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The diffusion coefficientD(C) for a very dilute aqueous electrolyte is represented, in a first approximation,
by D(C) ) D(0)(1 - kxC), whereC is the electrolyte concentration andk is a positive parameter. For the
experimental setup in which, initially, a sharp boundary is formed between an electrolyte solution and pure
water, the Gosting-Fujita method is not applicable for solving free diffusion with this concentration-dependent
D, becauseD is not regular atC ) 0. In this paper, another perturbation method which usesk as a perturbation
parameter is applied to solve this diffusion problem correct up to second order ink, and the apparent diffusion
coefficientDj defined in the Rayleigh fringe method for measuring transport processes in solutions is calculated
as a function of the position in the diffusion boundary. It is shown that the result does not support Albright
and Miller’s finding from numerical solutions that the position at whichDj agrees withDh is independent of
k. Here,Dh is theD value at the mean concentration.

Introduction

Diffusion of an electrolyte in very dilute aqueous solutions
is governed by the diffusion coefficientD(C) which, in a first
approximation, is represented by

whereC is the concentration of the electrolyte, andD(0) andk
are system-dependent (positive) parameters. The dependence
of D on xC is usually considered to make the diffusion
boundary considerably skew from the ideal situation in which
D is constant, and the skewness has been the subject of
theoretical and experimental interest in the studies of liquid
diffusion.

Albright and Miller1 approached both analytically and
numerically the one-dimensional diffusion equation withD(C)
given by eq 1.1 under the experimental setup that, initially, a
dilute electrolyte solution is separated by a sharp boundary from
water in an infinitely long cell. For the analytical treatment they
applied the perturbation method of Gosting and Fujita,2 which
uses the fact that the diffusion boundary tends to be ideal with
the diffusion coefficientD(Ch ) as a dimensionless variable∆C/
2Ch goes to zero. Here,Ch ) (CB + CT)/2 and∆C ) CB - CT,
with CB andCT denoting the initial concentrations of the bottom
and top layers of solution. Thus, this method views deviations
of the diffusion boundary from the ideal one by a concentration
dependence ofD(C) as perturbations due to nonzero∆C/2Ch .
After expandingD(C) in powers ofC - Ch aboutC ) Ch , it
expressesC as a power series of∆C/2Ch and successively
determines from the diffusion equation the coefficients of the
series as functions of timet and positionx (actually, of a
combined single variablex/xt). In the Albright-Miller prob-
lem,CT is zero, so that∆C/2Ch ) 1, which is the worst case for
the convergence of the Gosting-Fujita method. However, more
important is the fact that theD(C) of eq 1.1 is not a regular
function ofC at C ) 0, since dD/dC diverges there. Hence, the
expansion ofD in powers ofC - Ch fails to be valid atC ) 0.
This means that formal application of the Gosting-Fujita

perturbation approach as it stands may not hold whenD depends
on xC andCT ) 0.

In reality, eq 1.1 should be regarded as a limiting form ofD
asC approaches zero. It is more practical to add at least one
term linear inC to its right-hand side. Albright and Miller3

worked out this case again using the Gosting-Fujita perturbation
method for the analytic treatment. However, for the above reason
the solution they present seems to have no theoretical value
whenCT ) 0.

In the present paper, the Albright-Miller problem is attacked
by another perturbation method which utilizes the idea that the
diffusion boundary tends to be ideal with the diffusion coef-
ficient D(0) ask diminishes to zero, so that deviations of the
diffusion boundary from the ideal one by a concentration
dependence ofD(C) may be treated as perturbations due to
nonzerok. Thus, it expandsC in powers ofk (actually,kxCB)
and successively determines the expansion coefficients from the
diffusion equation. It should be noted that though both are
perturbation methods the present method differs from the
Gosting-Fujita one in the basic idea.

The calculation here is made up to second order inkxCB.
The solution obtained is used to calculateDj as a function of
the position in the diffusion boundary, and the result is compared
with that obtained by Albright and Miller1 from numerical
integrations. Here,Dj is an apparent diffusion coefficient
appearing in the Rayleigh fringe method4 for measuring
diffusion in solutions (see below for its definition).

