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Linear regression yields minimum-variance, unbiased estimates of the adjustable parameters, provided only
that the analyzed data be unbiased and of finite variance. If further the data are normally distributed, then so
will be the estimated parameters. But frequently data are transformed before fitting, and if the original data
are normal, the transformed data may not be. In particular, inversion and logarithmic conversion yield biased,
non-Gaussian distributions, so least-squares analysis of such data yields biased, nonnormally distributed
parameters, even when the transformed data are properly weighted in accord with the transformation. Monte
Carlo calculations are used to study the effects of such nonnormal data in cases of relevance to the analysis
of equilibrium and kinetics data (exponential decay, binding constants, enzyme kinetics, fluorescence quenching,
adsorption). Typically 105 equivalent data sets are processed to obtain precise information about the parameter
biases and distributions. The biases generally persist in the limit of an infinite number of data values, which
means that the estimators are not only biased but also inconsistent.

Introduction

The statistical properties of linear least-squares (LLS) estima-
tors are well established:1,2 If the data are distributed indepen-
dently and normally (i.e., with the Gaussian distribution) about
their true values, the estimators of the parameters will be
unbiasedand minimum-Variance and will themselves be nor-
mally distributed about their true values, with variances that
can be calculated from thematrix of the normal equations. These
results hold also if the data are heteroscedastic, i.e., of unequal
uncertainty (σyi), provided they are weighted properly,

If the weights are neglected, the parameter estimates remain
unbiased, but are no longer minimum-variance.2 In other words,
neglect of weights biases the error estimates but not the
parameter estimates.

Actually, the data need not be normally distributed in order
for least-squares to yield unbiased, minimum-variance estimates
of the parameters. But itis necessary for them to be finite-
variance and unbiased.2 There are many situations in experi-
mental physical science where data are transformed to facilitate
analysis by linear regression. It is by now well recognized that
such transformations alter the relative weights of the data, so
that usually the resulting LS analysis becomes a weighted fit.2-6

However, it has not been appreciated that they canbiasthe data
and hence also the parameter estimates. Moreover, this “data
bias” does not diminish with increasing numbers of data values
n in the data set; in fact, it can actuallyincreasewith n. The
resulting estimators areinconsistent, and at somen the biases
in the parameters must exceed their standard errors. To illustrate
this point, Figure 1 shows two nominally equivalent least-
squares analyses of a single set of data having constant, normally
distributed error iny. The unweighted nonlinear fit and weighted
linear fit yield parameter values that disagree by>3σ and hence
fail many consistency tests.

Figure 1 illustrates effects of one of two frequently used data
transformations, reciprocation. The other, logarithmic conver-
sion, is often used to render first-order kinetics data and
thermodynamic temperature dependence into linear functions
of the independent variables.4,5 Reciprocation is employed in a
variety of situations, including analysis of equilibrium and
binding constant data,6-11 enzyme kinetics,12-14 adsorption
isotherms,15,16and fluorescence quenching.17-19 If we represent
the transformed dependent variable byu, then simple error
propagation yields, for logarithmic conversion,σu ) σy/y, and
for reciprocation,σu ) σy/y2. The weights thus become functions
of the measuredy values, and this can contribute significantly
to the bias in the LS parameters.20

There is another potentially serious consequence of the
inversion transformation. If the original variatey is normal, then
its inverseu ) 1/y not only is nonnormal, but also hasinfinite
Variance. Thus, the transformed data violate one of the prime
preconditions for LS, which in turn means that the resulting† E-mail: tellinjb@ctrvax.vanderbilt.edu, FAX: 615-343-1234.

wi ∝ σyi
-2 (1)

Figure 1. Comparison nonlinear and weighted linear fits to a data set
of 501 points spread evenly betweenx ) 1.1 andx ) 12, with constant
error (σy ) 0.002) iny. The nonlinear fit is an unweighted fit toy )
(A + Bx)-1 and yieldsA ) 0.977(41),B ) 5.011(21), andø2 ) 514.
The weighted linear fit yieldsA ) 1.091(40),B ) 4.932(21), andø2 )
500. The “true” parameter values areA ) 1 andB ) 5, and the values
in parentheses represent 1 standard error in terms of the final digits.
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LS parameters are also characterized by infinite variance. In
practice, of course, such divergence will be impossible to
recognize in a single data set. And as long as the data are not
excessively uncertain, the variances of their inverses will be
well-defined in an asymptotic sense, leading to similarly well-
defined LS parameters.

