# Electrolyte Diffusion into Water 

Hiroshi Fujita*<br>35 Shimotakedono-Cho, Shichiku, Kita-Ku, Kyoto, Japan

Received: June 30, 2000; In Final Form: August 23, 2000


#### Abstract

The diffusion coefficient $D(C)$ for a very dilute aqueous electrolyte is represented, in a first approximation, by $D(C)=D(0)(1-k \sqrt{C})$, where $C$ is the electrolyte concentration and $k$ is a positive parameter. For the experimental setup in which, initially, a sharp boundary is formed between an electrolyte solution and pure water, the Gosting-Fujita method is not applicable for solving free diffusion with this concentration-dependent $D$, because $D$ is not regular at $C=0$. In this paper, another perturbation method which uses $k$ as a perturbation parameter is applied to solve this diffusion problem correct up to second order in $k$, and the apparent diffusion coefficient $D_{j}$ defined in the Rayleigh fringe method for measuring transport processes in solutions is calculated as a function of the position in the diffusion boundary. It is shown that the result does not support Albright and Miller's finding from numerical solutions that the position at which $D_{j}$ agrees with $\bar{D}$ is independent of $k$. Here, $\bar{D}$ is the $D$ value at the mean concentration.


## Introduction

Diffusion of an electrolyte in very dilute aqueous solutions is governed by the diffusion coefficient $D(C)$ which, in a first approximation, is represented by

$$
\begin{equation*}
D(C)=D(0)(1-k \sqrt{C}) \tag{1.1}
\end{equation*}
$$

where $C$ is the concentration of the electrolyte, and $D(0)$ and $k$ are system-dependent (positive) parameters. The dependence of $D$ on $\sqrt{C}$ is usually considered to make the diffusion boundary considerably skew from the ideal situation in which $D$ is constant, and the skewness has been the subject of theoretical and experimental interest in the studies of liquid diffusion.

Albright and Miller ${ }^{1}$ approached both analytically and numerically the one-dimensional diffusion equation with $D(C)$ given by eq 1.1 under the experimental setup that, initially, a dilute electrolyte solution is separated by a sharp boundary from water in an infinitely long cell. For the analytical treatment they applied the perturbation method of Gosting and Fujita, ${ }^{2}$ which uses the fact that the diffusion boundary tends to be ideal with the diffusion coefficient $D(\bar{C})$ as a dimensionless variable $\Delta C /$ $2 \bar{C}$ goes to zero. Here, $\bar{C}=\left(C_{\mathrm{B}}+C_{\mathrm{T}}\right) / 2$ and $\Delta C=C_{\mathrm{B}}-C_{\mathrm{T}}$, with $C_{\mathrm{B}}$ and $C_{\mathrm{T}}$ denoting the initial concentrations of the bottom and top layers of solution. Thus, this method views deviations of the diffusion boundary from the ideal one by a concentration dependence of $D(C)$ as perturbations due to nonzero $\Delta C / 2 \bar{C}$. After expanding $D(C)$ in powers of $C-\bar{C}$ about $C=\bar{C}$, it expresses $C$ as a power series of $\Delta C / 2 \bar{C}$ and successively determines from the diffusion equation the coefficients of the series as functions of time $t$ and position $x$ (actually, of a combined single variable $x / \sqrt{t}$ ). In the Albright-Miller problem, $C_{\mathrm{T}}$ is zero, so that $\Delta C / 2 \bar{C}=1$, which is the worst case for the convergence of the Gosting-Fujita method. However, more important is the fact that the $D(C)$ of eq 1.1 is not a regular function of $C$ at $C=0$, since $\mathrm{d} D / \mathrm{d} C$ diverges there. Hence, the expansion of $D$ in powers of $C-\bar{C}$ fails to be valid at $C=0$. This means that formal application of the Gosting-Fujita

[^0]perturbation approach as it stands may not hold when $D$ depends on $\sqrt{C}$ and $C_{\mathrm{T}}=0$.

In reality, eq 1.1 should be regarded as a limiting form of $D$ as $C$ approaches zero. It is more practical to add at least one term linear in $C$ to its right-hand side. Albright and Miller ${ }^{3}$ worked out this case again using the Gosting - Fujita perturbation method for the analytic treatment. However, for the above reason the solution they present seems to have no theoretical value when $C_{\mathrm{T}}=0$.

