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This paper proposes a general strategy to define molecular orbitals which are especially adapted to the
calculation of the energy difference between two states. These orbitals are shown to be eigenvectors of blocks
of the difference between the density matrices relative of the two states. They may be used for rational
enlargement of the active space in CASSCF calculations or for truncations of the configuration interaction
space. Several examples show the relevance of the method to identify the few molecular orbitals of a bridge
between magnetic centers which play a role in the spin coupling mechanism.

1. Introduction

Accurate ab initio calculations of excitation energies on rather
large organic molecules and organometallic complexes are
highly desirable but face problems of size of the configuration
interaction step. A similar difficulty is met in solid state physics,
when quantum chemical calculations on embedded clusters,
pieces of a periodic lattice, are performed to determine the
effective interactions between sites, such as the effective
exchange in magnetic materials, or the effective hopping in
doped systems.

In general, a zero-order description of the excitation between
two statesΨ1 and Ψ2 is possible using a common set of
molecular orbitals and concerning a few number of electrons
in a limited number of orbitals. This description is obtained,
for instance, by a state average CASSCF calculation, the
complete active space (CAS) involving these active electrons
and orbitals. The active orbitals are usually located around the
Fermi level, or may be concentrated on atomic orbitals of metal
atoms. Several examples may be considered, for instance:

(i) an optical π f π* excitation on a conjugated organic
system surrounded by large saturated substituents,

(ii) the singlet to triplet excitation energy in a dinuclear
complex with unpaired electrons on the metallic centers and
large bridging and external ligands, which fix the effective
magnetic coupling between the metal atoms,

(iii) the effective transfer integral between two equivalent
centers A and A′, i.e., the resonance between A+‚‚‚A′ and A‚‚‚
A′+, appearing as the half of the difference between the g and
u doublet states. These electron (or hole) carriers may be
connected through large ligands as well.

The transition energies given by the limited CASSCF
calculations are usually far from the desired accuracy. For
instance, for singlet-triplet excitation energies in magnetic
binuclear complexes (case ii), the CASSCF estimation is
typically 25% of the experimental value.1-7 This means that

the inactive electrons and inactive orbitals actually play a role
in the accurate evaluation of the energy difference. To go further,
the size of the CAS in the CASSCF calculation may be
increased. But it is not easy to select rationally the enlargement
of the CAS, and its dimension may become prohibitive before
giving an accurate value of the transition energy. Another
solution consists in performing single and double substitutions
(involving inactive occupied and virtual molecular orbitals
(MOs)) on the top of the small CAS, resulting in a CAS-SDCI
calculation. The size consistency of these treatments may be
ensured by an appropriate dressing of the diagonal elements.8,9

If NCAS is the size of the CAS andno andnv are respectively
the number of occupied and virtual inactive orbitals, the size
of the CI matrix scales asNCASno

2nv
2. A rational smaller CI

expansion is that of the difference dedicated CI (DDCI)
method,10 which discards the purely inactive double excitations
of the CAS-SDCI, its length scaling asNCASnonv

2. The direct
CI codes11,12 handle typically up to 107 determinants, but this
limit is rapidly reached, even from very moderate CAS, when
large basis sets and large ligands are considered.

On the other hand, if the excitation concerns a region A of
the system, the electrons and MOs of a region B very far from
A will not play a role in the excitation. However, the canonical
orbitals may be strongly delocalized on regions A and B. The
use of localized orbitals is not very convenient for the transition
energy calculations, and it may destroy the symmetry of the
MOs. Notice that in such a problem A‚‚‚B f A* ‚‚‚B the
CASSCF enlargement may bring the active orbitals on B, if
the correlation on B is important, while they play no role on
the A f A* excitation energy.

Hence a procedure that would define the inactive orbitals
(occupied and virtual) having the largest participation to the
excitation energy would be welcome. In the recent past, two
papers have proposed a perturbative procedure to define
“dedicated inactive MOs”.13-15 The proposal was quite general,
introducing “observable dedicated MOs” (see also ref 16), where
the observable may be a dipole moment, a nuclear coupling* To whom correspondence should be addressed. E-mail: calzado@cica.es.
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constant, or a transition energy. The method is perturbative and
based on the diagrammatic expansion (in terms of Feynman’s
diagrams) of the desired observable.