To demonstrate the significance of these problems, I have
carried out Monte Carlo (MC) calculations on the linear
regression of logarithmically and reciprocally transformed data.
The computations employed methods like those used in my
recent study of the nonlinear analysis of normal data.20 As will
be shown below, there is nothing pathological about the
particular data set that produced the results in Figure 1; rather,
this behavior is a predictable consequence of the “data bias”
resulting from the inversion of theyi values to yield the straight-
line relationship. In simplest terms the bias in this case just
reflects the inequality,〈y-1〉 * 〈y〉-1.

Background

The theory of least-squares has been summarized recently20

and so will be covered only briefly here. The LS equations are
obtained by minimizing the sum of weighted squared residuals
S,

with respect to a set of adjustable parametersâ, whereδi is the
residual (observed-calculated mismatch) for theith point,wi is
its weight, and the column vectorâ containsp elements, one
for each adjustable parameter. The problem is a linear one if
the measured values of the dependent variable (y) can be related
to those of the independent variable(s) (x, u, ...) and the
adjustable parameters through the matrix equation,2,20,21

wherey andδ are column vectors containingn elements (for
then measured values) and thedesign matrixX hasn rows and
p columns and depends only on the values of the independent
variable(s) (assumed to be error-free) and not on the parameters
â or dependent variablesy. The solution to the minimization
problem is the set of equations

where the square weight matrixW here is diagonal, withn
elementsWii ) wi. Equations 4 are solved for the parameters
â, e.g.,

where A-1 is the inverse ofA (the matrix of the normal
equations). Knowledge of the parameters permits calculation
of the residualsδ from eq 3 and thence ofS, which in matrix
form is

If the parent distributions for the data are normal and the
proportionality constant in eq 1 is taken as 1.00, then the quantity
S is distributed as aø2 variate for ν ) n - p degrees of
freedom.1,2 Correspondingly, the quantityS/ν follows the
reduced chi-squared (øν

2) distribution, given by

wherez ) øν
2 andC is a normalization constant. Aø2 variate

has a mean ofν and a variance of 2ν,22 which means thatøν
2

has a mean of unity and a variance of 2/ν.
Note thatâ (eq 5) is independent of an arbitrary scale factor

in the weights, hence the simple proportionality in eq 1. Also,
X is completely determined by the selection of values for the
independent variables. Thus, if the fitted quantities are the
measured datay themselves (rather than any transforms thereof),
and if their error structure is known at least relatively,A
()XTWX ) is completely known before any measurements ofy
have been made. SinceV ∝ A-1, it too is known to within a
scale factor, permitting its use inexperimental design.

If the data error structure is known absolutely, then the
proportionality constant in eq 1 can be taken as unity, whence
the proportionality constant connectingV andA-1 is likewise
unity, giving

If additionally, the parent data distributions are normal, the
parameter distributions are also normal, as already noted. Thus,
V is known exactly at the outset, and the confidence intervals
for the parameters can be evaluated from standard error function
tables. Any failure to observe this result in MC calculations on
LLS represents a flaw in the computational procedures.

Since the use of eq 8 implies prior knowledge of the statistics
of the yi, the corresponding weights may be designated asa
priori weights.23,24 At the other extreme is the situation where
nothing is known about the statistics of theyi, except that the
parent distributions are assumed to be normal, with constant
variance, independent ofyi. In this case the weightswi can be
set to 1.00, giving unweighted regression. The variance iny is
then estimated from the fit itself, as

