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In this paper we studied the behavior of a model of a periodically driven photosensitive Belousov-Zhabotinsky
reaction. The computations were carried out with a two-variable Oregonator model modified to account for
photosensitivity. The external light intensity was periodically switched between two levels. By keeping the
total cycle length fixed while varying the duration of the positive and negative perturbations, a variety of
dynamical behaviors can be observed, including phase locking, torus oscillations, periodic transitions, and
chaos. The results suggest that not only are the forcing frequency and amplitude important, as was already
known, but the detailed waveform of the external forcing is also essential in determining the behavior of a
driven dynamical system. Two scenarios have been investigated in this study: (a) the system was driven
between two limit cycles; (b) the system was driven between excitable and oscillatory states. Random
modulation of the durations of the positive and negative perturbations (low and high illumination states)
leads to synchronization of complex behavior. Calculating the leading Lyapunov exponent confirms that this
form of random driving may be used to suppress chaotic behavior.

1. Introduction

Chemical reactions driven with a periodic perturbation have
been the subject of many experimental and computational studies
in the past 30 years.1-22 In particular, the potential for increasing
yields of chemical reactions by periodic perturbations has drawn
significant attention from chemical engineers.1-3 Substantial
improvement in overall yield has been predicted in modeling
studies,23,24 and the possibility of increased selectivity among
a range of reaction products has also been examined.16,18,22,25-27

A number of studies on periodically driven chemical reactions
have reported the observation of entrainment and consecutive
bifurcations leading to chaos.9-15 Entrainment occurs when a
periodic perturbation of sufficiently large amplitude is applied
to a self-oscillating system and the frequency of the oscillating
system is synchronized by the frequency of the driving signal.
Outside the entrainment regions one may find quasiperiodic
oscillations that show a countable number of periodic oscilla-
tions.12,16

Dolnik and co-workers investigated experimentally and
theoretically the dynamics of forced excitable and oscillatory
Belousov-Zhabotinsky (BZ) reactions.15 They observed peri-
odic and aperiodic regimes in a phase plane. The experimentally
determined firing numbers and computed rotation numbers were
used to characterize the dynamics. Aris and co-workers studied
several reactor models and found some common features of the
responses of a dynamical system to periodic forcing.9-12 They
observed that for small and intermediate forcing amplitudes
these responses are organized around several common qualitative
patterns such as the interplay between entrainment and quasi-
periodicity.

While the influence of the amplitude and the frequency of
the periodic forcing has been investigated thoroughly in several
experiments and many theoretical investigations,9-17 the impact

of the durations of the on and off perturbations (i.e., the
waveform) has not received much attention. In this study our
focus has primarily been directed to the duration of the on and
off perturbations at a fixed driving frequency. Square-wave
switching is adopted in our study. Theoretical studies of forced
dynamical systems have tended to focus on sinusoidal forcing
so that the effect of square-wave forcing has been explored in
relatively few studies21,22 despite its easy experimental realiz-
ability. Our study was carried out with a two-variable Orego-
nator model28 modified to account for the influence of light,
thus describing a photosensitive BZ reaction.29,30 The study of
photosensitive chemical oscillators has attracted intense interest
in recent years, due to the ease with which the kinetics can be
externally influenced.29-37 Petrov et al. observed resonant pattern
formation in a periodically driven reaction-diffusion photo-
sensitive BZ reaction.31 Spatiotemporal stochastic resonance has
also been reported in a spatially extended photosensitive BZ
system.32 In a recent study Amemiya and co-workers studied
the photoinduced behavior in the Ru(bpy)3

2+-catalyzed BZ
reaction by adopting an Oregonator-class model.33

The influence of noise on nonlinear dynamic systems has
attracted increasing interest over the past several years. One of
the constructive influences of noise, known as stochastic
resonance (SR), has been reported in homogeneous and reac-
tion-diffusion chemical systems by several groups.32,38-41 A
recent study on a periodically forced two-variable biological
model system shows that the noisy switching between two states
may tame chaotic phenomena and favor synchronization.20 The
constructive influence of random fluctuations will also be
characterized in this study. In contrast to existing studies32,37in
which the noise is added to the actual value of the parameter
being perturbed, here the random fluctuations are added to the
durationof the perturbation. This study is thus complementary
to this earlier work.

Two scenarios are investigated here. One is the forcing
between two limit cycles. The other is the switching between a
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limit cycle and a stable fixed point. For both situations, we
consider both periodic and irregular switching. These switching
protocols are easily realizable experimentally in a photosensitive
reaction. With periodic switching, we find the expected variety
of dynamic regimes, including quasiperiodicity, phase locking,
and chaos. When we introduce variability to the switching times,
chaos is no longer observed and the resulting systems display
excellent synchronization properties.

