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Belousov-Zhabotinsky Reaction with Periodic and Nearly Periodic Switching
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In this paper we studied the behavior of a model of a periodically driven photosensitive Betallshotinsky
reaction. The computations were carried out with a two-variable Oregonator model modified to account for
photosensitivity. The external light intensity was periodically switched between two levels. By keeping the
total cycle length fixed while varying the duration of the positive and negative perturbations, a variety of
dynamical behaviors can be observed, including phase locking, torus oscillations, periodic transitions, and
chaos. The results suggest that not only are the forcing frequency and amplitude important, as was already
known, but the detailed waveform of the external forcing is also essential in determining the behavior of a
driven dynamical system. Two scenarios have been investigated in this study: (a) the system was driven
between two limit cycles; (b) the system was driven between excitable and oscillatory states. Random
modulation of the durations of the positive and negative perturbations (low and high illumination states)
leads to synchronization of complex behavior. Calculating the leading Lyapunov exponent confirms that this
form of random driving may be used to suppress chaotic behavior.

1. Introduction of the durations of the on and off perturbations (i.e., the
waveform) has not received much attention. In this study our

Chemical reactions driven with a periodic perturbation have]c h rimarily been directed to the duration of the on and
been the subject of many experimental and computational studieg 0cUS Nas primarily been directed to the duration ot the on a

in the past 30 years:22In particular, the potential for increasing off perturbations at a fixed driving frequency. Square-wave

yields of chemical reactions by periodic perturbations has drawn swnchmg is adopted in our study. Theoretical gtud@s of forcgd
significant attention from chemical engineérs. Substantial dynamical systems have tended to focus on sinusoidal forcing

improvement in overall yield has been predicted in modeling S© that the effect of ~quare-wave forcing has been explored in
studies?®24and the possibility of increased selectivity among relatively few studie$: despite its easy experimental realiz-
a range of reaction products has also been examféd2.2527 ability. Our study was carried out with a Mo-vanable Qrego-
A number of studies on periodically driven chemical reactions Nator mode¥ modified to account for the influence of light,
have reported the observation of entrainment and consecutiveNus describing a photosensitive BZ reactié’ The study of
bifurcations leading to chads2® Entrainment occurs when a photosensmve chemical oscnlators_has aFtracted intense interest
periodic perturbation of sufficiently large amplitude is applied N recent years, due to the ease with which the kinetics can be
to a self-oscillating system and the frequency of the oscillating externglly |_nﬂuence_a§f37 Petrov et al. Obst_arve_d resonant pattern
system is synchronized by the frequency of the driving signal. formation in a periodically driven reactierdiffusion photo-
Outside the entrainment regions one may find quasiperiodic Sensitive BZ reactiof Spatiotemporal stochastic resonance has
oscillations that show a countable number of periodic oscilla- @lSO been reported in a spatially extended photosensitive BZ
tions12.16 system®? In a recent study Amemiya and co-workers studied
Dolnik and co-workers investigated experimentally and the photoinduced behavior in the Ru(bgy)catalyzed BZ
theoretically the dynamics of forced excitable and oscillatory reaction by adopting an Oregonator-class mégel.
Belousov-Zhabotinsky (BZ) reaction®. They observed peri- The influence of noise on nonlinear dynamic systems has
odic and aperiodic regimes in a phase plane. The experimentallyattracted increasing interest over the past several years. One of
determined firing numbers and computed rotation numbers werethe constructive influences of noise, known as stochastic
used to characterize the dynamics. Aris and co-workers studiedresonance (SR), has been reported in homogeneous and reac-
several reactor models and found some common features of the&jon—diffusion chemical systems by several groGp3 4! A
responses of a dynamical system to periodic foréiri§ They recent study on a periodically forced two-variable biological
observed that for small and intermediate forcing amplitudes model system shows that the noisy switching between two states
these responses are organized around several common qualitativmay tame chaotic phenomena and favor synchronizafizhe
patterns such as the interplay between entrainment and quasiconstructive influence of random fluctuations will also be
periodicity. characterized in this study. In contrast to existing st@#&sn
While the influence of the amplitude and the frequency of which the noise is added to the actual value of the parameter
the periodic forcing has been investigated thoroughly in several heing perturbed, here the random fluctuations are added to the
experiments and many theoretical investigatidriéthe impact  durationof the perturbation. This study is thus complementary

p . : Duteth to this earlier work.
* Corresponding author. Email: roussel@uleth.ca. Faxt 403 329 . . . . .
2057. P 9 @ Two scenarios are investigated here. One is the forcing
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limit cycle and a stable fixed point. For both situations, we
consider both periodic and irregular switching. These switching
protocols are easily realizable experimentally in a photosensitive
reaction. With periodic switching, we find the expected variety
of dynamic regimes, including quasiperiodicity, phase locking,
and chaos. When we introduce variability to the switching times,

chaos is no longer observed and the resulting systems display

excellent synchronization properties.