This represents ana posterioriassessment of the variance inyi.
Correspondingly,

Under the same conditions as stated just before eq 7,sy
2 is

distributed as a scaledø2 variate.
Given the probability distribution functionP(y), one can

obtain the distribution functionQ(u) for a second random
variableu related toy by the functionu(y) using1

where the sum is over all pointsyi that solveu ) u(yi). If data
yi are normally distributed about their true values and are
inverted toui ) 1/yi, eq 11 yields

wherey0 is the true value ofy (for the ith point) andC is a
normalizing constant. This function has Lorentzian wings;
therefore, as already noted, the variance ofu is infinite.
However, as was also noted previously, this divergence will be
of no practical concern provided|σy/y| is sufficiently small,
whereupon the variance ofu will be well-defined in an
asymptotic sense.20 On the other hand, when|σy/y0| J 1/3,

S) Σwiδi
2 (2)

y ) Xâ + δ (3)

XTWXâ ≡ Aâ ) XTWy (4)

â ) A-1XTWy (5)

S) δTWδ (6)

P(z) dz ) Cz(ν-2)/2 exp(-νz/2) dz (7)

V ) A-1 (8)

σy
2 ≈ sy

2 )
Σδi

2

n - p
) S

ν
(9)

V ) S
ν

A-1 (10)

Q(u) ) ∑P[yi(u)]|dyi(u)

du | (11)

Q(u) ) C

u2
exp[- 1

2σy
2 (1u - y0)2] (12)
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sampling statistics foru show erratic behavior for bothu0 and
σu

2. Although〈u〉 is mathematically defined in this case (in the
sense of the Cauchy principal value), the sampling estimates
of 〈u〉 do not converge, because the central limit theorem does
not apply.

Even if the data are narrowly enough defined to avoid
catastrophic divergence problems in inversion, the transformed
variatesui remain nonnormal and are biased estimators of the
true u0,i. Thus, even a linear LS fit can be expected to yield
biased estimates of the parametersâ. This result assumes proper
weighting of the data following the transformation, and as
already noted, the weighting actually contributes to the bias.
Likewise, data transformed usingui ) ln yi will yield biased
parameter estimates. In this case we have the additional problem
that the transformation fails for negativeyi, though with the
restriction to positiveyi the variance ofui does remain finite.

From a purely phenomenological standpoint, slightly non-
normal distributions can be represented as skewed Gaussians,

whereC-1 ) x2πσx and the skew parameterq is determined
empirically. This distribution yields for the bias inx,

The bias thus scales as the variance, a dependence which holds
quite generally for modest bias.20

Results and Discussion

Statistics of Reciprocals.The anomalous statistics of recip-
rocals can be demonstrated with the simplest kind of Monte
Carlo calculation: Generate normal error of specified magnitude
on a quantity and then examine the MC statistics of it and its
reciprocal. Some results of such calculations are given in Table
1 and displayed in Figure 2.

For small relativeσA the reciprocal seems well-behaved; but
its average is biased by an amount that scales roughly withσA

2,
as predicted by eq 14, and its estimated variance is systemati-
cally larger than the “true” value (the asymptotic value from
error propagation), the disparity increasing withσA. The last
four averages clearly reflect the divergence. At the same time
the estimates ofA and its variance behave as expected: The
scatter in the four〈A〉 values forσA ) 0.35 is consistent with
the standard error,σA/N1/2 ) 0.0011, while that in the estimated
variance is well within the predicted relative standard error of
(2/N)1/2 ) 0.0045.

A useful variation on this theme is the question of distribu-
tions of products and ratios of independent normal variates.
Neither of these is normally distributed, and the deviations from
normal are immediately obvious if both variates have standard
deviations comparable to their means in magnitude (see Figure
3). However, as both variates become relatively well defined
(σ ≈ |µ|/10), the distributions of products and ratios become at
least roughly normal, with standard deviations that follow the
normal rules of error propagation (e.g., ifq represents either
A/B or A × B, thenσq/q ) [(σA/A)2 + (σB/B)2]1/2). In fact one
can verify that this holds quite well if even one of the two
variates has a narrow distribution, but with one exception: The
ratio A/B will demonstrate “reciprocal statistics” if the distribu-
tion of B is broad, no matter how narrowly definedA is.
Recognition of this behavior is important for understanding the
anomalous statistics reported in some MC studies.20

Despite their poor behavior when subjected to sampling
statistics, reciprocal normal variates can still be characterized
with respect to confidence limits from MC calculations, through
simple sorting procedures. Also, because of the one-to-one
mapping between quantities and their inverses, the range
bracketing a given fraction of a normal variate yields directly,
through inversion, the equivalent range for the reciprocal variate,
and vice versa.