In the present paper, the Albright-Miller problem is attacked by another perturbation method which utilizes the idea that the diffusion boundary tends to be ideal with the diffusion coefficient $D(0)$ as $k$ diminishes to zero, so that deviations of the diffusion boundary from the ideal one by a concentration dependence of $D(C)$ may be treated as perturbations due to nonzero $k$. Thus, it expands $C$ in powers of $k$ (actually, $k \sqrt{C_{\mathrm{B}}}$ ) and successively determines the expansion coefficients from the diffusion equation. It should be noted that though both are perturbation methods the present method differs from the Gosting-Fujita one in the basic idea.

The calculation here is made up to second order in $k \sqrt{C_{\mathrm{B}}}$. The solution obtained is used to calculate $D_{j}$ as a function of the position in the diffusion boundary, and the result is compared with that obtained by Albright and Miller ${ }^{1}$ from numerical integrations. Here, $D_{j}$ is an apparent diffusion coefficient appearing in the Rayleigh fringe method ${ }^{4}$ for measuring diffusion in solutions (see below for its definition).

## Basic Equations

The diffusion equation to be solved is

$$
\begin{equation*}
\frac{\partial C}{\partial t}=\frac{\partial}{\partial x}\left[D(0)(1-k \sqrt{C}) \frac{\partial C}{\partial x}\right] \tag{2.1}
\end{equation*}
$$

and the associated initial and boundary conditions are

$$
\begin{gather*}
C=C_{\mathrm{B}}(t=0 ; 0<x<\infty), \quad C=0(t=0 ;-\infty<x<0)  \tag{2.2}\\
C=C_{\mathrm{B}}(t>0 ; x=\infty), \quad C=0(t>0 ; x=-\infty) \tag{2.3}
\end{gather*}
$$

If a dimensionless concentration $c$ is introduced by

$$
\begin{equation*}
c=C / C_{\mathrm{B}} \tag{2.4}
\end{equation*}
$$

and a dimensionless variable $z$ by $^{5}$

$$
\begin{equation*}
z=x /(2 \sqrt{D(0) t}) \tag{2.5}
\end{equation*}
$$

eq 2.1 changes to an ordinary differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}\left[(1-\epsilon \sqrt{c}) \frac{\mathrm{d} c}{\mathrm{~d} z}\right]+2 z \frac{\mathrm{~d} c}{\mathrm{~d} z}=0 \tag{2.6}
\end{equation*}
$$

and the initial and boundary conditions are reduced to

$$
\begin{equation*}
c=1(z=\infty), \quad c=0(z=-\infty) \tag{2.7}
\end{equation*}
$$

where $\epsilon$ is defined by

$$
\begin{equation*}
\epsilon=k \sqrt{C_{\mathrm{B}}} \tag{2.8}
\end{equation*}
$$

and can be taken as smaller than unity to meet the physical requirement that $D$ be positive. We note that Albright and Miller ${ }^{1}$ used $\bar{D}$ for $D(0)$ in defining the variable $z$, where $\bar{D}$ is the $D$ value at the mean concentration $c=1 / 2$, i.e.,

$$
\begin{equation*}
\bar{D}=D(0)(1-0.7071 \epsilon) \tag{2.9}
\end{equation*}
$$

The ordinary differential equation derived from eq 2.1 with $z$ thus defined is different in form from eq 2.6. Hence, our solutions presented below do not hold as they stand if the $z$ in them are simply replaced by Albright and Miller's $z=x /(2$ $\sqrt{\bar{D}} t)$.

We begin with the substitution

$$
\begin{equation*}
n=\sqrt{c} \tag{2.10}
\end{equation*}
$$

Then eq 2.6 changes to

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}\left[n(1-\epsilon n) \frac{\mathrm{d} n}{\mathrm{~d} z}\right]+2 z n \frac{\mathrm{~d} n}{\mathrm{~d} z}=0 \tag{2.11}
\end{equation*}
$$

and eq 2.7 to

$$
\begin{equation*}
n=1(z=\infty), \quad n=0(z=-\infty) \tag{2.12}
\end{equation*}
$$

Equation 2.10 removes nonregularity from eq 2.6, but introduces the problem that the coefficient of the highest derivative in eq 2.11, i.e., $n(1-\epsilon n)$, vanishes at $n=0$ and $n=1 / \epsilon$. Fortunately, however, $c=0$ occurs at $z=-\infty$ and $n=1 / \epsilon$ is located outside the interested range of $n(0<n<1)$ because $\epsilon<1$. Therefore, we may treat eq 2.11 by the ordinary perturbation method, in which an independent variable is expanded in powers of a small parameter contained in the equation considered.