Basic Equations

The diffusion equation to be solved is

and the associated initial and boundary conditions are

If a dimensionless concentrationc is introduced by
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D(C) ) D(0)(1 - kxC) (1.1)

∂C
∂t

) ∂

∂x[D(0)(1 - kxC)
∂C
∂x] (2.1)

C ) CB (t ) 0; 0 < x < ∞), C ) 0 (t ) 0; -∞ < x < 0)
(2.2)

C ) CB (t > 0; x ) ∞), C ) 0 (t > 0; x ) -∞) (2.3)
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and a dimensionless variablez by5

eq 2.1 changes to an ordinary differential equation

and the initial and boundary conditions are reduced to

whereε is defined by

and can be taken as smaller than unity to meet the physical
requirement thatD be positive. We note that Albright and
Miller1 usedDh for D(0) in defining the variablez, whereDh is
the D value at the mean concentrationc ) 1/2, i.e.,

The ordinary differential equation derived from eq 2.1 withz
thus defined is different in form from eq 2.6. Hence, our
solutions presented below do not hold as they stand if thez in
them are simply replaced by Albright and Miller’sz ) x/(2
xDh t).

We begin with the substitution

Then eq 2.6 changes to

and eq 2.7 to

Equation 2.10 removes nonregularity from eq 2.6, but introduces
the problem that the coefficient of the highest derivative in eq
2.11, i.e.,n(1 - εn), vanishes atn ) 0 andn ) 1/ε. Fortunately,
however,c ) 0 occurs atz) -∞ andn ) 1/ε is located outside
the interested range ofn (0 < n < 1) becauseε < 1. Therefore,
we may treat eq 2.11 by the ordinary perturbation method, in
which an independent variable is expanded in powers of a small
parameter contained in the equation considered.

We expressn(z) as

Then, eq 2.10 gives

with

which indicates thatc(x,t) can be determined up to second order
in ε by calculatingu0(z), u1(z), andu2(z).

Introducing eq 2.13 into eq 2.11, rearranging the result in
powers ofε, and equating the coefficients of successive terms
to zero, we obtain the following set of equations foru0(z),
u1(z), andu2(z):

The associated boundary conditions are

Solutions

Solving the above set of equations is just standard mathemati-
cal exercises, so only the important consequences are presented
below.

First, as is well documented in textbooks,5 u0(z) is given by

with

whereΦ(z) is the error function defined by

Equation 3.1 gives

which is graphed in Figure 1.
Next, u1(z) is represented by

where

It follows from eq 3.5 that

which is graphed in Figure 2. The curve consists of a sharp
positive peak accompanying a pair of nearly symmetric negative
troughs on both sides of it. It should be noted that the maximum
is not much shifted fromz ) 0 and its height is only about
one-fifth of the maximum of du0/dz.

c ) C/CB (2.4)

z ) x/(2xD(0)t) (2.5)

d
dz [(1 - εxc)

dc
dz] + 2z

dc
dz

) 0 (2.6)

c ) 1 (z ) ∞), c ) 0 (z ) -∞) (2.7)

ε ) kxCB (2.8)

Dh ) D(0)(1 - 0.7071ε) (2.9)

n ) xc (2.10)

d
dz [n(1 - εn)

dn
dz] + 2zn

dn
dz

) 0 (2.11)

n ) 1 (z ) ∞), n ) 0 (z ) -∞) (2.12)

n(z) ) n0(z) + n1(z) + n2(z)ε + n2(z)ε
2 + ... (2.13)

c(x,t) ) u0(z) + 2u1(z)ε + u2(z)ε
2 + ... (2.14)

u0(z) ) n0(z)
2 (2.15)

u1(z) ) n0(z) n1(z) (2.16)

u2(z) ) 2n0(z) n2(z) + n1(z)
2 (2.17)

d2u0/dz2 + 2z du0/dz ) 0 (2.18)

d2u1/dz2 + 2z du1/dz ) (1/3) d2u0
3/2/dz2 (2.19)

d2u2/dz2 + 2z du2/dz ) 2 d2(u0
1/2u1)/dz2 (2.20)

u0(∞) ) 1, u1(∞) ) u2(∞) ) 0 (2.21)

u0(-∞) ) u1(-∞) ) u2(-∞) ) 0 (2.22)

u0(z) ) E(z)/2 (3.1)

E ) 1 + Φ(z) (3.2)