The present work will show the following:
(i) For excitation energies between the statesΨ1 andΨ2 the

dedicated MOs are the eigenvectors of blocks of the difference
between the density matrices of the two states, R1-R2.

(ii) The most-involved dedicated MOs (i.e., those having the
largest differential occupation numbers in absolute value)
concentrate the physical contributions to the transition energy,
providing either rational criteria for enlarging the CAS or the
possibility of rational truncations of the CAS-SDCI or CAS-
DDCI by freezing the least participating MOs (i.e., those whose
differential occupation numbers are closer to zero).

2. Method: Relevance of the Difference of Density
Matrices

2.1. Derivation. Let us consider a CAS space,S, defining a
corewith occupied inactive orbitals{i,j,...}, a set of active MOs,
{a,b,...}, with variable occupation numbers, and virtual MOs,
{r,s,...}. The vacuum state is taken as thecore, so that the
determinants{I,J,...} of the CAS may be represented by a set
of ascending propagation lines with two arrows. For instance,
for two electrons, see Scheme 1.

The eigenvectors of the statem may be written as

where

is the CAS component, and

is the outer space component, the determinants of which are
labeledR, â, ....

If Ψm
(0) is the zero-order wave function, the first-order

correction to the wave functionΨm
(1) may be written as

and the second-order energyεm
(2) is

These contributions of the wave function may be represented
as in Scheme 2:

and the contributions of the energy as in Scheme 3:

Let us consider now a matrix element of the block of the
density matrix between occupied orbitals, concerning, for
instance, the operatoraj

†ai ) Fij, which contributes to theij
matrix element of the density matrix. This operator is diagram-
matically represented as in Scheme 4:

The contribution ofΨm
(0) to the block between occupied

MOs of the density matrix

is diagonal, with occupation numbers equal to two. The
modifications come from the outer space components of the
wave function up to the second order in the operator correlation
expansion:

The second and third terms are zero since the CAS and outer
space determinants cannot be connected by the operatorFij.
Hence, the modifications of theRocc block of the density matrix
come entirely from〈Ψm

(1)|Rocc|Ψm
(1)〉:

which can be pictured as in Scheme 5:
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This is nothing but the insertion of theFij operator in the
inactive propagation lines of the second-order energy diagrams.

The diagonal termRii ,m measures the degree of participation
of the orbital i to the correlation energy of the statem. By
introducing the off-diagonal elements,Rij ,m and diagonalizing
Rocc,m, a hierarchy of quasi-natural occupied MOs is obtained,
those with lowest occupation numbers having the largest
contribution to the correlation energy.17

If one is only interested in the energy difference between
Ψm and Ψn, the contribution εm

(2) - εn
(2) appears as the

difference of diagrams and the participation of an orbitali in
this difference will be measured by the difference of the
corresponding elementsRii ,m - Rii ,n of the density matrices of
the two states. The participation of the orbitals in the energy
difference is given by the difference of the density matrices,
and by diagonalizing∆Rocc ) Rocc,m - Rocc,n, energy difference
dedicated MOs are obtained. The “implication numbers”, which
are the eigenvalues of∆Rocc, may be positive or negative. The
dedicated MOs whose implication numbers have the largest
absolute values are the orbitals which have the largest contribu-
tions to the energy difference. Those with zero as implication
number do not contribute to the excitation energy. The preceding
derivation is immediately transposed to the block of the density
matrix between virtual orbitals.

It is easy to show that the method avoids the involvement of
orbitals which do not participate to the excitation process for
physical reasons. For instance, in a supermolecular A...B
problem in which A and B do not interact, for an excitation
located on A, i.e., from|Ψm,AB〉 ) |Ψm

A〉‚|Ψ0
B〉 to |Ψn,AB〉 )

|Ψn
A〉‚|Ψ0

B〉, in the m state density matrix important contribu-
tions between occupied orbitalsiB and jB on the fragment B
may appear coming from double excitations on B, which may
be important if B is strongly correlated (Scheme 6):

Among the most participating natural orbitals for statem,
there are probably some orbitals on B which actually do not
play any role in the excitation energy. By considering the
difference of the density matricesRocc,m - Rocc,n, these contribu-
tions cancel and the orbitals on B will have a null implication
number.