TABLE 1: Monte Carlo Statistics of A ) 1 and Its
Reciprocal, from 105 Values with Normally Distributed
Random Error of Specified σA

a

σA 〈A〉 〈A2〉 - 〈A〉2 〈A-1〉 〈A-2〉 - 〈A-1〉2 〈A-1〉true
b

0.05 0.99996 2.491× 10-3 1.00255 2.542× 10-3 1.00252
0.10 0.99992 9.965× 10-3 1.01036 1.083× 10-2 1.01032
0.15 0.99988 2.242× 10-2 1.02425 2.745× 10-2 1.02422
0.20 0.99984 3.986× 10-2 1.04629 6.447× 10-2 1.04623
0.20 1.00116 3.997× 10-2 1.04473 5.997× 10-2 1.04623
0.35 0.99961 1.220× 10-1 1.14868 1.367× 102 1.20093
0.35 1.00202 1.224× 10-1 1.15218 2.569× 102 1.20093
0.35 0.99972 1.221× 10-1 0.89179 1.158× 104 1.20093
0.35 1.00107 1.222× 10-1 1.05755 3.191× 103 1.20093

a Same seed used for first fourσA values, to illustrate the effects of
scaling for a given set of unit-variance normal deviates.b Obtained by
numerical integration.

Figure 2. Histogrammed results of 105 Monte Carlo estimates of a
constantA ) 1 (open points) and its reciprocal, with random normal
error ofσA ) 0.35 superimposed uponA. The curves are the LS fits of
the properly weighted histogram counts to a Gaussian forA and eq 12
for A-1. (The statistical errors in the counts are smaller than the plotted
points in this and most subsequent figures; this may be assumed in
cases where they are not shown.)

Figure 3. Histogrammed results of 105 Monte Carlo values of products
and ratios of normal variates. In all cases the mean values areX ) 1.0.
Open points: X) A×B, σA ) σB ) 1. Filled circles: A/B, σA ) 0.1,
σB ) 1. Squares:A/B, σA ) 1, σB ) 0.1. For the filled circles, the
smooth curve represents a fit to eq 12; in the other cases the lines are
just linear connections between adjacent points.

P(x) ) C [1 + q(x - x0)] exp[-
(x - x0)

2

2σx
2 ] (13)

〈x - x0〉 ) qσx
2 (14)
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Fitting Reciprocal Data to a Linear Model. To illustrate
the effects of bias from inversion, I have used the straight-line
model, 1/y ) A + Bx, with A ) 1, B ) 5, and the fivex values
1.1, 3.3, 5.5, 8.3, and 12.0. As a benchmark for the results
obtained when the nonnormal inverted data are fitted, I have
also run MC calculations for normally distributed error in the
fitted quantities (1/y), but having magnitude proportional toy-2,
as evaluated on the theoretical line. For this example, the error
in y was taken as 0.002, which is about one-eighth the magnitude
of the smallest value (atx ) 12).

Results obtained for normally distributed error in the fitted
quantity (1/y) bore out expectations: normally distributed,
unbiased parameter estimates having standard errors as predicted
by eq 8, andS/ν values that follow the reduced chi-square
distribution of eq 7. When the weights were neglected, the
parameters remained normal and unbiased, but their standard
errors increased by factors of 3 (forB) and 9 (A). For
comparison, eq 10 predicts an even largerσA but a smallerσB,
which illustrates the unreliability of the variance-covariance
matrix when heteroscedastic data are not properly weighted.
Neglect of weights also yieldedS/ν values whose distribution
was grossly in disagreement with theøν

2 distribution forν ) 3
(after a necessary rescaling to an average value of unity in this
case).