2. Model

The model adopted here is a two-variable Oregonator,28,42

modified to describe the photosensitive BZ reaction29,30 (the
oxidation and bromination of malonic acid by acidic bromate
in the presence of metal catalyst Ru(bpy)3

2+). The dimensionless
form of the model using Tyson-Fife43 scaling is

Here u and V are the dimensionless concentrations of HBrO2

and Ru(bpy)33+, respectively,f is an adjustable stoichiometric
parameter,ε andq are scaling parameters, andφ represents the
rate of bromide production from the irradiation. This rate is
proportional to the applied light intensity.35,44-48 This modified
Oregonator model has been used extensively to qualitatively
characterize the dynamic behavior of photosensitive BZ reac-
tions, in particular the spatially extended BZ system.49 We
decompose the photochemically induced bromide production
into φ ) φ0 + φp, where φ0 represents production at a
background light intensity, andφp represents an applied
perturbation. We consider a square-wave perturbation, i.e.,φp

) (c, where c is an adjustable constant. In this study the
following parameter values are used:ε ) 0.02,q ) 0.02,f )
1.0, φ0 ) 0.03 for the oscillatory condition andφ0 ) 0.07 for
the excitable system.

The periodic forcing is implemented by switching the light
intensity between two levels. Since the excitability of the BZ
system decreases with an increase in light intensity, we call it
a negative perturbation whenφp takes a positive value (φp )
c), corresponding to the enhancement of the illumination.
Accordingly, it is called a positive perturbation when the forcing
φp takes a negative value (φp ) -c). The durations of the
positive and negative perturbations are, respectively,T-c and
T+c, and the overall period of the periodic forcing isTtotal )
T-c + T+c. In addition, we will study the effect of random
fluctuations inT-c andT+c. This study is thus complementary
to earlier work in which noise was added to the value of light
intensity.31,32,34,37 Random fluctuations inT-c and T+c are
Gaussian distributed with zero mean value.

3. Results

3.1. Noise-Free System.We first consider switching between
two limit cycles. With the parameter values listed above and in
the absence of perturbations, a supercritical Hopf bifurcation
occurs when the background light intensity (φ0) decreases below
a threshold value 0.0599. Here we chooseφ0 ) 0.03 andc )
0.02. Thereforeφ varies between the two levelsφ ) 0.05 and
φ ) 0.01, both below the bifurcation threshold. Whenφ ) 0.05,
the oscillation period is 3.167 (in dimensionless units), whereas
the period becomes 2.215 whenφ ) 0.01. The relative positions
of the two limit cycles in the concentration space are shown in

Figure 1. As can be seen in the figure, the limit cycle is shifted
to lower values ofV with the increase in illumination while the
oscillation amplitude ofu barely changes.

Figure 2 presents two phase plots in theu-V concentration
space calculated at the same cycle length (Ttotal) but different
durations of the positive and negative perturbations. Figure 2a
shows clearly that when the perturbation switches from one level
to the other, the system is forced to jump from one limit cycle
to the other. Since the duration of the positive (T-c) and negative
perturbations (T+c) are much shorter than the period of the
oscillation, several switches occur within one oscillation cycle.
However, the overall behavior is still simple (periodic). In
contrast, the trajectory in Figure 2b is much more complex. A

Figure 1. Limit cycles for the unperturbed system. The solid line
represents the oscillation whenφ ) 0.05, whereasφ ) 0.01 for the
dashed cycle. (Other parameter values are given in the text.)

Figure 2. Phase plot for the periodically perturbed system. Calculations
were carried out at constantTtotal ) 1.8, but different durations of the
positive and negative perturbations: (a)T+c ) 0.07,T-c ) 1.73 and
(b) T+c ) 0.9,T-c ) 0.9. Here,φ0 ) 0.03,c ) 0.02. Other parameter
values are listed in the text. In panel (a), we see an example of 1:5
phase locking; panel (b) shows a chaotic trajectory with a leading
Lyapunov exponent of 0.065.

ε
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calculation of the leading Lyapunov exponent50 shows a positive
value, indicating that the behavior in Figure 2b is chaotic. When
other combinations of the durations of the positive and negative
perturbation are used, qualitatively different attractors such as
period-4 and period-8 have been found.