The present derivation generalizes two previous works, which
had proposed dedicated MOs for the treatment of diradicalar
problems (i.e., the determination of the magnetic coupling
between two sites)13,14and for mixed-valence compounds (i.e.,
the evaluation of the transfer integral between two sites).15 These
works had given specific perturbative derivations from localized
descriptions and had not established the relationship with the
difference of density matrices.

The proposal can be applied as well to determine ionization
potentials. A common set of MOs is obtained; either by a state
average or by considering the eigenvectors of the sum of the
two density matrices of the two states, the MOs are partitioned
into three sets (occupied inactive, active, and virtual inactive).
After that the diagonalization of the blocks of the difference of
the density matrices relative to the occupied or to the virtual

inactive MOs provides the orbitals which have the largest
participation to the ionization energy.

2.2. Practical Use of the Dedicated MOs.1. Rational
Enlargement of the Complete ActiVe Space. Let us consider a
problem where a specific CAS has been defined. If one performs
a post-CASCI calculation, either perturbative or variational, the
diagonalization of the occupied and virtual blocks of the
difference of the density matrices of the two states furnishes
dedicated MOs, the most implicated orbitals being those with
the largest absolute implication numbers. These orbitals can be
introduced in an enlarged CAS. The post-CASCI calculation
can be repeated from that rationally enlarged CAS.

2. Truncated Variational Treatments. Let us consider two
levels of post-CASCI calculations, a level 1 and a more
sophisticated (and therefore more expensive) level 2. The
dedicated MOs can be extracted from a calculation on level 1
and a subset of the most implicated dedicated MOs can be
extracted. The level 2 treatment can be applied on the
configurations which only involve the selected MOs, the rest
being treated at level 1. Let us give a few examples:

Level 1 can be a CAS-SDCI calculation and level 2 a CAS-
SDTQCI calculation.

Level 1 can be a CAS-SCI calculation, which takes into
account all the dynamical repolarization effects of the different
valence configurations. Level 2 may be a CAS-SDCI or a CAS-
DDCI treatment.

Level 1 may be a CASPT2 and level 2 a CAS-SDCI or a
CAS-DDCI calculation.

3. Numerical Illustrations

To illustrate the performance of excitation energy dedicated
MOs, two examples have been taken, one corresponding to a
dinuclear magnetic complex, namely two Cu atoms bridged by
an oxalato ligand, the second one concerning a bimetallic
fragment of the La2-xSrxCuO4 compound, typically representa-
tive of the high-Tc superconductor materials. The collective
electronic properties of these materials are usually interpreted
from the knowledge of two local bicentric interactions, namely
the magnetic coupling,J, which permutes the opposite spins
on two adjacent metallic atoms, and the electron transfer integral,
t, which moves the hole (in the case of doping) from one metallic
atom to the in-plane neighbors.18

In both systems, the Cu atoms bear an unpaired electron (or
a hole in the doped system), and both the magnetic interaction
and the electronic coupling between the two metallic centers
can be obtained from the spectrum of the bimetallic cluster, as
the energy difference between the lowest singlet and triplet states
for J19 (whereJ is negative in the case of an antiferromagnetic
coupling) and as the half of the energy-difference between the
doubletg and the doubletu states fort.20 The active orbitals with
fluctuating spin or fluctuating electronic population are easily
determined by performing either the calculation of the triplet
state or a state average CASSCF calculation. However, the
mechanism of the magnetic or electronic coupling goes through
determinants which involve charge transfer processes from the
ligand to the metal atoms. The role of the ligands is different
in the two problems. For the magnetic exchange between the
two Cu atoms, the ligand-metal charge transfer states represent
intermediates and the process is dynamical, and it cannot go
through an improvement of the active magnetic orbitals.21-23

For the doped system and the hopping integralt, the hole
centered on the Cu atoms is partly delocalized on the bridging
ligand and its delocalization is mainly static, and it can be
incorporated through a Cu(3d)-O(2p) hybridization of the active
orbitals.21,22
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All the calculations concerning the determination of the
starting MOs (restricted open-shell Hartree-Fock calculation
on the triplet state or a state-average CASSCF calculation) have
been performed by using the MOLCAS 4.1 package.24 The
CASDI11 and the DDCI-SCIEL12 programs have been used in
the CI calculations.