We express $n(z)$ as

$$
\begin{equation*}
n(z)=n_{0}(z)+n_{1}(z)+n_{2}(z) \epsilon+n_{2}(z) \epsilon^{2}+\ldots \tag{2.13}
\end{equation*}
$$

Then, eq 2.10 gives

$$
\begin{equation*}
c(x, t)=u_{0}(z)+2 u_{1}(z) \epsilon+u_{2}(z) \epsilon^{2}+\ldots \tag{2.14}
\end{equation*}
$$

with

$$
\begin{gather*}
u_{0}(z)=n_{0}(z)^{2}  \tag{2.15}\\
u_{1}(z)=n_{0}(z) n_{1}(z) \tag{2.16}
\end{gather*}
$$

$$
\begin{equation*}
u_{2}(z)=2 n_{0}(z) n_{2}(z)+n_{1}(z)^{2} \tag{2.17}
\end{equation*}
$$

which indicates that $c(x, t)$ can be determined up to second order in $\epsilon$ by calculating $u_{0}(z), u_{1}(z)$, and $u_{2}(z)$.

Introducing eq 2.13 into eq 2.11, rearranging the result in powers of $\epsilon$, and equating the coefficients of successive terms to zero, we obtain the following set of equations for $u_{0}(z)$, $u_{1}(z)$, and $u_{2}(z)$ :

$$
\begin{gather*}
\mathrm{d}^{2} u_{0} / \mathrm{d} z^{2}+2 z \mathrm{~d} u_{0} / \mathrm{d} z=0  \tag{2.18}\\
\mathrm{~d}^{2} u_{1} / \mathrm{d} z^{2}+2 z \mathrm{~d} u_{1} / \mathrm{d} z=(1 / 3) \mathrm{d}^{2} u_{0}^{3 / 2} / \mathrm{d} z^{2}  \tag{2.19}\\
\mathrm{~d}^{2} u_{2} / \mathrm{d} z^{2}+2 z \mathrm{~d} u_{2} / \mathrm{d} z=2 \mathrm{~d}^{2}\left(u_{0}^{1 / 2} u_{1}\right) / \mathrm{d} z^{2} \tag{2.20}
\end{gather*}
$$

The associated boundary conditions are

$$
\begin{align*}
& u_{0}(\infty)=1, \quad u_{1}(\infty)=u_{2}(\infty)=0  \tag{2.21}\\
& u_{0}(-\infty)=u_{1}(-\infty)=u_{2}(-\infty)=0 \tag{2.22}
\end{align*}
$$

## Solutions

Solving the above set of equations is just standard mathematical exercises, so only the important consequences are presented below.

First, as is well documented in textbooks, ${ }^{5} u_{0}(z)$ is given by

$$
\begin{equation*}
u_{0}(z)=E(z) / 2 \tag{3.1}
\end{equation*}
$$

with

$$
\begin{equation*}
E=1+\Phi(z) \tag{3.2}
\end{equation*}
$$

where $\Phi(z)$ is the error function defined by

$$
\begin{equation*}
\Phi(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} \exp \left(-w^{2}\right) \mathrm{d} w \tag{3.3}
\end{equation*}
$$

Equation 3.1 gives

$$
\begin{equation*}
\mathrm{d} u_{0} / \mathrm{d} z=(2 / \sqrt{\pi}) \exp \left(-z^{2}\right) \tag{3.4}
\end{equation*}
$$

which is graphed in Figure 1.
Next, $u_{1}(z)$ is represented by
$u_{1}(z)=-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} \exp \left(-w^{2}\right) f(w) \mathrm{d} w+\frac{1}{\sqrt{2}}[E(z)]^{3 / 2}-$
$0.309 E(z)$ (3.5)
where

$$
\begin{equation*}
f(z)=\int_{-\infty}^{z} w \sqrt{E(w)} \mathrm{d} w \tag{3.6}
\end{equation*}
$$

It follows from eq 3.5 that
$\mathrm{d} u_{1} / \mathrm{d} z=\exp \left(-z^{2}\right)\left[-(1 / \sqrt{2 \pi}) f(z)+\left({ }^{1} / 2 \sqrt{2 \pi}\right) \sqrt{E(z)}-\right.$
which is graphed in Figure 2. The curve consists of a sharp positive peak accompanying a pair of nearly symmetric negative troughs on both sides of it. It should be noted that the maximum is not much shifted from $z=0$ and its height is only about one-fifth of the maximum of $\mathrm{d} u_{0} / \mathrm{d} z$.