2. Model

The model adopted here is a two-variable Oregorfté,
modified to describe the photosensitive BZ reactich (the
oxidation and bromination of malonic acid by acidic bromate
in the presence of metal catalyst Ru(kgy). The dimensionless
form of the model using TysonFife*® scaling is

du_ (fo+ ) —u)

ot a+u +u(d—u Q)
%=u—v (2)

Hereu and v are the dimensionless concentrations of HBrO
and Ru(bpyy**, respectivelyf is an adjustable stoichiometric
parameter¢ andq are scaling parameters, agdepresents the
rate of bromide production from the irradiation. This rate is
proportional to the applied light intensi#y*4-48 This modified
Oregonator model has been used extensively to qualitatively
characterize the dynamic behavior of photosensitive BZ reac-
tions, in particular the spatially extended BZ syst€nwWe
decompose the photochemically induced bromide production
into ¢ = ¢o + ¢, Where ¢g represents production at a
background light intensity, andp, represents an applied
perturbation. We consider a square-wave perturbation gise.,

= #4c¢, wherec is an adjustable constant. In this study the
following parameter values are used= 0.02,q = 0.02,f =
1.0, ¢o = 0.03 for the oscillatory condition angy = 0.07 for

the excitable system.

The periodic forcing is implemented by switching the light
intensity between two levels. Since the excitability of the BZ
system decreases with an increase in light intensity, we call it
a negative perturbation whepp takes a positive valuepf =
¢), corresponding to the enhancement of the illumination.
Accordingly, it is called a positive perturbation when the forcing
¢p takes a negative valuep{ = —c). The durations of the
positive and negative perturbations are, respectivEly,and
T+, and the overall period of the periodic forcing Tew =
T_¢ + T4c In addition, we will study the effect of random
fluctuations inT_¢ and T.¢. This study is thus complementary
to earlier work in which noise was added to the value of light
intensity31.32.34.37 Random fluctuations inT_. and T, are
Gaussian distributed with zero mean value.

3. Results

3.1. Noise-Free System/e first consider switching between
two limit cycles. With the parameter values listed above and in
the absence of perturbations, a supercritical Hopf bifurcation
occurs when the background light intensigy)(decreases below
a threshold value 0.0599. Here we chogge= 0.03 andc =
0.02. Thereforep varies between the two levefs= 0.05 and
¢ = 0.01, both below the bifurcation threshold. Whir 0.05,
the oscillation period is 3.167 (in dimensionless units), whereas
the period becomes 2.215 whg¢r= 0.01. The relative positions
of the two limit cycles in the concentration space are shown in

Roussel and Wang

-1 T ™ T
=) L
S 20
Lo \
2.5
o
—
-3 L L L 4 L L .
4 36 -3 25 -2 15 -1 05 0
logqgu

Figure 1. Limit cycles for the unperturbed system. The solid line
represents the oscillation when= 0.05, whereag = 0.01 for the
dashed cycle. (Other parameter values are given in the text.)
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Figure 2. Phase plot for the periodically perturbed system. Calculations
were carried out at constafi = 1.8, but different durations of the
positive and negative perturbations: &) = 0.07,T_. = 1.73 and

(b) T4+c = 0.9, T—c = 0.9. Herego = 0.03,c = 0.02. Other parameter
values are listed in the text. In panel (a), we see an example of 1:5
phase locking; panel (b) shows a chaotic trajectory with a leading
Lyapunov exponent of 0.065.

Figure 1. As can be seen in the figure, the limit cycle is shifted
to lower values of with the increase in illumination while the
oscillation amplitude ofi barely changes.