3.1. Nature of the Most-Implicated MOs and Enlargement
of the CAS.The determination of the MOs of the ligand, which
play this crucial role in the physical mechanism, is far from
being trivial. The canonical orbitals, which are strongly delo-
calized, are not suited for this mechanism, since a large number
of these orbitals would be involved. The use of the present
strategy provides a set of occupied MOs of the bridge, which
concentrate the electron or the spin transfer mechanisms, even
starting from the strictly minimal CAS, containing one or two
electrons in two active orbitals, and a rather limited CI
calculation, such as a CAS+ single excitations.

The relevance of the bridging ligand centered MOs will be
demonstrated by comparing the excitation energy obtained from
an enlarged CAS, containing the two active orbitals and the
most involved occupied dedicated MOs and the single excita-
tions on the top of this CAS, with the experimental coupling
constant or with the results of a much larger CI obtained from
the minimal CAS by a DDCI expansion.

Complementary information can be obtained by analyzing
the wave function of the ground state of the system, comparing
the role played by these bridge-centered MOs.

3.1.1. High-Tc Superconductors: Magnetic Coupling and
Hopping Integral. The La2-xSrxCuO4 system has been previously
studied in order to extract the magnetic coupling and hopping
integral between neighbor Cu sites.21,22As has been shown, both
magnetic and hole transfer processes can be adequately treated
by means of ab initio CI calculations on properly embedded
clusters. Since both phenomena are essentially localized on the
CuO2 planes, a binuclear cluster of formula Cu2O7, containing
the nearest in-plane oxygen neighbor atoms and properly
embedded in the Madelung field of the infinite crystal, has been
used to model the system. Extended CI calculations of DDCI-
type starting from the minimal CAS (two electrons in two
orbitals for J extraction, and one electron in two orbitals for
the hole-doped system), the size of which is around half a
million of determinants, have provided an accurate value ofJ
(-138 meV versus the well-established experimental values of
-128( 6 meV,25 -134( 5 meV26-28). For t, there is no direct
experimental estimation, but a value of around-0.5 eV is
generally accepted,29 to be compared with the ab initio evalu-
ation of-0.55- 0.58 eV.21,22These large CI calculations will
be considered as our benchmark, regarding both the excitation
energy and the physical content of the wave function.

The MOs dedicated to the magnetic exchange have been
determined in a very cheap way, from a CAS+ single
excitations (CAS-SCI) from the minimal CAS (two orbitals and
one electron fort or two electrons forJ). TheJ value obtained
from this reduced CI calculation is rather poor (only a 60% of
the experimental value), but it is sufficient to provide relevant
dedicated MOs, as will be seen below.

Figure 1 shows the two magnetic active orbitals (Figure 1, a
and b) and the two most-implicated inactive occupied dedicated
MOs for the magnetic coupling. As expected, the orbital with
the largest implication number (ni ) 0.96× 10-3) corresponds
to the 2p orbital of the bridge oxygen atom, with tails on the
outer-oxygen atoms, directed toward the metal atoms (Figure
1c). The second most-involved MO (ni ) 0.24 × 10-3) is a
linear combination of 2p oxygen orbitals with an important

contribution of the 2s orbital of the central oxygen atom (Figure
1d). Two other dedicated occupied MOs presenting a nonneg-
ligible implication number are the in-phase and out-of-phase
combination of the dz2 orbital of the Cu atoms. Regarding virtual
orbitals, the most-implicated MOs are centered on the bridging
oxygen atom with a local 3s (ni ) 0.24 × 10-3) or 3p (ni )
0.60× 10-3) character. They are completely different from the
canonical MOs of the small CASSCF calculation (two electrons
in two orbitals). It is worth to notice that these dedicated MOs
have a large projection onto the active space obtained from a
large CASSCF (10e/12MOs) calculation.