Figure 1. Distribution of $\mathrm{d} u_{0} / \mathrm{d} z$ over the $z$ axis. This is a Gaussian distribution function.


Figure 2. Distribution of $\mathrm{d} u_{1} / \mathrm{d} z$ over the $z$ axis. The area enclosed by the solid curve above and below the dashed line is zero because of the boundary conditions for $u_{1}(z)$.

Finally, $u_{2}(z)$ is conveniently represented as the sum of three terms:

$$
\begin{equation*}
u_{2}(z)=-0.564 p(z)+0.167 q(z)-0.437 r(z) \tag{3.8}
\end{equation*}
$$

with

$$
\begin{array}{r}
p(z)=\int_{-\infty}^{z} \exp \left(-w^{2}\right)\left\{G a(w)-[f(w)]^{2}+f(w) E(w)-\right. \\
\left.2 \int_{-\infty}^{\mathrm{w}} y G a(y) \mathrm{d} y+0.986\right\} \mathrm{d} w \tag{3.9}
\end{array}
$$

$q(z)=[E(z)]^{2}-2.00 E(z)-(8 / \sqrt{\pi}) \int_{-\infty}^{z} \exp \left(-w^{2}\right) g(w) \mathrm{d} w$

$$
\begin{align*}
& r(z)=(6 \sqrt{2})\left\{-(1 / \sqrt{2 \pi}) \int_{-\infty}^{z}\left(-w^{2}\right) f(w) \mathrm{d} w+\right. \\
& \left.(\sqrt{2} / 12)[E(z)]^{3 / 2}-0.309 E(z)\right\} \tag{3.11}
\end{align*}
$$

where

$$
\begin{equation*}
g(z)=\int_{-\infty} w E(w) \mathrm{d} w \tag{3.12}
\end{equation*}
$$

and

$$
\begin{array}{r}
G a(z)=-0.2[1+\tanh (z+0.2)]+0.057[\Phi(z-0.75)+ \\
\Phi(|z-0.75|)](3.13)
\end{array}
$$

The function $G a(z)$ is an approximation to $G(z)$ defined by

$$
\begin{equation*}
G(z)=\frac{1}{\sqrt{\pi E(z)}} \int_{-\infty}^{z} \exp \left(-w^{2}\right) f(w) \mathrm{d} w \tag{3.14}
\end{equation*}
$$

and has been introduced to simplify the numerical evaluation of $p(z)$. Figure 3 compares $G a(z)$ with the exact $G(z)$. Though the agreement of the two functions leaves something to be desired, both give $p(z)$ almost indistinguishable values over the entire range of $z$.

The derivatives $\mathrm{d} p / \mathrm{d} z, \mathrm{~d} q / \mathrm{d} z$, and $\mathrm{d} r / \mathrm{d} z$ are given by

$$
\begin{align*}
& \mathrm{d} p / \mathrm{d} z= \exp \left(-z^{2}\right)\left\{G a(z)-[f(z)]^{2}+f(z) E(z)-\right. \\
&\left.2 \int_{-\infty}^{z} w G a(w) \mathrm{d} w+0.986\right\}  \tag{3.15}\\
& \mathrm{d} q / \mathrm{d} z= \exp \left(-z^{2}\right)[(4 / \sqrt{\pi}) E(z)-(8 / \sqrt{\pi}) g(z)-2.257]  \tag{3.16}\\
& \mathrm{d} r / \mathrm{d} z=(6 / \sqrt{\pi}) \exp \left(-z^{2}\right)\left[-f(z)+\left(\frac{1}{2}\right) \sqrt{E(z)}-0.874\right] \tag{3.17}
\end{align*}
$$