When the errors are normal iny instead of 1/y, the parameter
distributions are no longer Gaussian, as is illustrated in Figure
4. The proper weights in this case areyi

4/σy
2. As the “rollers of

the dice” in this Monte Carlo game, we have the choice of
evaluating the weights using either the “true” or the “observed”
yi values. The former choice results in a negative bias inA of
-2.55(8)%, and a positive bias inB of about the same absolute
magnitude. The latter weighting choice doubles the biases in
magnitude but reverses their signs. The dispersion parameters
are also biased by statistically significant amounts, as compared
with the “true” values (calculated for normal error in 1/y): by
+1.1(2)% (σA, theoretical weighting),+0.3(2)% (σA, observed),
+1.5(2)% (σB, theoretical) and+0.4(2)% (σB, observed). Thus,
despite the larger biases in the parameters, the “observed”
weighting (which is the only one available for the linear analysis
of actual data) yields smaller parameter variances. Both distribu-
tions ofS/ν values resemble the theoreticaløν

2 distribution for
ν ) 3 but still deviate from it by statistically significant amounts
(Figure 5).25

Figure 6 illustrates that the bias scales roughly with the data
variance, as predicted by eq 14. To obtain then dependence it

is important to preserve thex-structure of the data; this was
done by simply doubling, tripling, etc. the number of points at
eachxi. The key result here is that none of the biases vanishes
in the limit n f ∞, which demonstrates that both estimators
are inconsistent for both weighting choices. Moreover, since
the parameter standard errors scale asn-1/2, it is clear that the
bias must exceed the standard error for suitably largen. It was
this realization that led to the preparation of Figure 1, which
illustrates statistically significant bias for the weighted linear
fit of the transformed data. By contrast, the nonlinear estimators
from an unweighted fit of they values are consistent (though
biased for finiten).20

The parameter standard errors and biases both depend on the
x-structure of the data. For example, if the first point is moved
from x ) 1.1 to x ) 0, the statistics for the intercept become
essentially those of 1/y at that point: The bias practically
vanishes, and the standard error drops to 0.002. At the same

Figure 4. Histogrammed results of 105 LS estimates of the intercept
A from fits of 5-point data sets to the linear model 1/y ) A + Bx. The
smooth curve is a Gaussian that represents the results predicted for
normally distributed error in (1/y). The points were obtained for
normally distributed error iny, with weights calculated using the
theoreticaly values (open points) or the “observed”y values (filled).

Figure 5. HistogrammedS/ν values from same fits that produced
Figure 4. Error bars represent 1σ. The smooth curve is the theoretical
øν

2 distribution forν ) 3. In both cases, weighted fits of the binned
values to eq 7 yielded values ofø2 > 300, for ν ) 46.

Figure 6. Dependence of parameter bias (%) onσy (lower) and on
the number of data points. The upper plot displays the bias in the
interceptA (circles) and slopeB (squares) for theoretical (open points)
and “observed” weighting, with all results obtained usingσy ) 0.002.
The lower plot shows the bias inA (“observed” weighting) forn ) 5,
with the smooth curve being a fitted quadratic through the origin.
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time, the bias and precision of the slope are hardly affected.
Thus, in certain situations (Stern-Volmer quenching data, for
example), where data are easily recorded atx ) 0, intercept
bias may not be a problem.

Similarly, the bias and precision are also functions of thex
range of the data, or equivalently, of the relative magnitudes of
A andB for a givenx range. For example, in the limit where
they range of the data is small compared withA, the fit becomes
de facto unweighted, and the bias is attributable to just the non-
Gaussian nature of the data. Quantitative results for the bias in
both the parameters and their errors are shown in Figures 7 and
8. For the purpose of these illustrations,σy was fixed at 10% of
the smallesty value, which means that it varies withA. The
relative bias inA rises to 0.34 atA ) 0.1 (not shown). Expressed
as a fraction ofσâ, the largest error bias under these conditions
is +0.19 σA for A and-0.25 σB for B.

The results in Figures 7 and 8 were all obtained for five-
point data sets. The previously noted 1/n dependence of the
bias in bothA andB holds for allA; however, the slopes of this
dependence and the infinite-n limiting values both vary with
A, and in no simple way.

Although the bias is statistically significant in both the
parameters and their standard errors, the latter bias should rarely
be a source of concern. Stated differently, any hypothesis that
is dependent on changes in the confidence limits as small as
those illustrated in Figure 8 is in need of additional data rather
than additional statistical interpretation. In short, nothing in these

tests indicates a need to go beyond eqs 8 and 10 to assess
parameter errors for the linear model.