Table 1 shows the results obtained from various CAS-CI as
well as larger CI calculations (CAS-SCI and DDCI). Enlarging
the CAS by adding the two most-implicated occupied MOs,
i.e., incorporating the charge transfer from the oxygen atoms
to the magnetic orbitals, a CAS-SCI calculation can be
performed, which now includes the dynamical relaxation and
polarization of the ligand to metal charge transfer configurations
(LMCT), and the final result of that inexpensive calculation
(26 × 103 determinants) provides a value ofJ ) -150 meV,
in good agreement with our “benchmark” calculation (DDCI
on the top of the minimal CAS), which involves 5× 105

determinants and givesJ ) -138 meV. Adding the two most
implicated virtual MOs (6e/6MOs CAS) no longer significantly
changes the results of the CAS-SCI (J ) -153 meV).

The values obtained for the magnetic coupling can be related
to the physical content of the wave functions, also reported in
Table 1. Let us calla andb the local magnetic orbitals, andl
the doubly occupied bridging orbitals involved in the ligand to
metal charge transfer. Thea andb orbitals are given by aπ/4

Figure 1. Most implicated dedicated MOs for La2CuO4 system: (a)
and (b) are the active magnetic orbitals, (c) and (d) are the most
participating ligand-centered inactive occupied orbitals of symmetry
ungerade and gerade, respectively.

TABLE 1: Magnetic Coupling Values for the La2CuO4
System at Different Levels of Calculation and Different
CASa,b

type of CI J (meV) CI/CN CCT/CN

CAS(2/2)-CI -30 0.0389 0.0
CAS(6/4)-CI -31 0.0418 0.0078
CAS(6/6)-CI -46 0.0501 0.0331
CAS(2/2)-SCI -83 0.0867 0.0414
CAS(6/4)-SCI -150 0.1312 0.2269
CAS(6/6)-SCI -153 0.1320 0.2283
CAS(2/2)-DDCI -138 0.1146 0.2013
exp -128( 6,25

-134( 526-28

a CI/CN and CCT/CN represent, respectively, the ionic/neutral and
charge-transfer/neutral configuration ratio of the wave function of the
singlet ground state.b CAS (m/n) corresponds tomelectrons inn MOs.

Excitation Energy Dedicated Molecular Orbitals J. Phys. Chem. A, Vol. 104, No. 49, 200011639



rotation of the symmetry-adapted orbitals pictured in Figure 1,
a and b, while the l MO is drawn in Figure 1c. The three
dominant valence-bond (VB) configurations of the singlet state
are

and the content of the ground state wave function:ψS )
CNψN + CIψI + CCTψCT + ... can be analyzed from the ratios
CI/CN and CCT/CN. Comparing with the values given by our
best CI (CI/CN ) 0.11 andCCT/CN ) 0.20), the CAS values
are significantly underestimated, i.e., there is a lack of electron
delocalization at this level, resulting in an underestimation of
the antiferromagnetic character. Going to the CAS-SCI level
on the top of the small CAS increases these ratios and pushes
J to -88 meV, but misses the dynamical polarization of the
charge transfer states. Incorporating these configurations in the
CAS and performing a CAS-SCI calculation will introduce these
physical effects and results in a simultaneous improvement of
J, CI/CN, and CCT/CN. Hence, the bridging dedicated MOs
concentrate the zero-order physics responsible for the magnetic
coupling.

Regarding the doped system (Figure 2), and using hole-
adapted active MOs (with an important mixing of Cu(3d) and
O(2p) orbitals, Figure 2, a and b), the same type of calculation
(single excitations on the top of the one electron in two MO
CAS) gives hole-adapted difference-dedicated MOs. The most
participating MO (ni ) 0.66× 10-2) is a 2p orbital located on
the bridging oxygen atom with ungerade symmetry (Figure 2c),
as expected, while the following one (ni ) 0.44× 10-2) is of
gerade symmetry, with large components on the 2p orbitals of
the external ligands and on the 3d orbitals of Cu atoms (Figure
2d). The small CAS-CI value oft is -0.729 eV, much larger
than our best estimate,t ) -0.587 eV given by the full DDCI
expansion (2.8× 105 determinants) from this CAS. Adding the
two most implicated occupied MOs to the CAS (now 5e/4MOs)
and performing a CAS-SCI calculation (4× 104 determinants)
provides a satisfactory value oft ) -0.578 eV.