Figure 4 shows the $\mathrm{d} u_{2} / \mathrm{d} z$ vs $z$ plot calculated by inserting these three equations into
$\mathrm{d} u_{2} / \mathrm{d} z=-0.564(\mathrm{~d} p / \mathrm{d} z)+0.167(\mathrm{~d} q / \mathrm{d} z)-0.437(\mathrm{~d} r / \mathrm{d} z)$

It has a general feature similar to the $\mathrm{d} u_{1} / \mathrm{d} z$ curve, except that the two troughs have different depth. The height and location of the maximum are comparable to those of $\mathrm{d} u_{1} / \mathrm{d} z$. This implies that the contribution of the $\epsilon^{2}$ term to the concentration gradient $\mathrm{d} c / \mathrm{d} z$ (and $c$ as well) becomes significant with increasing $\epsilon$.

## Results and Discussion

Concentration and Concentration Gradient Distributions. With the substitution of the above analytical results into eq 2.14 and

$$
\begin{equation*}
\mathrm{d} c / d z=\mathrm{d} u_{0} / \mathrm{d} z+2 \epsilon\left(\mathrm{~d} u_{1} / \mathrm{d} z\right)+\epsilon^{2}\left(\mathrm{~d} u_{2} / \mathrm{d} z\right)+\ldots \tag{4.1}
\end{equation*}
$$

the distributions of $c$ and $\mathrm{d} c / \mathrm{d} z$ over the $z$ axis for a given $\epsilon$ can be calculated. Figure 5 shows the $\mathrm{d} c / \mathrm{d} z$ distributions for $\epsilon=0$, $0.2,0.4$, and Figure 6 the corresponding $c$ distributions. These graphs are meaningful only for $\epsilon$ at which contributions of terms higher than $\epsilon^{2}$ may be neglected. Thus, those for $\epsilon=0.4$ may be accepted with reservation until at least the order of magnitude of $u_{3}$ is estimated.

The curves for nonzero $\epsilon$ reveal expected deviations from the ideal situation $(\epsilon=0)$. Especially, those in Figure 5 show clearly enhanced sharpening with increasing $\epsilon$. We observe the $c$ distribution for $\epsilon=0.5$ reported by Albright and Miller ${ }^{1}$ to exhibit more marked downward deviations than ours on the side below $c=1 / 2$.

## Apparent Diffusion Coefficient

When the Rayleigh fringe method ${ }^{4}$ is used to study free diffusion in solutions it is usual to evaluate an apparent diffusion coefficient $D_{j}$ defined below. This is based on the expectation that $D_{j}$ as a function of $j$, i.e., the position in the diffusion boundary, allows us to accurately estimate the diffusion coefficient at the mean concentration of a given solution. Albright and Miller ${ }^{1}$ confirmed this with their numerical solutions to eq


Figure 3. Comparison of $G a(z)$ (dotted line) with $G(z)$ (solid line).


Figure 4. Distribution of $\mathrm{d} u_{2} / \mathrm{d} z$ over the $z$ axis. The area enclosed by the solid curve above and below the dashed line is zero because of the boundary conditions for $u_{2}(z)$.


Figure 5. Distributions of concentration gradient $\mathrm{d} c / \mathrm{d} z$ for different $\epsilon$.
2.1. In what follows, we examine what happens to $D_{j}$ when our perturbation solution is used.

In circumstances where concentration is proportional to refractive index, the following set of relations ${ }^{1}$ is the basis for computing $D_{j}$ :


Figure 6. Concentration distributions corresponding to Figure 5.

$$
\begin{gather*}
c\left(z_{j}\right)=j / J  \tag{5.1}\\
c\left(z_{j}\right)-\frac{1}{2}={ }^{1} / 2 \Phi\left(z_{j}^{*}\right)  \tag{5.2}\\
1 / 2-c\left(z_{J-j}\right)=\frac{1}{2} \Phi\left(z_{j}^{*}\right) \tag{5.3}
\end{gather*}
$$

Here, $J$ is the total number of Rayleigh fringes, $j$ and $J-j$ are the fringe numbers for Creeth's symmetric fringes ${ }^{4}$ which define a pair of concentrations located above and below at an equal distance from $c=\frac{1}{2}$, and $z_{j}$ and $z_{J-j}$ are the $z$ coordinates at these fringes (in practice, since $D(0)$ is unknown in advance, they are replaced by $x_{j} / \sqrt{t}$ and $x_{J-j} / \sqrt{t}$ ). Furthermore, $z_{j}^{*}$ is a variable as a function of which $D_{j}$ is to be evaluated.