The bifurcation diagram with respect to the duration of the
negative perturbation (T+c) at a fixed perturbation frequency
(Ttotal ) 1.8) is shown in Figure 3. Points plotted in this figure
are the maximum values ofV during its time evolution. These
maxima vary between the maximal values ofV reached on the
two limit cycles atφ ) 0.01 andφ ) 0.05. WhenT+c ) 0, the
behavior of the driven system is that of the unperturbed system
with φ ) 0.01, i.e., a simple limit cycle. As the duration of the
negative perturbation is increased, quasiperiodic oscillations
arise and develop into chaotic behavior. Stroboscopic plots (not
shown) indicate that the chaos arises via the quasiperiodic
route.51 WhenT+c becomes larger than 0.15, a narrow parameter
window exhibiting forward and reverse period-doubling transi-
tions can be seen. WhenT+c is small (T+c < 0.3), the system
cannot reach the maximum of theφ ) 0.05 limit cycle before
switching back to theφ ) 0.01 limit cycle. Similarly the
maximum of theφ ) 0.01 limit cycle is not achievable when
T+c takes a large value (>1.2).

When values ofTtotal different from that in Figure 3 are used,
qualitatively different bifurcation diagrams are obtained, con-
firming the well-known importance of the frequency of the
external forcing.9-13 We would like to emphasize that the
dynamic behavior of the system depends on the actual values
of the durations of the positive and negative perturbations, not
just on their ratio.

Figure 4 presents a bifurcation diagram using the duration
of the negative perturbation (T+c) as a control parameter while
the duration of the positive perturbation remains constant atT-c

) 0.35. Calculations using the period of positive perturbation
(T-c) as a variable with a constantT+c exhibit a pattern similar
to that shown in Figure 4, where a variety of exotic dynamical
behaviors such as period doubled oscillations, quasiperiodicity,
and chaos are observed. This result illustrates that those complex
behaviors obtained by adjusting the frequency of external forcing
at fixed T-c/T+c ratio can also be obtained by merely varying
the duration of one or the other of the positive or negative
perturbations. It is interesting to note that the bifurcation diagram
has an approximate periodicity with the period corresponding
to the oscillatory period of theφ ) 0.05 limit cycle (3.167
dimensionless units). This phenomenon is not difficult to

understand as the behavior of this forced dynamical system at
any given time corresponds to motion near a limit cycle. The
nature of the dynamics is determined by the set of points on
each limit cycle at which switching occurs. When the time spent
on one of the limit cycles is extended by an integer multiple of
the period, the set of switching points will be roughly the same
as before. As a result, qualitatively similar bifurcation structures
arise. However, additional transits around the limit cycle are
inserted in each oscillatory period of the time series.

The second scenario being investigated is the switching
between excitable and oscillatory conditions. Here the back-
ground photochemical bromide productionφ0 is set to 0.07, and
c ) 0.03. Therefore, the light intensityφ varies between two
levels,φ ) 0.04 (oscillatory) andφ ) 0.10 (excitable, where
the system will respond to an above-threshold perturbation with
a large excursion). Figure 5 presents three stroboscopic plots
which were calculated with different combinations ofT-c and
T+c while the overall duration of the perturbation (Ttotal) is fixed.
For periodic oscillations there are a finite number of points in
the stroboscopic plot, the number of points corresponding to
the period of the oscillation (Figure 5a), whereas quasiperiodic
oscillations show up as a closed curve in the stroboscopic map
(Figure 5b). The chaotic behavior shown in Figure 5c indicates
that the chaos arises from quasiperiodic (torus) bifurcation.51

When other combinations ofT-c andT+c are used, qualita-
tively different attractors such as period-3, period-6, etc., have
been observed. The complete bifurcation diagram with respect
to the continuous variation ofT+c is shown in Figure 6, where
the period of the perturbations (Ttotal) is fixed. When the duration
of the negative perturbation (T+c) tends to zero, the system
exhibits a simple limit cycle which develops into quasiperiodic
oscillations with an increase inT+c. At the other end of the
bifurcation diagram, whereT-c tends to zero, the system only
fluctuates around lower values ofV and no excitation can occur
as the duration of the positive perturbationT-c is too short to
generate an above-threshold perturbation. Transitions between
periodic oscillations and complex oscillations take place when
T-c andT+c both take intermediate values.