3.1.2. Oxalato-Bridged Copper Dinuclear Complexes. The
structural dependence of the coupling constant found in a series
of [L3Cu(µ-C2O4)CuL3]2+ complexes, where L is an external
ligand of aminic type that has been replaced by NH3 groups,
has been previously studied at the DDCI level.23 We have
considered here one of the compounds of formula [(Et5-
dien)2Cu2(µ-C2O4)](BPh4)2, Et5dien ) 1,1,4,7,7-pentaethyldi-
ethylenetriamine. The geometry has been crystallographycally
established and the magnetic coupling has been found-9.27
meV.30,31A representation of this model is plotted in Figure 3.
In this system, the magnetic orbitals are the symmetric and
antisymmetric combinations of Cu dz2 type orbitals, directed
along the apical bond between the copper atom and one of the
oxygen atoms of the oxalato ligand, as pictured in Figure 4 (a
and b). In such a complex, with remote magnetic centers and a
polyatomic ligand, the identification of the ligand-centered MOs
which play a role in the magnetic coupling is not intuitive and
the dedicated MOs procedure may help in their definition. The
J value calculated at DDCI2 level, which is a reduced space
with respect to DDCI, containing all the single and double
excitations involving at least two active electrons, is-4.55 meV,
far to the experimental value. The complete DDCI calculation
on the top of the minimal CAS (two active electrons in two
magnetic orbitals) may be considered as a benchmark calcula-
tion. It includes 2.7× 106 determinants, and gives-11.08 meV,
in good agreement with the experimental estimation. This
calculation is invariant under rotation of the occupied MOs but
is very expensive. It contains the whole physics but it does not
permit to isolate the role of the ligands.

Dedicated MOs have been obtained from the minimal CAS-
(2e/2MOs)-SCI, which gives a very poor value of the coupling

Figure 2. Most implicated hole-transfer dedicated MOs for La2-xSrxCuO4

system: (a) and (b) are the active hole-transfer orbitals, (c) and (d) are
the most participating ligand-centered inactive occupied orbitals of
symmetry ungerade and gerade, respectively.

neutral: ψN ) |l lh(abh + baj)|/x2

ionic: ψI ) |l lh(aaj + bbh)|/x2

charge transfer: ψCT ) |aaj(lbh + blh) + bbh(laj + alh)|/2

Figure 3. Schematic representation of the [(NH3)6Cu2(µ-C2O4)]2+

complex, where N corresponds to NH3 groups.

Figure 4. Most implicated magnetic dedicated MOs for the [(NH3)6-
Cu2(µ-C2O4)]2+ complex: (a) and (b) are the active magnetic orbitals,
(c) and (d) are the most participating ligand-centered inactive occupied
orbitals of symmetry ungerade and gerade, respectively.
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constantJ ) -2.2 meV, only the 20% of the experimental value.
The two most participating occupied MOs (ni ) 0.72× 10-4

and 0.29× 10-4) have the expected bridging character, since
they are combinations ofσ oxygen-lone pairs, belonging to the
same irreducible representations as the magnetic ones. These
orbitals are plotted in Figures 4c and 4d.

To test the relevance of these two most implicated MOs in
the ligand to metal charge-transfer mechanism, single CI has
been performed on the top of the enlarged CAS(6e/4MOs)
giving a satisfactory value of the coupling constantJ ) -11.20
meV for a much reduced CI expansion (105 determinants).

An alternative solution consists in adding to the DDCI2 space
all the single excitations on a reduced number of ligand to metal
charge-transfer configurations (DDCI2+LMCT*S in Table 2).
This procedure gives a value of-10.58 meV for the magnetic
coupling, close to the preceding value. Both results are in good
agreement with the benchmark DDCI result with a much smaller
(4%) CI size. Similar results (J ) -9.47 meV) had been
obtained previously with the same type of CIs, using bridging
ligand MOs coming from extended CASSCF calculations, for
instance 10 electrons in 10 orbitals.23 The dedicated MOs have
the advantage of avoiding the convergence difficulties of the
large CASSCF calculations.

