characterize these distribu-
histogram was similarly close to thg? distribution. The bias  tions. However, the deviations from normality are seldom
in bOwas not significant at thed2level, and that iflh aClwas significant enough to yield errors greater tha®% in these
small, with no statistically significant dependenceroincreas- parametric error estimates. Thus, with exclusion of the special
ing the data error to 10% confirmed the? scaling of the bias problems of “reciprocal parameters,” confidence intervals should
in the intercept but still gave no statistically significant bias in be assignable without need to resort to Monte Carlo calcula-
the slope. With 4% error, the MC statistical estimatesygf tions3?

were consistent with the “exact” values. A fundamental assumption of this work has been that the
These results may be compared with those obtained from the“raw data” possess normally distributed error. The fact that this
direct nonlinear analysis of normal d&feor the distributions,  is also an article of faith in most experimental work does not

the only noteworthy difference was closer agreement with the really excuse us from a long-standing neglect, namely the quest
1,2 distribution for theS'v values in the nonlinear fits, especially ~ for real information about the error structure of the data.
for constanw,. The parameter biases were very small at constant Fortunately there are situations where there is good reason to
oy for finite n but extrapolated to zero as* — 0. For trust the normal assumption. For example, when each recorded
proportional error there was no statistically significant bias in datum is itself the result of averagingn the computer logging

b for anyn. However, in this case thergassignificant bias in of data, for instancethe central limit theorem guarantees the
a, and it remained finite ah = «. The MC and “exact” normal distribution in the largadimit, no matter what the parent
parameter variances were usually statistically consistent anddistribution for individual measurements (as long as the latter
showed a maximum spread of 1%. With addition of a back- has finite variance). It does not take very much averaging to
ground, the exponential parameter remained consistent for allproduce fairly normal means. For example, a sum of 12 uniform
weighting choices, but the preexponential and background variates is often used as a simple yet reliable way to generate
parameters were inconsistent for some error structures. Gaussian variates having= 1 in Monte Carlo calculations!
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