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Electrolyte Diffusion into Water
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The diffusion coefficienD(C) for a very dilute aqueous electrolyte is represented, in a first approximation,

by D(C) = D(0)(1 — k\/E), whereC is the electrolyte concentration akds a positive parameter. For the
experimental setup in which, initially, a sharp boundary is formed between an electrolyte solution and pure
water, the GostingFujita method is not applicable for solving free diffusion with this concentration-dependent
D, becaus® is not regular aC = 0. In this paper, another perturbation method which ksesa perturbation
parameter is applied to solve this diffusion problem correct up to second orlear the apparent diffusion
coefficientD; defined in the Rayleigh fringe method for measuring transport processes in solutions is calculated
as a function of the position in the diffusion boundary. It is shown that the result does not support Albright
and Miller’s finding from numerical solutions that the position at whighagrees withD is independent of

k. Here,D is theD value at the mean concentration.

Introduction perturbation approach as it stands may not hold vibelepends
on +/C andCr = 0.

In reality, eq 1.1 should be regarded as a limiting fornDof
as C approaches zero. It is more practical to add at least one
term linear inC to its right-hand side. Albright and Millér
worked out this case again using the Gostifgijita perturbation

Diffusion of an electrolyte in very dilute aqueous solutions
is governed by the diffusion coefficie(C) which, in a first
approximation, is represented by

D(C) =DO)(1 - k*/(_:) (1.1) method for the analytic treatment. However, for the above reason
) ) the solution they present seems to have no theoretical value
whereC is the concentration of the electrolyte, ab(D) andk whenCr = 0.

are system-dependent (positive) parameters. The dependence |, the present paper, the AlbrighMiller problem is attacked

of D on +/C is usually considered to make the diffusion by another perturbation method which utilizes the idea that the
boundary considerably skew from the ideal situation in which giffusion boundary tends to be ideal with the diffusion coef-

D is constant, and the skewness has been the subject oficient D(0) ask diminishes to zero, so that deviations of the

theoretical and experimental interest in the studies of liquid giffusion boundary from the ideal one by a concentration

diffusion. . . dependence ob(C) may be treated as perturbations due to
AIbrl_ght and Mllle(1 app_roache_d b_oth analytlcally and  onzerok. Thus, it expand€ in powers ofk (actually,k /—CB)
numerically the one-dimensional diffusion equation Wit(C) and successively determines the expansion coefficients from the

given by eq 1.1 under the experimental setup that, initially, a gitfysion equation. It should be noted that though both are
dilute electrolyte solution is separated by a sharp boundary from perturbation methods the present method differs from the
water in an infinitely long cell. For the analytical treatment they Gosting-Fuijita one in the basic idea.

applied the perturbation method of Gosting and Fdjitehich The calculation here is made u .
e i . p to second ordek,fiC,.
:Jhsezk?e fact tha;f.th.e d[')ﬁl:—:s'on bodgndary_ terllds to b? Ildlea/I with The solution obtained is used to calcul&ipas a function of
¢ diffusion coefficienD(C) as a dimensionless varia the position in the diffusion boundary, and the result is compared

2C goes to zero. Her&;; = (Cz + Cr)/2 andAC = Cg — Cr, : X . ) _
- . 2 . with that obtained by Albright and Millérfrom numerical
with Cg andCr denoting the initial concentrations of the bottom integrations. HereD; is an apparent diffusion coefficient

and top layers of solution. Thus, this method views deviations : : ; . :
of the diffusion boundary from the ideal one by a concentration g%%z?éw?n ?oltﬂ?i%nsz?gé%g;el;ng; irtT;eér;(f)ic:i)tgorr]T;easurlng
dependence oD(C) as perturbations due to nonzetd/2C. '
After expandingD(C) in powers ofC — C aboutC = C, it
expressesC as a power series oAC/2C and successively
determines from the diffusion equation the coefficients of the ~ The diffusion equation to be solved is
series as functions of time and positionx (actually, of a aC 9
combined single variabl&/\ﬁ). In the Albright-Miller prob- o ax
lem, Ct is zero, so thaAC/2C = 1, which is the worst case for
the convergence of the Gostingujita method. However, more  anq the associated initial and boundary conditions are
important is the fact that thB(C) of eq 1.1 is not a regular

function of C at C = 0, since d/dC diverges there. Hence,the C=C,;(t=0;0<x<®), C=0({=0;—w <x<0)
expansion oD in powers ofC — C fails to be valid aiC = 0. (2.2)
This means that formal application of the Gostirfeyjita C=C,(t> 0:x=0), C=0(>0;x=—-0) (2.3)