3.2. Truncation of CI Expansions.As previously mentioned,
the inactive dedicated MOs with implication numbers closest
to zero should play a negligible role in the excitation energy.
Whatever the level of the CI treatment, it is worth comparing
the truncated versus the nontruncated CI results.

An increasing number of the least implicated MOs (both
occupied and virtual) have been frozen, using different types
of CI expansions. The results appear in Table 3 and Figure 5
for the magnetic coupling and in Figure 6 for the hopping
integral in the La2-xSrxCuO4 system, and in Table 4 and Figure
7 for the magnetic coupling in the oxalato-Cu(II) complex.

An efficient definition of the dedicated MOs should provide
a selection of the most implicated MOs sufficient to approach,

at a given CI level, the result of the same type of CI, running
on all the MOs. For the La2CuO4 system, this has been tested
on the CAS-SCI level for the small CAS (2e/2MOs), which
only gives a 60% of the experimentalJ value, and on the DDCI
calculation on the same CAS, which gives a value of-138
meV, in good agreement with the experimental estimate, and it
is considered as our reference calculation. A “strong” freezing
of the least implicated MOs, resulting in a drastic truncation of
the CI space to 20% of its total size already gives a value ofJ

TABLE 2: Magnetic Coupling Values for the
[(NH3)6Cu2(µ-C2O4)]2+ Complex at Different Levels of
Calculation and Different CASa

type of CI J (meV) CI/CN

CAS(2/2)-CI -0.82 0.0064
CAS(6/4)-CI -0.84 0.0065
CAS(2/2)-SCI -2.20 0.0127
CAS(2/2)-DDCI2 -4.55 0.0132
CAS(6/4)-SCI -11.20 0.0376
CAS(2/2)-DDCI2+LMCT*S -10.58 0.0406
CAS(2/2)-DDCI -11.08 0.0356
exp -9.2730,31

a CAS (6/4) corresponds tom electrons inn MOs.

TABLE 3: Effect of the Truncation of the DDCI Space in
the Magnetic Coupling Value and in the Components of the
Ground State Wave Function for the La2CuO4 Systema

% space
DDCI J (meV) CI/CN CCT/CN

100 -138 0.1146 0.2013
53 -134 0.1160 0.1971
27 -140 0.1192 0.1967
12.5 -138 0.1169 0.1911
1.8 -111 0.1011 0.1498

exp -128( 6,25

-134( 526-28

a CI/CN and CCT/CN represent, respectively, the ionic/neutral and
charge-transfer/neutral configuration ratio of the wave function of the
singlet ground state.

Figure 5. Effect of the truncation of the CI space on the value of the
magnetic couplingJ in the La2CuO4 system. Two CI levels on the top
of the small CAS (2e/2MOs) have been considered: CAS-SCI (squares)
and DDCI (dots). The value obtained for a space of 0% of the total
one corresponds to the diagonalization of the CI matrix on the basis of
the determinants of the CAS.

Figure 6. Effect of the truncation of the DDCI space on the value of
the hopping integralt in the La2-xSrxCuO4 system. A small CAS
(1e/2MOs) has been used. The value obtained for a space of 0% of the
total DDCI corresponds to the diagonalization of the CI matrix on the
basis of the determinants of the CAS.

TABLE 4: Effect of the Truncation of the DDCI Space in
the Magnetic Coupling of the [(NH3)6Cu2(µ-C2O4)]2+

Complex

% space
DDCI J (meV)

% space
DDCI J (meV)

100 -11.08 8 -8.22
67 -11.10 1 -4.94
42 -11.14 exp -9.2730,31

20 -11.17
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in good agreement with that obtained from the corresponding
total CI space. This agreement is not fortuitous since, as it
appears in Table 3, the weights of the leading VB configurations
are stable, and already correct for severely truncated CI spaces
(∼10% of the total size).

The same behavior is obtained regarding the calculation of
the effective hopping integral in the doped system. The minimal
CAS-CI overestimates its value (-0.729 eV) and truncations
to the CI size of about 20% of the total DDCI size are sufficient
to obtain an accurate value oft (-0.59 ( 0.02 eV).