The observation of opposite signs for the biases from the two
weighting options in Figure 6 suggests that the total bias includes
contributions that work in opposite directions from the data
themselves and from their variance transformation. For a closer
look at these two contributions, I examined two other error
structures: 4% relative error iny, and σy ∝ y2. The latter
represents an unlikely structure for experimental data, but it is
useful here since it yields an unweighted fit in the transformed
data (1/y); the former yields 4% relative error in the transformed
data also, and requires weights∝ yi

2 (cf. yi
4 for constantσy).

The results (Figure 9) show that the biases are mostly smaller
in magnitude than for constantσy; however, the estimators for
A andB remain inconsistent in every case. It is noteworthy also
that the largest bias and inconsistency occur forA in the case
of σy ∝ y2, where there can be no “weighting” contribution.

Linear Fitting of Logarithmically Transformed Data.
Logarithmic conversion is often used to achieve a linear
dependence for background-free exponential data. As was noted
earlier, if z ) ln y, σz ) σy/y. Thus, ifσy is constant, the linear
log fit will require weights proportional toyi

2, while if σy ∝ y,
the log fit is properly an unweighted one. I have examined both
of these cases here, using the model,y ) ae-bx, with a ) 1.5
andb ) 1.

Consider first the case of constantσy. The magnitude ofσy

is limited by practical considerations, because if it is too large
compared with the smallesty value, negative values ofyi will
occur. Keepingσy j 1/5 of the smallesty makes such
occurrences adequately rare. In most of the calculations this
ratio was∼1/10, but in some it was increased to1/5. The reference
data set had 5 (sometimes 4) points covering fromx ) 0 to
1.5-2.4.

Qualitatively, the results of these calculations resembled those
reported for inverse data, including nonnormal parameter

Figure 7. Relative parameter bias∆â/â ) (〈â〉 - âtrue)/âtrue, as a
function ofA, for LLS model 1/y ) A + Bx, with B ) 5: (open points)
A; (filled points) B. Standard errors (not shown) are mostly smaller
than the displayed points. For this and the following figureσy is fixed
at 10% of the smallesty value, and the weights are assessed using
“observed”yi.

Figure 8. Relative bias in parameter errors,∆σâ/σâ ) (σâ - σâ,true)/
σâ,true, as a function ofA, for same linear model. Hereσâ,true is the value
calculated from eq 8. Error bars represent one standard error. Also
shown are the parameter standard errors (curves, ordinate scale to right).
Open points and dashed curve:A. Filled points and solid curve:B.

Figure 9. Percent bias in interceptA (a) and slopeB (b) as functions
of 1/n, for 4% proportional error iny (circles), and forσyi ) 0.5 yi

2

(×). For proportional error, open points represent results obtained
evaluating the weights using “true”yi, while filled were obtained by
weighting on “observed”yi. For most values of 1/n, two points are
plotted; MC statistical errors (not shown) are comparable to the spread
in these values. For reference, the “exact” standard errors for five-
point data sets areσA ) 0.336 andσB ) 0.1355 (4% error) andσA )
0.419 andσB ) 0.0586 (σ1/y ) 0.5).
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distributions andS/ν distributions that did not quite fit theøν
2

distribution. For fivex values spread evenly over the rangex
) 0-2, with σy ) 0.02, the bias inb was-0.24%, or-10%
of σb. With the upper limit extended tox ) 2.4 (where thisσy

represents 15% ofymin), the bias was-0.33%, while a decrease
in xmax resulted in a smaller absolute bias. Thus, at least roughly
the bias tracks withσy/ymin. The bias again scales asσy

2. It is
also linear in 1/n and increasesin magnitude with increasing
n. Thus, as before, for sufficiently largen the bias inb must
exceedσb. In the case of data spanningx ) 0-2 and havingσy

) 0.04 (20% ofymin), this occurs for<100 points, where the
bias is-1.25%.