When the concentration distribution is antisymmetric about the origin of $z$ (or the concentration gradient distribution is symmetric about $z=0$ ), as observed in free diffusion of binary or multicomponent systems with constant diffusion coefficients (main-term and cross-term ones), we have $z_{J-j}=-z_{j}$ so that eq 5.3 is not needed. This is the case that Albright and Sherill ${ }^{6}$ have summarized methods for analyzing Rayleigh fringe data on liquid diffusion. However, since $z_{J-j}$ may not be equal to $-z_{j}$ for concentration-dependent diffusion, eq 5.3 must be retained. In this case, $z_{j}$ and $z_{J-j}$ determined as functions of $z_{j}^{*}$ from eq 5.2 and 5.3 are used to calculate $D_{j}$, which is defined by

$$
\begin{equation*}
D_{j}=D(0)\left(\frac{z_{j}-z_{J-j}}{2 z_{j}^{*}}\right)^{2} \tag{5.4}
\end{equation*}
$$

With the analytical expression for $c(z)$ obtained above, this calculation can be carried through up to second order in $\epsilon$.

Because $c(z)$ reduces to $u_{0}(z)$ at $\epsilon=0$ (see eq 2.14), it follows from eq 3.1 and 5.2 that $z_{j}$ tends to $z_{j}^{*}$ as $\epsilon \rightarrow 0$. Thus, we start assuming the series

$$
\begin{equation*}
z_{j}=z_{j}^{*}+\epsilon v_{1}\left(z_{j}^{*}\right)+\epsilon^{2} v_{2}\left(z_{j}^{*}\right)+\ldots \tag{5.5}
\end{equation*}
$$

Then, we find from eq 5.2 and 5.3 that $z_{J-j}$ is represented by

$$
\begin{equation*}
z_{J-j}=-z_{j}^{*}+\epsilon v_{1}\left(-z_{j}^{*}\right)+\epsilon^{2} v_{2}\left(-z_{j}^{*}\right)+\ldots \tag{5.6}
\end{equation*}
$$

so that eq 5.4 gives

$$
\begin{equation*}
D_{j} / D(0)=\left[1+\epsilon V_{1}\left(z_{j}^{*}\right)+\epsilon^{2} V_{2}\left(z_{j}^{*}\right)+\ldots\right]^{2} \tag{5.7}
\end{equation*}
$$

with

$$
\begin{align*}
& V_{1}(z)=\left[v_{1}(z)-v_{1}(-z)\right] /(2 z)  \tag{5.8}\\
& V_{2}(z)=\left[v_{2}(z)-v_{2}(-z)\right] /(2 z) \tag{5.9}
\end{align*}
$$

To find the expressions for $v_{1}(z)$ and $v_{2}(z)$ we substitute eq 5.5 for $z_{j}$ in $c\left(z_{j}\right)=u_{0}\left(z_{j}\right)+2 \epsilon u_{1}\left(z_{j}\right)+\epsilon^{2} u_{2}\left(z_{j}\right)+\ldots$ (see eq 2.14), expand each term on the right-hand side in powers of $\epsilon$, and use the results to arrange the left-hand side of eq 5.2 as a power series of $\epsilon$. Comparison of both sides then yields

$$
\begin{gather*}
v_{1}\left(z_{j}^{*}\right)\left(\mathrm{d} u_{0} / \mathrm{d} z\right)_{z=z_{j}^{*}}+2 u_{1}\left(z_{j}^{*}\right)=0  \tag{5.10}\\
v_{2}\left(z_{j}^{*}\right)\left(\mathrm{d} u_{0} / \mathrm{d} z\right)_{z=z_{j}^{*}}+\left({ }^{1} / 2\right) v_{1}\left(z_{j}^{*}\right)^{2}\left(\mathrm{~d}^{2} u_{0} / \mathrm{d} z^{2}\right)_{z=z_{j}^{*}}+ \\
2 v_{1}\left(z_{j}^{*}\right)\left(\mathrm{d} u_{1} / \mathrm{d} z\right)_{z=z_{j}^{*}}+u_{2}\left(z_{j}^{*}\right)=0 \tag{5.11}
\end{gather*}
$$

These allow $v_{1}\left(z_{j}^{*}\right)$ and $v_{2}\left(z_{j}^{*}\right)$, and hence $D_{j} / D(0)$ as a function of $z_{j}^{*}$, to be determined when the expressions for $u_{0}, u_{1}$, and $u_{2}$ are inserted.