The results on the [(NH3)6Cu2(µ-C2O4)]2+ complex show the
same trend. The effects of the truncation of the DDCI space on
the exchange coupling are reported in Table 4. As previously
indicated, DDCI2 results are poor, but the comparison is possible
within the same type of CI procedure. By freezing 50% of the
MO set, the CI space is truncated to around 30% of the total
size but is able to give 96% of the magnetic coupling. Figure 7
shows that for three types of CI calculations (DDCI2,
DDCI2+LMCT*S and DDCI) the results are stable when the
percentage of determinants of the CI space goes beyond a 30%
threshold.

These results show that it is possible to use the dedicated
MOs to reduce considerably the size of the CI expansions in a
rational manner, without a significant loss of accuracy.

4. Conclusions

The benefit of using natural orbitals to concentrate the CI
expansion of a state is well-known. This interest is not purely
academic since approximate natural orbitals may be calculated
through a low cost procedure (low order perturbative expansion,
for instance) before performing a variational CI, which may
eventually freeze the orbitals with largest (∼2.0) and smallest
(∼0.0) occupation numbers. Average density matrices, summed
over a few eigenstates of interest, are sometimes used. It is
possible to iterate the CI natural orbitals procedure to obtain
results which become independent of the choice of the starting
MOs. This idea has been exploited5,21,22,32in the recent past for
the difference-dedicated CI procedure,10 a CAS-SDCI truncated
to the double excitations which contribute to the transition
energies at second order of perturbation. The iterative DDCI
method improves greatly the active orbitals, involved in the
transition.

The use of the eigenvectors of difference of density matrices
is less frequent. It has been used to identify the nature of the
hole created by a doping in the spin lattices of a high-Tc

superconductor.22 Another application has used this strategy to
produce quasidiabatic MOs for the diabatization of potential
energy surfaces.33 In both cases, the attention was concentrated
on the active MOs.

The present work proposes to use this idea to produce, after
a preliminary definition of a CAS space containing the dominant
physics of the excitation, the inactive orbitals (occupied and
virtual) which have the largest contributions to the excitation
energy. These orbitals may be calculated from a post-CASCI
calculation of very moderate cost, such as the CAS+ single
CI. As illustrated on a series of examples, concerning the
magnetic coupling and the electron transfer process in dinuclear
complexes, the nature of the most implicated MOs is physically
meaningful for the excitation involving changes (spin or charge)
on the active remote sites. The most implicated MOs concentrate
on the bridging ligands with significant tails on the external
ligands. These MOs may be incorporated in a rationally enlarged
CAS. Even when a moderate CI is performed on the top of this
enlarged CAS (for instance, CAS+ single CI) accurate values
of the transition energies have been obtained.

An alternative use consists, oppositely, in freezing the least
implicated occupied and virtual MOs. If a large CI from the
minimal CAS, as a CAS-SDCI or a CAS-DDCI, is performed,
the freezing of these nonparticipating MOs has negligible effect
on the transition energy. As shown in the numerical examples
a very large reduction of the computational effort is possible
when using the difference-dedicated MOs. The present develop-
ment concentrates on a particular transition involving two states.
It is possible to consider independently a series of transitions
Ψm f Ψn in a pairwise manner. If one prefers to calculate
simultaneously a set of transitions from the lowest state|Ψ0 f
Ψm, m ) 1, N}, it is possible to calculate

and its eigenvectors. Of course, the relevance of the so-obtained
difference-dedicated MOs may be problematic, if the physical
content of the various excited states is deeply different, and the
pairwise procedure is recommended,Ψ0 being calculated each
time with transition-specific MOs.

This work shows that the consideration of eigenvectors of
the difference between density matrices is both physically
enlightening and practically efficient.
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(3) Muñoz, D.; Illas, F.; Moreira, I. de P. R.Phys. ReV. Lett.2000, 84,
1579.

(4) de Graaf, C.; Moreira, I. de P. R.; Illas, F.; Martin, R. L.Phys.
ReV. B 1999, 60, 3457.

(5) Suaud, N.; Lepetit, M. B.Phys. ReV. B 2000, 62, 402.
(6) van Oosten, A. B.; Broer, R.; Nieuwpoort, W. C.Chem. Phys. Lett.

1996, 257, 207.
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