To check the effects of proportional uncertainty, I again took
σy to be 4% of y. The now unweighted linear fits yielded
parameter distributions that were borderline normal, and theS/ν
histogram was similarly close to theøν

2 distribution. The bias
in 〈b〉 was not significant at the 2σ level, and that in〈ln a〉 was
small, with no statistically significant dependence onn. Increas-
ing the data error to 10% confirmed theσy

2 scaling of the bias
in the intercept but still gave no statistically significant bias in
the slope. With 4% error, the MC statistical estimates ofσb

2

were consistent with the “exact” values.
These results may be compared with those obtained from the

direct nonlinear analysis of normal data.20 For the distributions,
the only noteworthy difference was closer agreement with the
øν

2 distribution for theS/ν values in the nonlinear fits, especially
for constantσy. The parameter biases were very small at constant
σy for finite n but extrapolated to zero asn-1 f 0. For
proportional error there was no statistically significant bias in
b for anyn. However, in this case therewassignificant bias in
a, and it remained finite atn ) ∞. The MC and “exact”
parameter variances were usually statistically consistent and
showed a maximum spread of 1%. With addition of a back-
ground, the exponential parameter remained consistent for all
weighting choices, but the preexponential and background
parameters were inconsistent for some error structures.

Conclusion

The biases identified in this work are significant enough to
become obvious in certain circumstances, as illustrated in Figure
1. Since the biases persist in the limit of an infinite number of
data points, the pertinent estimators are alsoinconsistent. By
comparison, nonlinear LS fits of normal data usually display
parameter bias for finiten; however, in the cases examined to
date, the key nonlinear estimators areconsistent.20 Inconsistency
is a more serious problem than bias. Put simply, inconsistency
means that for sufficiently largen, the estimator isguaranteed
to yield the “wrong” answer by any statistical test.

Inconsistency seems to be a given in the fitting of transformed
data, so a general recommendation of the present study is to
apply nonlinear models to normal data rather than linear models
to nonnormal (transformed) data. The one exception to this rule
is the case of background-free exponential data with proportional
y error, for which the transformed fit is unweighted and yields
unbiased estimates of the exponential parameter for alln
(provided the data error is small enough to ensure the success
of the transformation). However, one cannot generalize from
this result, because the corresponding case of an unweighted
fit in the reciprocally transformed data (σy ∝ y2; σ1/y ) constant)
yielded strong bias and inconsistency in the interceptA (Figure
9).

Parameter bias has been noted previously in two different
cases of straight-line fitting: (a) when there is error in both
variables;26 and (b) in “inverse calibration,” where the error-

free variable is treated as uncertain while the response variable
is taken as error-free.27-29 The former case is more properly
considered as nonlinear fitting, because the equations cannot
be expressed in the algebraically linear form of eqns 3-5. A
closer examination of the dependence of the biases onn for the
cases considered in ref 26 indicates that the slope and intercept
estimators are both consistent.30 In inverse calibration, on the
other hand, both estimators are inconsistent;27 and when used
to estimate an unknown concentration, they give a bias that is
actually worse for largen than for smalln.28,29

Regarding the estimation of parameter errors and confidence
limits, both the linear analysis of nonnormal data and the
nonlinear analysis of normal data yield nonnormal parameter
distributions. Accordingly, the standard errors from the vari-
ance-covariance matrix cannot fully characterize these distribu-
tions. However, the deviations from normality are seldom
significant enough to yield errors greater than∼5% in these
parametric error estimates. Thus, with exclusion of the special
problems of “reciprocal parameters,” confidence intervals should
be assignable without need to resort to Monte Carlo calcula-
tions.31

A fundamental assumption of this work has been that the
“raw data” possess normally distributed error. The fact that this
is also an article of faith in most experimental work does not
really excuse us from a long-standing neglect, namely the quest
for real information about the error structure of the data.
Fortunately there are situations where there is good reason to
trust the normal assumption. For example, when each recorded
datum is itself the result of averagingsin the computer logging
of data, for instancesthe central limit theorem guarantees the
normal distribution in the large-n limit, no matter what the parent
distribution for individual measurements (as long as the latter
has finite variance). It does not take very much averaging to
produce fairly normal means. For example, a sum of 12 uniform
variates is often used as a simple yet reliable way to generate
Gaussian variates havingσ ) 1 in Monte Carlo calculations!
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