Φ(z) ) 2

xπ
∫0

z
exp(-w2) dw (3.3)

du0/dz ) (2/xπ) exp(-z2) (3.4)

u1(z) ) - 1

x2π
∫-∞

z
exp(-w2) f(w) dw + 1

x2
[E(z)]3/2 -

0.309E(z) (3.5)

f(z) ) ∫-∞

z
wxE(w)dw (3.6)

du1/dz ) exp(-z2)[-(1/x2π)f(z) + (1/2x2π)xE(z) -
0.349] (3.7)
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Finally, u2(z) is conveniently represented as the sum of three
terms:

with

where

and

The functionGa(z) is an approximation toG(z) defined by

and has been introduced to simplify the numerical evaluation
of p(z). Figure 3 comparesGa(z) with the exactG(z). Though
the agreement of the two functions leaves something to be
desired, both givep(z) almost indistinguishable values over the
entire range ofz.

The derivatives dp/dz, dq/dz, and dr/dz are given by

Figure 4 shows the du2/dz vs z plot calculated by inserting
these three equations into

It has a general feature similar to the du1/dz curve, except that
the two troughs have different depth. The height and location
of the maximum are comparable to those of du1/dz. This implies
that the contribution of theε2 term to the concentration gradient
dc/dz (andc as well) becomes significant with increasingε.

Results and Discussion

Concentration and Concentration Gradient Distributions.
With the substitution of the above analytical results into eq 2.14
and

the distributions ofc and dc/dz over thez axis for a givenε can
be calculated. Figure 5 shows the dc/dz distributions forε ) 0,
0.2, 0.4, and Figure 6 the correspondingc distributions. These
graphs are meaningful only forε at which contributions of terms
higher thanε2 may be neglected. Thus, those forε ) 0.4 may
be accepted with reservation until at least the order of magnitude
of u3 is estimated.

The curves for nonzeroε reveal expected deviations from
the ideal situation (ε ) 0). Especially, those in Figure 5 show
clearly enhanced sharpening with increasingε. We observe the
c distribution forε ) 0.5 reported by Albright and Miller1 to
exhibit more marked downward deviations than ours on the side
below c ) 1/2.

Apparent Diffusion Coefficient

When the Rayleigh fringe method4 is used to study free
diffusion in solutions it is usual to evaluate an apparent diffusion
coefficientDj defined below. This is based on the expectation
that Dj as a function ofj, i.e., the position in the diffusion
boundary, allows us to accurately estimate the diffusion coef-
ficient at the mean concentration of a given solution. Albright
and Miller1 confirmed this with their numerical solutions to eq

Figure 1. Distribution of du0/dz over thez axis. This is a Gaussian
distribution function.

Figure 2. Distribution of du1/dz over thez axis. The area enclosed by
the solid curve above and below the dashed line is zero because of the
boundary conditions foru1(z).

u2(z) ) -0.564p(z) + 0.167q(z) - 0.437r(z) (3.8)

p(z) ) ∫-∞

z
exp(-w2){Ga(w) - [f(w)]2 + f(w) E(w) -

2∫-∞

w
yGa(y) dy + 0.986} dw (3.9)

q(z) ) [E(z)]2 - 2.00E(z) - (8/xπ)∫-∞

z
exp(-w2) g(w) dw

(3.10)

r(z) ) (6x2){-(1/x2π)∫-∞

z
(-w2)f(w) dw +

(x2/12)[E(z)]3/2 - 0.309E(z)} (3.11)

g(z) ) ∫-∞
wE(w) dw (3.12)

Ga(z) ) -0.2[1+ tanh(z + 0.2)] + 0.057[Φ(z - 0.75)+
Φ(|z - 0.75|)] (3.13)

G(z) ) 1

xπE(z)
∫-∞

z
exp(-w2) f(w) dw (3.14)

dp/dz ) exp(-z2){Ga(z) - [f(z)]2 + f(z) E(z) -

2∫-∞

z
wGa(w) dw + 0.986} (3.15)

dq/dz ) exp(-z2)[(4/xπ)E(z) - (8/xπ)g(z) -2.257]
(3.16)

dr/dz ) (6/xπ) exp(-z2)[-f(z) + (1/2)xE(z) - 0.874]
(3.17)

du2/dz ) -0.564(dp/dz) + 0.167(dq/dz) - 0.437(dr/dz)

(3.18)

dc/dz) du0/dz + 2ε(du1/dz) + ε
2(du2/dz) + ... (4.1)
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2.1. In what follows, we examine what happens toDj when our
perturbation solution is used.