Figure 2 presents two phase plots in tiev concentration
space calculated at the same cycle lendihaf) but different
durations of the positive and negative perturbations. Figure 2a
shows clearly that when the perturbation switches from one level
to the other, the system is forced to jump from one limit cycle
to the other. Since the duration of the positiVed) and negative
perturbations T4¢) are much shorter than the period of the
oscillation, several switches occur within one oscillation cycle.
However, the overall behavior is still simple (periodic). In
contrast, the trajectory in Figure 2b is much more complex. A
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Figure 3. Bifurcation diagram calculated at a fixed perturbation period
Tt = 1.8. We show the maxima in. The duration of the negative
perturbation is varied gradually and the duration of the positive
perturbation is adjusted accordingly to fit the fixed total cycle. Here,
¢o = 0.03,c = 0.02.

calculation of the leading Lyapunov exporf@shows a positive
value, indicating that the behavior in Figure 2b is chaotic. When

other combinations of the durations of the positive and negative
perturbation are used, qualitatively different attractors such as

period-4 and period-8 have been found.

The bifurcation diagram with respect to the duration of the
negative perturbationT(.) at a fixed perturbation frequency
(Tiotar = 1.8) is shown in Figure 3. Points plotted in this figure
are the maximum values efduring its time evolution. These
maxima vary between the maximal valuesvateached on the
two limit cycles atp = 0.01 andp = 0.05. WhenT. = 0, the
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Figure 4. Bifurcation diagram varyind . for fixed T_ = 0.35.

understand as the behavior of this forced dynamical system at
any given time corresponds to motion near a limit cycle. The
nature of the dynamics is determined by the set of points on
each limit cycle at which switching occurs. When the time spent
on one of the limit cycles is extended by an integer multiple of
the period, the set of switching points will be roughly the same
as before. As a result, qualitatively similar bifurcation structures
arise. However, additional transits around the limit cycle are
inserted in each oscillatory period of the time series.

The second scenario being investigated is the switching
between excitable and oscillatory conditions. Here the back-
ground photochemical bromide productiggis set to 0.07, and
¢ = 0.03. Therefore, the light intensity varies between two
levels,¢ = 0.04 (oscillatory) ands = 0.10 (excitable, where
the system will respond to an above-threshold perturbation with

with ¢ = 0.01, i.e., a simple limit cycle. As the duration of the

which were calculated with different combinationsTof. and

negative perturbation is increased, quasiperiodic oscillations T, while the overall duration of the perturbatiofida) is fixed.

arise and develop into chaotic behavior. Stroboscopic plots (Not For periodic oscillations there are a finite number of points in
route>* WhenT,.c becomes larger than 0.15, a narrow parameter the period of the oscillation (Figure 5a), whereas quasiperiodic

window exhibiting forward and reverse period-doubling transi-
tions can be seen. Whéhn. is small T+. < 0.3), the system
cannot reach the maximum of tige= 0.05 limit cycle before
switching back to thep = 0.01 limit cycle. Similarly the
maximum of thep = 0.01 limit cycle is not achievable when
T, takes a large value>(1.2).

When values oflyoy different from that in Figure 3 are used,
qualitatively different bifurcation diagrams are obtained, con-
firming the well-known importance of the frequency of the
external forcin~12 We would like to emphasize that the

oscillations show up as a closed curve in the stroboscopic map
(Figure 5b). The chaotic behavior shown in Figure 5c indicates
that the chaos arises from quasiperiodic (torus) bifurcafion.
When other combinations &f_; and T, are used, qualita-

tively different attractors such as period-3, period-6, etc., have
been observed. The complete bifurcation diagram with respect
to the continuous variation af;¢ is shown in Figure 6, where
the period of the perturbation$if:) is fixed. When the duration

of the negative perturbationl{;) tends to zero, the system
exhibits a simple limit cycle which develops into quasiperiodic

dynamic behavior of the system depends on the actual valuesoscillations with an increase ifi;c. At the other end of the
of the durations of the positive and negative perturbations, not bifurcation diagram, wher&_. tends to zero, the system only

just on their ratio.

fluctuates around lower values ofand no excitation can occur

Figure 4 presents a bifurcation diagram using the duration as the duration of the positive perturbatidn. is too short to

of the negative perturbatio () as a control parameter while
the duration of the positive perturbation remains constant at

= 0.35. Calculations using the period of positive perturbation
(T-¢) as a variable with a constaft . exhibit a pattern similar

to that shown in Figure 4, where a variety of exotic dynamical

generate an above-threshold perturbation. Transitions between
periodic oscillations and complex oscillations take place when
T—. and T+ both take intermediate values.