Basic Equations

D(0)(1 — kv/C) %] (2.1)
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c=CICy (2.4)
and a dimensionless variataeby®
z=x/(24/D(0)) (2.5)

eq 2.1 changes to an ordinary differential equation

d dc dc
d—Z’(l Vo o + 22 =

dz0

(2.6)

and the initial and boundary conditions are reduced to

c=1@z=w), c=0(@=-w) 2.7)

wheree is defined by

e =k/Cq

and can be taken as smaller than unity to meet the physical
requirement thaD be positive. We note that Albright and
Miller® usedD for D(0) in defining the variable, whereD is
the D value at the mean concentratior= Y, i.e.,

(2.8)

D = D(0)(1— 0.707%) (2.9)
The ordinary differential equation derived from eq 2.1 with
thus defined is different in form from eq 2.6. Hence, our
solutions presented below do not hold as they stand ittine
them are simply replaced by Albright and Millers= x/(2

VD).
We begin with the substitution
n=+c (2.10)
Then eq 2.6 changes to
d%[n(l ~en) % + 2zng—2 —0 (2.11)
and eq 2.7 to
N=1@Z=w), n=0(@Z=—w) (2.12)

Equation 2.10 removes nonregularity from eq 2.6, but introduces
the problem that the coefficient of the highest derivative in eq
2.11,i.e.n(1 — €n), vanishes abh = 0 andn = 1/e. Fortunately,
howeverc = 0 occurs az = —o andn = 1/e is located outside
the interested range of(0 < n < 1) because < 1. Therefore,
we may treat eq 2.11 by the ordinary perturbation method, in
which an independent variable is expanded in powers of a small
parameter contained in the equation considered.

We express\|(z) as

N2 = ny(@ + Ny + NyDe + NyDe’ + ... (2.13)
Then, eq 2.10 gives
o) = Uy + 2u,(De + U,(DE+ ... (2.14)
with
U(2) = ny(2)* (2.15)
u(2) = ng(2) n,(2 (2.16)

Fujita

Uy(2) = 20(2) N(2) + ny(2)° (2.17)
which indicates that(x,t) can be determined up to second order
in € by calculatinguo(2), ui(2), andux(2).

Introducing eq 2.13 into eq 2.11, rearranging the result in
powers ofe, and equating the coefficients of successive terms
to zero, we obtain the following set of equations iex2),
u1(2), andux(2):

d’uy/dZ + 2z duy/dz=0 (2.18)
d’u,/dZ + 2z du,/dz = (1) dPu, %dZ  (2.19)
d’u,/dZ + 2z duy/dz = 2 f(u,"u)/dZ  (2.20)

The associated boundary conditions are
Up(®) =1,  Uy(%) = Uy(0) =0 (2.21)
Ug(—00) = Uy(—00) = Uy(—0) =0 (2.22)

Solutions

Solving the above set of equations is just standard mathemati-
cal exercises, so only the important consequences are presented
below.