In circumstances where concentration is proportional to
refractive index, the following set of relations1 is the basis for
computingDj:

Here,J is the total number of Rayleigh fringes,j andJ - j are
the fringe numbers for Creeth’s symmetric fringes4 which define
a pair of concentrations located above and below at an equal
distance fromc ) 1/2, andzj andzJ-j are thez coordinates at
these fringes (in practice, sinceD(0) is unknown in advance,
they are replaced byxj/xt and xJ-j/xt). Furthermore,z*j is a
variable as a function of whichDj is to be evaluated.

When the concentration distribution is antisymmetric about
the origin of z (or the concentration gradient distribution is
symmetric aboutz ) 0), as observed in free diffusion of binary
or multicomponent systems with constant diffusion coefficients
(main-term and cross-term ones), we havezJ-j ) -zj so that eq
5.3 is not needed. This is the case that Albright and Sherill6

have summarized methods for analyzing Rayleigh fringe data
on liquid diffusion. However, sincezJ-j may not be equal to
-zj for concentration-dependent diffusion, eq 5.3 must be
retained. In this case,zj andzJ-j determined as functions ofz*j
from eq 5.2 and 5.3 are used to calculateDj, which is defined
by

With the analytical expression forc(z) obtained above, this
calculation can be carried through up to second order inε.

Becausec(z) reduces tou0(z) atε ) 0 (see eq 2.14), it follows
from eq 3.1 and 5.2 thatzj tends toz*j asε f 0. Thus, we start
assuming the series

Then, we find from eq 5.2 and 5.3 thatzJ-j is represented by

so that eq 5.4 gives

with

Figure 3. Comparison ofGa(z) (dotted line) withG(z) (solid line).

Figure 4. Distribution of du2/dz over thez axis. The area enclosed by
the solid curve above and below the dashed line is zero because of the
boundary conditions foru2(z).

Figure 5. Distributions of concentration gradient dc/dz for different
ε.

Figure 6. Concentration distributions corresponding to Figure 5.

c(zj) ) j/J (5.1)

c(zj) - 1/2 ) 1/2Φ(z*j ) (5.2)

1/2 - c(zJ-j) ) 1/2Φ(z*j ) (5.3)

Dj ) D(0)(zj - zJ-j

2z*j )2

(5.4)

zj ) z*j + εV1(z*j ) + ε
2V2(z*j ) + ... (5.5)

zJ-j ) -z*j + εV1(-z*j ) + ε
2V2(-z*j ) + ... (5.6)

Dj/D(0) ) [1 + εV1(z*j ) + ε
2V2(z*j ) + ...]2 (5.7)
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To find the expressions forV1(z) andV2(z) we substitute eq 5.5
for zj in c(zj) ) u0(zj) + 2εu1(zj) + ε2u2(zj) + ... (see eq 2.14),
expand each term on the right-hand side in powers ofε, and
use the results to arrange the left-hand side of eq 5.2 as a power
series ofε. Comparison of both sides then yields

These allowV1(z*j ) andV2(z*j ), and henceDj/D(0) as a function
of z*j , to be determined when the expressions foru0, u1, andu2

are inserted.
For comparison with Albright and Miller’s report we have

converted the calculatedDj/D(0) to Dj(z*j )/Dh (Dh is defined by
eq 2.9), and show the results for threeε values in Figure 7. It
is seen that asz*j increases,Dj/Dh for a givenε starts from a
value slightly smaller than unity, rises, intersects the line for
Dj/Dh ) 1 (i.e., the line forε ) 0), reaches a maximum, and
falls. This behavior is consistent with what Albright and Miller
derived from numerical integrations, except that they found no
maxima and the intersection with the line forε ) 0 to occur at
the samez*j ) 0.63, regardless ofε. In the comparison,
however, we must note that theirz*j is not the same as ours,
being larger by a constant factor of (1- 0.7071ε)1/2 than the
latter. Our “cross points” read off Figure 7 arez*j ) 0.722,
0.680, 0.625 forε ) 0.1, 0.2, 0.3, respectively. When corrected
for this difference, the Albright-Miller z*j values are about
0.75, 0.73, 0.71, which are definitely larger than 0.63. Thus,
our analytical solution does not lend complete support to
Albright and Miller’s findings, but it confirms thatDj gives a
very close approximation toDh (see Appendix).