The phase diagram of the duration of the positive perturbation
T-c versus the duration of the negative perturbationT+c is plotted
in Figure 7, where each curve represents a bifurcation diagram
calculated at fixedT-c while T+c is increased gradually. The
points in each bifurcation diagram are the maximum values of
V in the time series. When the system only fluctuates around
low values of V no point is collected. This “no-excitation”
behavior always occurs whenT-c is small andT+c is sufficiently
large. A single positive perturbation is then not strong enough
to induce an excursion, while the long negative perturbations
eliminate the possibility that an accumulation of positive

Figure 3. Bifurcation diagram calculated at a fixed perturbation period
Ttotal ) 1.8. We show the maxima inV. The duration of the negative
perturbation is varied gradually and the duration of the positive
perturbation is adjusted accordingly to fit the fixed total cycle. Here,
φ0 ) 0.03,c ) 0.02.

Figure 4. Bifurcation diagram varyingT+c for fixed T-c ) 0.35.
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perturbations will trigger an excitable response. For example,
the bottom curve of Figure 7 (atT-c ) 0.05) “runs out” after a
few points. It is however interesting to see that the no-excitation
phenomenon can also be observed whenT+c takes intermediate
rather than large values (next two curves of Figure 7,T-c )
0.1 and 0.15). This is due to the balance between the relaxation
and excitation time scales: In that region of the phase diagram,
excursions toward the limit cycle during the positive perturbation
are, after a short transient, exactly offset by motion back toward
the equilibrium point during the negative perturbation. As a
result, the system oscillates between two points near the
equilibrium point.

It can also be seen in Figure 7 that the dynamic regions
exhibiting complicated oscillations are separated by regions
showing simple periodic oscillations, shifting to a lower value
of T+c when T-c is increased and eventually disappearing.

Meanwhile a new dynamic window exhibiting complex oscil-
lations arises at large values ofT+c. The period of the perturbing
illumination (Ttotal ) T+c + T-c) clearly plays an important role,
as evidenced by the roughly diagonal motion of the regions of
complex oscillations across this diagram, but it is equally clear
that each line of the diagram is not a simple translation of the
previous, reinforcing our contention that the waveform can be
significant as well.

3.2. Influence of Irregularity in the Duration of the
Perturbation. As stated earlier, stochasticity is introduced by
perturbingT-c and T+c, rather than adding noise to the light
intensity (φ). This is an essential difference from earlier studies
on the perturbed photosensitive BZ reaction.31,32,34,37 Two
systems with the same parameters but different initial conditions
are investigated. We imagine that both systems are being
illuminated by the same source so that they are subject to a
commonφ(t). Figure 8 plots the time evolution of the difference
between the two systems. For the parameters used here, we are
switching between two limit cycles, and chaos is observed in
the absence of irregularity in the duration of light perturbation.
Stochastic variation ofT-c andT+c was turned on att ) 300.
After a transient period, the difference between the two systems
becomes zero, indicating the achievement of synchronization.
Calculations of the leading Lyapunov exponent show that it
changes from a positive to a negative value after the fluctuations
are switched on, suggesting that a stochastic process of this type
can be used to tame the chaotic behavior of driven dynamical
systems. The length of the transient period decreases with
increasing variance of the switching times. When the variance
is too small,φ(t) is nearly periodic, the two systems are chaotic
and synchronization is impossible. Successful synchronization

Figure 5. Stroboscopic plots calculated at a constant cycle length but
different durations of the positive and negative perturbations withφ0

) 0.07,c ) 0.03 and (a)T+c ) 0.42,T-c ) 0.18; (b)T+c ) 0.01,T-c

) 0.59; and (c)T+c ) 0.15,T-c ) 0.45. In these stroboscopic plots,
points are collected at every half period of the positive perturbation
(i.e., whenT-c/2 time units have elapsed since the illumination was
reduced).

Figure 6. Bifurcation diagram calculated at a fixed perturbation
frequencyTtotal ) 0.6. The duration of the negative perturbation is varied
gradually and the duration of the positive perturbation is adjusted
accordingly to keep the total cycle constant.φ0 ) 0.07,c ) 0.03. Panel
(a) shows maxima inV only while panel (b) shows both maxima and
minima.
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has also been obtained when onlyT-c or T+c fluctuates. There
is no difference in the minimum variance value needed to
achieve synchronization when noise is added either toT-c or
to T+c, or to both.

For the case in which the system was driven between excitable
and oscillatory states (studied from a different perspective by
L’Heureux, Kapral, and Bar-Eli),52 the same effect of fluctua-
tions in the positive and negative perturbation durations was
observed (not shown). In this situation however, if the noise is
added to both the negative and positive perturbations, the
minimum noise variance required to achieve synchronization
turns out to be smaller than if noise is added only to the positive
or negative perturbation. If only one of the perturbation durations
fluctuates, there is no difference in the minimum variance
required to obtain synchronization whether it is the positive or
the negative perturbation duration that is noisy.