First, as is well documented in textbodkey(2) is given by

(2 = E)/2 (3.1)
with
E=1+®d(2) (3.2)
whered(2) is the error function defined by
D(2) = %t [ exp(-w?) dw 3.3)
Equation 3.1 gives
duy/dz = (2IW/7) exp2) (3.4)

which is graphed in Figure 1.
Next, ui(2) is represented by
1 2 1 ar
U2 =——[" exp(~w?) f(w) dw + —[E@2)]** —
' Jz_nf*w Nz
0.30%E(2 (3.5)

where
i@ = [ wy/Em)dw (3.6)
It follows from eq 3.5 that
du,/dz = exp(~2)[—(1V27)1(2) + MV 271)VE@) —
0.349] (3.7)

which is graphed in Figure 2. The curve consists of a sharp
positive peak accompanying a pair of nearly symmetric negative
troughs on both sides of it. It should be noted that the maximum
is not much shifted fronz = 0 and its height is only about
one-fifth of the maximum of dy/dz.
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Figure 1. Distribution of dup/dz over thez axis. This is a Gaussian
distribution function.
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Figure 2. Distribution of du/dz over thez axis. The area enclosed by
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Ga(z) = —0.2[1+ tanhg + 0.2)] + 0.057[®(z — 0.75)+
®(jz— 0.75)] (3.13)

The functionGa(2) is an approximation t@&(z) defined by

G(2) = /7 expw?) fw) dw  (3.14)

7E(2)

and has been introduced to simplify the numerical evaluation
of p(2). Figure 3 compareSa(z) with the exacitG(z). Though
the agreement of the two functions leaves something to be
desired, both give(z) almost indistinguishable values over the
entire range ok

The derivatives g/dz, dg/dz, and d/dz are given by

dp/dz = exp(2){Ga(z) — [f(2)]* + f(2) E(2) —
2" wGaw) dw +0.988 (3.15)

dg/dz = exp(~2)[(4/V7)E(Z) — (8/V7)g(2) —2.257] (3.16)

dr/dz= (6/«/7_t) exp(—zz)[—f(z) + (1/2)\/ E(2 — 0.874]
(3.17)
Figure 4 shows thewd/dz vs z plot calculated by inserting
these three equations into
du,/dz= —0.564(g/dz) + 0.167(aydz) — 0.437(d/d2)
(3.18)
It has a general feature similar to the.ftiz curve, except that
the two troughs have different depth. The height and location
of the maximum are comparable to those of/dz. This implies

that the contribution of the? term to the concentration gradient
dc/dz (andc as well) becomes significant with increasiag

Results and Discussion

the solid curve above and below the dashed line is zero because of the Concentration and Concentration Gradient Distributions.

boundary conditions fou,(2).

Finally, ux(2) is conveniently represented as the sum of three

terms:

Uy(2) = —0.564(2) + 0.161(2) — 0.43%(2) (3.8)

with

p@) = J* exp(-wP}{ Gaw) — [f(w)]* + f(w) E(w) —
2" yGaly) dy +0.986 dw (3.9)

4@ = [EQ1 — 2.0E® — B8IV) [~ exp(-w?) gw) dw
(3.10)

r(2) = (6v2){ —(A27) [* (—WA)f(w) dw +
(V2/112)[E(2]*? - 0.30E(2)} (3.11)
where
9@ = [ WEW) dw (3.12)

and

With the substitution of the above analytical results into eq 2.14
and

dc/dz= duy/dz + 2¢(du,/dz) + ez(duzldz) + ... (41)

the distributions ot and dt/dz over thez axis for a givere can

be calculated. Figure 5 shows the&dk distributions fore = 0,

0.2, 0.4, and Figure 6 the correspondmndistributions. These
graphs are meaningful only ferat which contributions of terms
higher thane? may be neglected. Thus, those for= 0.4 may

be accepted with reservation until at least the order of magnitude
of uz is estimated.

The curves for nonzere reveal expected deviations from
the ideal situationd = 0). Especially, those in Figure 5 show
clearly enhanced sharpening with increasingve observe the
c distribution fore = 0.5 reported by Albright and Millérto
exhibit more marked downward deviations than ours on the side
below ¢ = 5.