The phase diagram of the duration of the positive perturbation
T_c versus the duration of the negative perturbaifiggis plotted

behaviors such as period doubled oscillations, quasiperiodicity, in Figure 7, where each curve represents a bifurcation diagram
and chaos are observed. This result illustrates that those complexalculated at fixedl—. while T, is increased gradually. The
behaviors obtained by adjusting the frequency of external forcing points in each bifurcation diagram are the maximum values of

at fixed T_/T+ ratio can also be obtained by merely varying
the duration of one or the other of the positive or negative

v in the time series. When the system only fluctuates around
low values ofv no point is collected. This “no-excitation”

perturbations. It is interesting to note that the bifurcation diagram behavior always occurs whdn. is small andT . is sufficiently
has an approximate periodicity with the period corresponding large. A single positive perturbation is then not strong enough

to the oscillatory period of theé = 0.05 limit cycle (3.167
dimensionless units). This phenomenon is not difficult to

to induce an excursion, while the long negative perturbations
eliminate the possibility that an accumulation of positive
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Figure 5. Stroboscopic plots calculated at a constant cycle length but
different durations of the positive and negative perturbations with
=0.07,c=0.03 and (Q)l+c = 0.42,T_. = 0.18; (b) T4+ = 0.01,T_

= 0.59; and (c)T;c = 0.15,T_c = 0.45. In these stroboscopic plots,
points are collected at every half period of the positive perturbation
(i.e., whenT_¢/2 time units have elapsed since the illumination was
reduced).

0 01 02

perturbations will trigger an excitable response. For example,
the bottom curve of Figure 7 (@t = 0.05) “runs out” after a
few points. It is however interesting to see that the no-excitation
phenomenon can also be observed whestakes intermediate
rather than large values (next two curves of Figurd 7, =
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Figure 6. Bifurcation diagram calculated at a fixed perturbation
frequencyTi = 0.6. The duration of the negative perturbation is varied
gradually and the duration of the positive perturbation is adjusted
accordingly to keep the total cycle constagit= 0.07,c = 0.03. Panel

(a) shows maxima i only while panel (b) shows both maxima and
minima.
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Meanwhile a new dynamic window exhibiting complex oscil-
lations arises at large valuesDf.. The period of the perturbing
illumination (Tyoa = T+ + T-¢) clearly plays an important role,
as evidenced by the roughly diagonal motion of the regions of
complex oscillations across this diagram, but it is equally clear
that each line of the diagram is not a simple translation of the
previous, reinforcing our contention that the waveform can be
significant as well.

3.2. Influence of Irregularity in the Duration of the
Perturbation. As stated earlier, stochasticity is introduced by
perturbingT-. and T, rather than adding noise to the light
intensity ). This is an essential difference from earlier studies
on the perturbed photosensitive BZ reactiéf?3437 Two
systems with the same parameters but different initial conditions
are investigated. We imagine that both systems are being
illuminated by the same source so that they are subject to a
commong(t). Figure 8 plots the time evolution of the difference
between the two systems. For the parameters used here, we are
switching between two limit cycles, and chaos is observed in
the absence of irregularity in the duration of light perturbation.

0.1 and 0.15). This is due to the balance between the relaxationStochastic variation of - and T, was turned on at = 300.

and excitation time scales: In that region of the phase diagram, After a transient period, the difference between the two systems
excursions toward the limit cycle during the positive perturbation becomes zero, indicating the achievement of synchronization.
are, after a short transient, exactly offset by motion back toward Calculations of the leading Lyapunov exponent show that it
the equilibrium point during the negative perturbation. As a changes from a positive to a negative value after the fluctuations
result, the system oscillates between two points near theare switched on, suggesting that a stochastic process of this type
equilibrium point. can be used to tame the chaotic behavior of driven dynamical
It can also be seen in Figure 7 that the dynamic regions systems. The length of the transient period decreases with
exhibiting complicated oscillations are separated by regions increasing variance of the switching times. When the variance
showing simple periodic oscillations, shifting to a lower value is too small(t) is nearly periodic, the two systems are chaotic
of T+c when T_. is increased and eventually disappearing. and synchronization is impossible. Successful synchronization
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Figure 7. Phase diagram of the duration of the positive perturbaflog) (“ersus the duration of the negative perturbatibn), Each dotted curve
represents maxima in collected at a fixed—. while T, is varied. From bottom to top, the value ®f. equals 0.05 to 1.20 in steps of 0.05.