As Figure 6 shows, the concentrations at|z*j | larger than 1.7
are almost indistinguishable from zero or unity. SinceDj at z*j
> 1.7 depends on them, its computation should suffer consider-
able errors unless they are determined very accurately. This fact
may account for the presence of a maximum inDj from our
perturbation solution.

Appendix

Albright and Miller1 refer to their numerical investigation of
the diffusion equation with a linearly concentration-dependent
D:

whereâ is a positive parameter corresponding toε above and
c is a reduced concentration defined by eq 2.4. Though reported
only for â ) 0.5 theirDj/Dh starts from a value slightly above
unity, decreases monotonically, and crosses the line forε ) 0
asz*j increases. Interestingly, this behavior is just opposite to
what we observe for thexc-dependentD, and suggests thatDj

not only gives a good approximation toDh but also is sensitive
to the form of concentration dependence ofD. In what follows,
we examine what our perturbation method predicts forDj when
D is governed by eq A.1.

The problem is to solve the diffusion equation

under the same initial and boundary conditions as eqs 2.2 and
2.3 by expandingc in powers ofâ as

wherez is defined by eq 2.5. We have determined the solution
up to second order inâ. The results are

with

andE(z) andg(z) defined in the text.

Figure 7. Variations of Dj/Dh with z*j for small ε. Arrows indicate
cross points.

Figure 8. Concentration distributions for differentâ.

V1(z) ) [V1(z) - V1(-z)]/(2z) (5.8)

V2(z) ) [V2(z) - V2(-z)]/(2z) (5.9)

V1(z*j )(du0/dz)z)z*j
+ 2u1(z*j ) ) 0 (5.10)

V2(z*j )(du0/dz)z)z*j
+ (1/2)V1(z*j )2(d2u0/dz2)z)z*j

+

2V1(z*j )(du1/dz)z)z*j
+ u2(z*j ) ) 0 (5.11)

D(c) ) D(0)(1 - âc) (A.1)

∂c/∂t ) ∂/∂x[D(0)(1 - âc)∂c/∂x] (A.2)

c(x,t) ) c0(z) + âc1(z) + â2c2(z) + ... (A.3)

c0(z) ) E(z)/2 (A.4)

c1(z) ) (1/2)E(z)2 - E(z) - (4/xπ)∫-∞

z
exp(-z2) g(z) dz

(A.5)

c2(z) ) (1/xπ)∫-∞

z
exp(-z2) I(z) dz -

(1/2xπ)∫-∞

z
exp(-z2) J(z) dz + 0.0359E(z) (A.6)

where

I(z) ) F(z) - 2∫-∞

z
zF(z) dz,

J(z) ) E(z) g(z) - 2∫-∞

z
zE(z) g(z) dz (A.7)

F(z) ) 1.5/[1+ exp(-3z + 0.6)] (A.8)
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Figure 8 shows the concentration distributions for three values
of â. The skewness of the curve even forâ ) 0.4 is not as
marked as expected from Albright and Miller’s curve forâ )
0.5. Especially atc belowc ) 1/2 the deviations from the ideal
situation are unexpectedly small.

For theD under consideration eqs 5.10 and 5.12 must be
replaced by

In Figure 9, the calculatedDj/Dh for different â are plotted
againstz*j , whereDh is theD value at the mean concentrationc
) 1/2, i.e.,

For either nonzeroâ indicated,Dj/Dh shows a variation withz*j
very similar to that reported by Albright and Miller, but it
crosses the line forâ ) 0 at a z*j value which differs for
different â. The crossover points read off Figure 9 arez*j )
1.07, 0.893 forε ) 0.2, 0.4, respectively. When corrected for
the difference between our and Albright-Miller’s z*j , 1.07 and

0.893 change to 1.18 and 1.12, respectively, which are as twice
as larger than theirz*j value that Albright and Miller found for
â ) 0.5.
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V1(z*j )(du0/dz)z)z*j
+ c1(z*j ) ) 0 (A.9)

V2(z*j )(dc0/dz)z)z*j
+ (1/2)V1(z*j )2(d2c0/dz2)z)z*j

+

V1(z*j )(dc1/dz)z)z*j
+ c2(z*j ) ) 0 (A.10)

Dh ) 1 - (1/2)â (A.11)

Figure 9. Variations ofDj/Dh with z*j for small â. Arrows indicate
cross points.
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