For comparison with Albright and Miller's report we have converted the calculated $D_{j} / D(0)$ to $D_{j}\left(z_{j}^{*}\right) / \bar{D}(\bar{D}$ is defined by eq 2.9), and show the results for three $\epsilon$ values in Figure 7. It is seen that as $z_{j}^{*}$ increases, $D_{j} / \bar{D}$ for a given $\epsilon$ starts from a value slightly smaller than unity, rises, intersects the line for $D_{j} / \bar{D}=1$ (i.e., the line for $\epsilon=0$ ), reaches a maximum, and falls. This behavior is consistent with what Albright and Miller derived from numerical integrations, except that they found no maxima and the intersection with the line for $\epsilon=0$ to occur at the same $z_{j}^{*}=0.63$, regardless of $\epsilon$. In the comparison, however, we must note that their $z_{j}^{*}$ is not the same as ours, being larger by a constant factor of $(1-0.7071 \epsilon)^{1 / 2}$ than the latter. Our "cross points" read off Figure 7 are $z_{j}^{*}=0.722$, $0.680,0.625$ for $\epsilon=0.1,0.2,0.3$, respectively. When corrected for this difference, the Albright-Miller $z_{j}^{*}$ values are about $0.75,0.73,0.71$, which are definitely larger than 0.63 . Thus, our analytical solution does not lend complete support to Albright and Miller's findings, but it confirms that $D_{j}$ gives a very close approximation to $\bar{D}$ (see Appendix).

As Figure 6 shows, the concentrations at $\left|z_{j}^{*}\right|$ larger than 1.7 are almost indistinguishable from zero or unity. Since $D_{j}$ at $z_{j}^{*}$ $>1.7$ depends on them, its computation should suffer considerable errors unless they are determined very accurately. This fact may account for the presence of a maximum in $D_{j}$ from our perturbation solution.

## Appendix

Albright and Miller ${ }^{1}$ refer to their numerical investigation of the diffusion equation with a linearly concentration-dependent D:

$$
\begin{equation*}
D(c)=D(0)(1-\beta c) \tag{A.1}
\end{equation*}
$$

where $\beta$ is a positive parameter corresponding to $\epsilon$ above and $c$ is a reduced concentration defined by eq 2.4. Though reported only for $\beta=0.5$ their $D_{j} / \bar{D}$ starts from a value slightly above unity, decreases monotonically, and crosses the line for $\epsilon=0$ as $z_{j}^{*}$ increases. Interestingly, this behavior is just opposite to what we observe for the $\sqrt{c}$-dependent $D$, and suggests that $D_{j}$ not only gives a good approximation to $\bar{D}$ but also is sensitive to the form of concentration dependence of $D$. In what follows, we examine what our perturbation method predicts for $D_{j}$ when $D$ is governed by eq A.1.

The problem is to solve the diffusion equation


Figure 7. Variations of $D_{j} / \bar{D}$ with $z_{j}^{*}$ for small $\epsilon$. Arrows indicate cross points.


Figure 8. Concentration distributions for different $\beta$.

$$
\begin{equation*}
\partial c / \partial t=\partial / \partial x[D(0)(1-\beta c) \partial c / \partial x] \tag{A.2}
\end{equation*}
$$

under the same initial and boundary conditions as eqs 2.2 and 2.3 by expanding $c$ in powers of $\beta$ as

$$
\begin{equation*}
c(x, t)=c_{0}(z)+\beta c_{1}(z)+\beta^{2} c_{2}(z)+\ldots \tag{A.3}
\end{equation*}
$$

where $z$ is defined by eq 2.5 . We have determined the solution up to second order in $\beta$. The results are