Apparent Diffusion Coefficient

When the Rayleigh fringe methbds used to study free
diffusion in solutions it is usual to evaluate an apparent diffusion
coefficientD; defined below. This is based on the expectation
that D; as a function ofj, i.e., the position in the diffusion
boundary, allows us to accurately estimate the diffusion coef-
ficient at the mean concentration of a given solution. Albright
and Millef confirmed this with their numerical solutions to eq
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Figure 3. Comparison ofGa(z) (dotted line) withG(z) (solid line).
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Figure 4. Distribution of di,/dz over thez axis. The area enclosed by
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Figure 6. Concentration distributions corresponding to Figure 5.
c(zj) =il (5.2)
o(3) = 1, = "1,2(Z) (52)
", = cz) = 1,0(2) (5.3)

Here,J is the total number of Rayleigh fringgsandJ — j are

the fringe numbers for Creeth’'s symmetric fringyednich define

a pair of concentrations located above and below at an equal
distance fromc = 1/, andz andz;-j are thez coordinates at
these fringes (in practice, sind0) is unknown in advance,
they are replaced by,—/\/f and xH/«ﬁ). Furthermorez' is a
variable as a function of whicBj; is to be evaluated.

When the concentration distribution is antisymmetric about
the origin of z (or the concentration gradient distribution is
symmetric about = 0), as observed in free diffusion of binary
or multicomponent systems with constant diffusion coefficients
(main-term and cross-term ones), we hayg= —z so that eq
5.3 is not needed. This is the case that Albright and Sherill

the solid curve above and below the dashed line is zero because of theyaye summarized methods for analyzing Rayleigh fringe data

boundary conditions fou,(2).

Figure 5. Distributions of concentration gradient/dz for different
€.

2.1. In what follows, we examine what happen®iavhen our
perturbation solution is used.

In circumstances where concentration is proportional to

refractive index, the following set of relatiohis the basis for
computingD;:

on liquid diffusion. However, since;—; may not be equal to
—z for concentration-dependent diffusion, eq 5.3 must be
retained. In this case andz;-; determined as functions

from eq 5.2 and 5.3 are used to calculBewhich is defined

by
D = D(O)(—Zi _2::‘])2 (5.4)

With the analytical expression far(z) obtained above, this
calculation can be carried through up to second ordet in

Because(z) reduces tain(2) ate = 0 (see eq 2.14), it follows
from eq 3.1 and 5.2 tha tends toz* ase — 0. Thus, we start
assuming the series

z = 2"+ ev)(Z) + u,(Z) + ...

Then, we find from eq 5.2 and 5.3 that ; is represented by

(5.5)

7= ~Z +ev(-2)+ v(-2)+ ... (5.6
so that eq 5.4 gives
D/D(0) = [1 + eVy(z) + €Vy(z) +..F  (5.7)

with
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Vi(2) = [14(2) — i(~2)(22) (5.8) ' ' |
V(2 = [v(2) — v(—2)]/I(22) (5.9 1.02

To find the expressions fan(z) andv,(2) we substitute eq 5.5

for z in c(z) = uo(z) + 2eui(z) + €2ux(z) + ... (see eq 2.14), (]

expand each term on the right-hand side in powers, @nd o 1.00

use the results to arrange the left-hand side of eq 5.2 as a power
series ofe. Comparison of both sides then yields

v)(Z)(dug/d2), + 2u,(7) =0 (5.10) 0.98 | ‘ :

078Dy + (1)o@ (U, + Sz

201(4*)(du1/dz)2:27 + UZ(%*) =0 (11 Figure 7. Variations of Dy/D with Z: for small e. Arrows indicate

Cross points.

These allows(z") andv2(z°), and hencd;/D(0) as a function 10 [ |
of Z, to be determined when the expressionsugui, andu; )
are inserted. p=0