1 . ; ; ‘ . importance of the duration of the positive and negative
perturbations at a fixed forcing frequency. The results have
shown that for a periodically driven dynamical system, the
0.5 1 durations of the positive and negative perturbations are both
essential in determining the overall dynamic behavior and can
each be used as a control parameter to manipulate this behavior.
A variety of dynamic phenomena such as torus oscillations,
periodic transitions, phase locking, and chaos have been
achieved by merely adjusting the duration of the positive or
negative perturbations while the length of the cycle remains
constant.
-1 : s . : : Calculations of the leading Lyapunov exponent and simula-
200 250 300 350 400 450 500 tions such as that shown in Figure 8 indicate that the observed
! chaotic behavior may be suppressed by allowing the durations

Figure 8. Time evolution of the difference between two identical - LY
uncoupled photosensitive BZ systems which are subjected to the sameOf the perturbations to fluctuate. The constructive influence of

time-varying light intensity but start from different initial conditions: ~NOiSe therefore may be used as an alternative to gross changes
(1) up = 0.6, 2o = 0.4; (2)Up = 0.01, 20 = 0.01. Other parametef. in the parameters or to chaotic control technigées to
= 1.704,T_. = 0.096,¢0 = 0.03,c = 0.02. For these parameters we regularize the behavior of a forced dynamical system. Control
are switching between two limit cycles and the resulting dynamics is methods provide a simple means for stabilizing unstable periodic
s vev e e o e s SPLES B SUPRIING U bt pciss pertrbeions o the systen
here. The variance of the noise)(is 0.02. To avoid the noise value A sufﬂqent amount of daFa from the system IS requ!red '.[0
becoming larger thaf or T, it is truncated at a. determine an unstable or.blt and the requweq pertqrbgtlon size.
Our method for suppressing chaos by allowing variation in the

switching times is much simpler to implement. This constructive
influence of noise may be advantageous for industrial produc-
tion, where time-varying control parameters may enhance both
the production rate and the selectivity of the reactonr®

In this study, synchronization was obtained by adding
Gaussian distributed white noise to the durations of the positive
and/or negative perturbations. For both cases studied here
(switching between two limit cycles or between a limit cycle
and an excitable fixed point), synchronization was achieved
equally easily whether we added noiseltq or to T—c. This is
different from an earlier study on a mitosis model, where the
system was found to be more sensitive to the variation of the
“on” perturbation?® Chaos in these systems is due to over-
sampling by trajectories of a region in phase space where
expansion occurs. In the mitotic model, the parametric driving
completely changes the flow in phase space, introducing a strong
asymmetry between up- and down-regulation. For the BZ
reaction with the parameters used in this study, the two flows
are structurally similar so that the two transitions, from high to

Periodically driven dynamical systems are common in nature, low values of¢, and vice versa, are equivalent, at least to a
such as forced chemical and biological systems. Earlier stadfies ~ first approximation.
have characterized the effect of the amplitude and the relative We have also briefly studied other types of random variation
frequency of the driving force. In this study, we explored the such as random selection between two value$,gfand two

Uty
o

-0.5 |

has also been obtained when oilly; or T fluctuates. There

is no difference in the minimum variance value needed to
achieve synchronization when noise is added either_toor

to T4, or to both.

For the case in which the system was driven between excitable
and oscillatory states (studied from a different perspective by
L'Heureux, Kapral, and Bar-El®%? the same effect of fluctua-
tions in the positive and negative perturbation durations was
observed (not shown). In this situation however, if the noise is
added to both the negative and positive perturbations, the
minimum noise variance required to achieve synchronization
turns out to be smaller than if noise is added only to the positive
or negative perturbation. If only one of the perturbation durations
fluctuates, there is no difference in the minimum variance
required to obtain synchronization whether it is the positive or
the negative perturbation duration that is noisy.

4. Discussion
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values ofT_,52 and qualitatively the same results were observed.

This and earlier studié%®8 suggest that external signals that

incorporate randomness in some way may often turn out to be

superior synchronizers.
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