$$
\begin{equation*}
c_{0}(z)=E(z) / 2 \tag{A.4}
\end{equation*}
$$

$$
\begin{align*}
& c_{1}(z)=(1 / 2) E(z)^{2}-E(z)-(4 / \sqrt{\pi}) \int_{-\infty}^{z} \exp \left(-z^{2}\right) g(z) \mathrm{d} z  \tag{A.5}\\
& c_{2}(z)=(1 / \sqrt{\pi}) \int_{-\infty}^{z} \exp \left(-z^{2}\right) I(z) \mathrm{d} z- \\
& \quad\left({ }^{1} / 2 \sqrt{\pi}\right) \int_{-\infty}^{z} \exp \left(-z^{2}\right) J(z) \mathrm{d} z+0.0359 E(z) \tag{A.6}
\end{align*}
$$

where
$I(z)=F(z)-2 \int_{-\infty}^{z} z F(z) \mathrm{d} z$,

$$
\begin{equation*}
J(z)=E(z) g(z)-2 \int_{-\infty}^{z} z E(z) g(z) \mathrm{d} z \tag{A.7}
\end{equation*}
$$

with

$$
\begin{equation*}
F(z)=1.5 /[1+\exp (-3 z+0.6)] \tag{A.8}
\end{equation*}
$$

and $E(z)$ and $g(z)$ defined in the text.

Figure 8 shows the concentration distributions for three values of $\beta$. The skewness of the curve even for $\beta=0.4$ is not as marked as expected from Albright and Miller's curve for $\beta=$ 0.5 . Especially at $c$ below $c=1 / 2$ the deviations from the ideal situation are unexpectedly small.

For the $D$ under consideration eqs 5.10 and 5.12 must be replaced by

$$
\begin{gather*}
v_{1}\left(z_{j}^{*}\right)\left(\mathrm{d} u_{0} / \mathrm{d} z\right)_{z=z_{j}^{*}}+c_{1}\left(z_{j}^{*}\right)=0  \tag{A.9}\\
v_{2}\left(z_{j}^{*}\right)\left(\mathrm{d} c_{0} / \mathrm{d} z\right)_{z=z_{j}^{*}}+\left({ }^{1}{ }_{2}\right) v_{1}\left(z_{j}^{*}\right)^{2}\left(\mathrm{~d}^{2} c_{0} / \mathrm{d} z^{2}\right)_{z=z_{j}^{*}}+ \\
v_{1}\left(z_{j}^{*}\right)\left(\mathrm{d} c_{1} / \mathrm{d} z\right)_{z=z_{j}^{*}}+c_{2}\left(z_{j}^{*}\right)=0 \tag{A.10}
\end{gather*}
$$

In Figure 9, the calculated $D_{j} / \bar{D}$ for different $\beta$ are plotted against $z_{j}^{*}$, where $\bar{D}$ is the $D$ value at the mean concentration $c$ $=1 / 2$, i.e.,

$$
\begin{equation*}
\bar{D}=1-\left({ }^{1} /{ }_{2}\right) \beta \tag{A.11}
\end{equation*}
$$

For either nonzero $\beta$ indicated, $D_{j} / \bar{D}$ shows a variation with $z_{j}^{*}$ very similar to that reported by Albright and Miller, but it crosses the line for $\beta=0$ at a $z_{j}^{*}$ value which differs for different $\beta$. The crossover points read off Figure 9 are $z_{j}^{*}=$ 1.07, 0.893 for $\epsilon=0.2,0.4$, respectively. When corrected for the difference between our and Albright-Miller's $z_{j}^{*}, 1.07$ and


Figure 9. Variations of $D_{j} / \bar{D}$ with $z_{j}^{*}$ for small $\beta$. Arrows indicate cross points.
0.893 change to 1.18 and 1.12 , respectively, which are as twice as larger than their $z_{j}^{*}$ value that Albright and Miller found for $\beta=0.5$.

## References and Notes

(1) Albright, J. G.; Miller, D. G. J. Phys. Chem. 1975, 79, 206.
(2) Gosting, L. J.; Fujita, H. J. Am. Chem. Soc. 1957, 7, 1359.
(3) Albright, J. G.; Miller, D. G. J. Phys. Chem. 1980, 84, 1400.
(4) Creeth, J. M. J. Am. Chem. Soc. 1955, 77, 6428.
(5) Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, 1975; p. 37.
(6) Albright, J. G.; Sherill, B. C. J. Solution Chem. 1979, 8, 201.


[^0]:    * Corresponding author. Fax: +75-491-2061. E-mail: lv179@mbox.kyotoinet.or.jp