For comparison with Albright and Miller’s report we have 08 B=0.27
converted the calculate;/D(0) to Dj(z)/D(D is defined by B=04
eq 2.9), and show the results for thregalues in Figure 7. It 0.6 | i
is seen that ag* increasesP;/D for a givene starts from a c
value slightly smaller than unity, rises, intersects the line for
Dy/D = 1 (i.e., the line fore = 0), reaches a maximum, and 04r i
falls. This behavior is consistent with what Albright and Miller
derived from numerical integrations, except that they found no 0.2 ]
maxima and the intersection with the line tor= 0 to occur at
the samez* = 0.63, regardless ot. In the comparison, [ .
however, we must note that theq'-’r is not the same as ours, 0
being larger by a constant factor of (1 0.707%)"2 than the -2 -1 0 1 2
latter. Our “cross points” read off Figure 7 are = 0.722, z
0.680, 0.625 foe = 0.1, 0.2, 0.3, respectively. When corrected
for this difference, the AlbrightMiller ;* values are about
0.75, 0.73, 0.71, which are definitely larger than 0.63. Thus, ac/at = a/ox[D(0)(1 — Ac)ac/ox] (A.2)
our analytical solution does not lend complete support to
Albright and Miller’s findings, but it confirms thab; gives a under the same initial and boundary conditions as eqs 2.2 and

Figure 8. Concentration distributions for differeft

very close approximation tB (see Appendix). 2.3 by expanding in powers off3 as
As Figure 6 shows, the concentrationgzi larger than 1.7 )
are almost indistinguishable from zero or unity. Sifgeat z* c(xt) =cy(2 + pc,(2 + fc(2 + ... (A.3)

> 1.7 depends on them, its computation should suffer consider- . _ _ _
able errors unless they are determined very accurately. This factvherezis defined by eq 2.5. We have determined the solution
may account for the presence of a maximurDinfrom our up to second order ifi. The results are

perturbation solution.
(29 =E(@/2 (A.4)
Appendix

Albright and Miller! refer to their numerical investigation of ,
the diffusion equation with a linearly concentration-dependent  ¢,(2) = (,)E(2)* — E(2) — (4IV7) ﬁ ooexp(—zz) 0(2) dz
D: (A.5)

D(c) = D(0)(1 - o) AD =) [° exp-D) (2 dz—

wheref is a positive parameter correspondingetabove and (1/2J;_z) f_z exp(—2) J(z) dz+ 0.035%(2) (A.6)
cis areduced concentration defined by eq 2.4. Though reported ®

only for # = 0.5 theirD;/D starts from a value slightly above where

unity, decreases monotonically, and crosses the line for0 5

asz* increases. Interestingly, this behavior is just opposite to 1(2) = F(2) — 2f_mZF(Z) dz,

what we observe for the/(_:-dependenD_, and suggests thay

Z
not only gives a good approximation Bbbut also is sensitive with 9 =E32 9> - 2f_sz(z) 9(2) dz (A.7)
to the form of concentration dependencddofin what follows,
we examine what our perturbation method predict<forvhen F(2) = 1.5/[1+ exp(=3z+ 0.6)] (A.8)

D is governed by eq A.1.
The problem is to solve the diffusion equation andE(z) andg(2) defined in the text.
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Figure 8 shows the concentration distributions for three values
of . The skewness of the curve even for= 0.4 is not as
marked as expected from Albright and Miller's curve fore=
0.5. Especially at belowc = 1/, the deviations from the ideal
situation are unexpectedly small.

For the D under consideration eqs 5.10 and 5.12 must be
replaced by

vi(F)duyfdd), +¢,(7) =0 (A.9)

vo(Z)(defd2), - + (1)vy(Z) (L efdD) - +
v)(7)(dey/dz), + c(7) =0 (A.10)

In Figure 9, the calculate®;/D for different 8 are plotted
against;-*, whereD is theD value at the mean concentration
= 1/2, i.e.,

D=1-(",)p (A.11)
For either nonzerg indicated,D;/D shows a variation wittz
very similar to that reported by Albright and Miller, but it
crosses the line fop = 0 at az* value which differs for
different 8. The crossover points read off Figure 9 afe=

1.07, 0.893 fore = 0.2, 0.4, respectively. When corrected for
the difference between our and Albrigti¥liller's z*, 1.07 and

Fujita
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Figure 9. Variations of D/D with z+ for small . Arrows indicate
Cross points.

0.893 change to 1.18 and 1.12, respectively, which are as twice
as larger than thez value that Albright and Miller found for
B =0.5.
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