4. Discussion

Periodically driven dynamical systems are common in nature,
such as forced chemical and biological systems. Earlier studies9-15

have characterized the effect of the amplitude and the relative
frequency of the driving force. In this study, we explored the

importance of the duration of the positive and negative
perturbations at a fixed forcing frequency. The results have
shown that for a periodically driven dynamical system, the
durations of the positive and negative perturbations are both
essential in determining the overall dynamic behavior and can
each be used as a control parameter to manipulate this behavior.
A variety of dynamic phenomena such as torus oscillations,
periodic transitions, phase locking, and chaos have been
achieved by merely adjusting the duration of the positive or
negative perturbations while the length of the cycle remains
constant.

Calculations of the leading Lyapunov exponent and simula-
tions such as that shown in Figure 8 indicate that the observed
chaotic behavior may be suppressed by allowing the durations
of the perturbations to fluctuate. The constructive influence of
noise therefore may be used as an alternative to gross changes
in the parameters or to chaotic control techniques53-57 to
regularize the behavior of a forced dynamical system. Control
methods provide a simple means for stabilizing unstable periodic
states by supplying tiny but precise perturbations to the system.
A sufficient amount of data from the system is required to
determine an unstable orbit and the required perturbation size.
Our method for suppressing chaos by allowing variation in the
switching times is much simpler to implement. This constructive
influence of noise may be advantageous for industrial produc-
tion, where time-varying control parameters may enhance both
the production rate and the selectivity of the reaction.23-26

In this study, synchronization was obtained by adding
Gaussian distributed white noise to the durations of the positive
and/or negative perturbations. For both cases studied here
(switching between two limit cycles or between a limit cycle
and an excitable fixed point), synchronization was achieved
equally easily whether we added noise toT+c or to T-c. This is
different from an earlier study on a mitosis model, where the
system was found to be more sensitive to the variation of the
“on” perturbation.20 Chaos in these systems is due to over-
sampling by trajectories of a region in phase space where
expansion occurs. In the mitotic model, the parametric driving
completely changes the flow in phase space, introducing a strong
asymmetry between up- and down-regulation. For the BZ
reaction with the parameters used in this study, the two flows
are structurally similar so that the two transitions, from high to
low values ofφp and vice versa, are equivalent, at least to a
first approximation.

We have also briefly studied other types of random variation
such as random selection between two values ofT+c and two

Figure 7. Phase diagram of the duration of the positive perturbation (T-c) versus the duration of the negative perturbation (T+c). Each dotted curve
represents maxima inV collected at a fixedT-c while T+c is varied. From bottom to top, the value ofT-c equals 0.05 to 1.20 in steps of 0.05.

Figure 8. Time evolution of the difference between two identical
uncoupled photosensitive BZ systems which are subjected to the same
time-varying light intensity but start from different initial conditions:
(1) u0 ) 0.6,V0 ) 0.4; (2)u0 ) 0.01,V0 ) 0.01. Other parametersT+c

) 1.704,T-c ) 0.096,φ0 ) 0.03,c ) 0.02. For these parameters we
are switching between two limit cycles and the resulting dynamics is
chaotic. Fluctuations in the durations of the perturbations begin att )
300. Gaussian distributed white noise with zero mean value is used
here. The variance of the noise (σ) is 0.02. To avoid the noise value
becoming larger thanT-c or T+c, it is truncated at 2σ.
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values ofT-c,52 and qualitatively the same results were observed.
This and earlier studies20,58 suggest that external signals that
incorporate randomness in some way may often turn out to be
superior synchronizers.

A variety of studies have shown that various kinds of noise
can regularize the behavior of a system.58-62 The noisy switching
times used in our study are a variation on the dichotomous (or
telegraphic) noise processes studied by others.52,59,63-66 These
studies have shown a variety of effects ranging from stochastic
resonance52 to stochastic coherence.59,65,66Our observation of
synchronization in these systems is no doubt closely related to
stochastic coherence. The latter phenomenon is the appearance
of nontrivial structure in the coarse-grained probability den-
sity.59,67,68Since we can obtain similar synchronization proper-
ties with a variety of dichotomous noise processes, it seems
likely that the systems we have studied will show similarly
structured probability densities. It seems equally likely that the
peaks in the probability density act as organizing centers for
synchronization. This hypothesis awaits investigation.

The Oregonator model has been very successful in qualita-
tively describing experimental observations in the BZ reaction.
Accordingly we expect that the phenomena observed in this
study may be observed in a real photosensitive BZ experiment.
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